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Abstract 

Background:  

Understanding the interplay between educational attainment and genetic predictors of 

cardiovascular risk may improve our understanding of mechanisms relating educational 

attainment to cardiovascular disease. 

Methods:  

In up to 320 120 UK Biobank participants of White British ancestry (mean age = 57, female 

54%), we created polygenic scores for nine cardiovascular risk factors or diseases: alcohol 

consumption, body mass index, low-density lipoprotein cholesterol, lifetime smoking 

behaviour, systolic blood pressure, atrial fibrillation, coronary heart disease, type 2 diabetes 

and stroke. We estimated whether educational attainment modified genetic susceptibility to 

these risk factors and diseases.  

Results: 

On the additive scale, higher educational attainment reduced genetic susceptibility to higher 

BMI, smoking, atrial fibrillation and type 2 diabetes, but increased genetic susceptibility to 

higher LDL-C and higher systolic blood pressure. 

On the multiplicative scale, there was evidence that higher educational attainment increased 

genetic susceptibility to atrial fibrillation and coronary heart disease, but no evidence of effect 

modification was found for all other considered traits. 

Conclusions:  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 24, 2021. ; https://doi.org/10.1101/2021.03.16.21253723doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.16.21253723
http://creativecommons.org/licenses/by/4.0/


 

 6 

Educational attainment modifies the genetic susceptibility to some cardiovascular risk factors 

and diseases. The direction of this effect was mixed across traits considered and differences in 

associations between the effect of the polygenic score across strata of educational attainment 

was uniformly small. Therefore, any effect modification by education of genetic susceptibility to 

cardiovascular risk factors or diseases is unlikely to contribute substantially to the mechanisms 

driving inequalities in cardiovascular risk.  

 

Key words: polygenic scores, education, inequalities, cardiovascular disease, 

gene*environment interactions 
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Key Messages 

•  The role of educational attainment in modifying the effect of polygenic scores for a 

wide range of cardiovascular risk factors or diseases has not previously been studied 

•  We explore whether educational attainment modifies the effects of polygenic 

susceptibility to alcohol consumption, body mass index, low-density lipoprotein 

cholesterol, lifetime smoking behaviour, systolic blood pressure, atrial fibrillation, 

coronary heart disease, type 2 diabetes and stroke 

• Effect modification by education was observed for some cardiovascular polygenic 

scores, but not all. 

• Effects were not always in the hypothesised direction and were dependent on the scale 

of analysis.  

• Modification of the effect of genetic susceptibility to cardiovascular risk factors or 

cardiovascular disease by educational attainment is unlikely to contribute substantially 

to the mechanisms driving inequalities in cardiovascular risk.  
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Introduction 

Although rates of cardiovascular disease (CVD) have decreased in high income countries, 

socioeconomically deprived individuals have the greatest risk of disease (1). Most 

cardiovascular outcomes are complex multifactorial diseases with both environmental and 

genetic aetiology (2-4). Therefore, it is plausible that socioeconomic position (SEP) may interact 

with, or modify, genetic susceptibility to CVD. 

Large genome-wide association studies (GWAS) have identified many genetic variants that 

reliably associate with liability to cardiovascular disease and risk factors for CVD (5-7). These 

can be used to construct polygenic scores, explaining substantial fractions of variation. Tyrrell 

and colleagues demonstrated that individuals with a higher Townsend deprivation index have 

an accentuated risk of obesity in genetically susceptible adults (8). Rask-Anderson and 

colleagues replicated this association, however, they found little evidence that education 

modified the effect of genetic susceptibility to a high body mass index (BMI) risk on measured 

BMI (9). Amin and colleagues also found little evidence that education modified genetic 

susceptibility to BMI in a study using data from the UK and Finland (10). 

Whilst educational attainment has been shown to modify the association of cardiovascular risk 

factors on CVD (1, 11) it is unclear whether educational attainment modifies the effect of 

genetic susceptibility to a wide range of cardiovascular risk factors. If higher levels of education 

mitigate some of the genetic risk of cardiovascular risk (‘gene*environment interaction’), this 

may be one of the mechanisms underlying educational inequalities in cardiovascular disease 

(12).  
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Methods 

UK Biobank 

The UK Biobank recruited 503 317 adults from around the UK between 2006 and 2010, aged 37 

to 73 (13). Participants attended baseline assessment centres involving questionnaires, 

interviews, anthropometric, physical and genetic measurements (13, 14). In this analysis, we 

use up to 320 120 individuals of White British ancestry (sFigure 1). 

Educational attainment 

At baseline, participants reported highest qualification achieved, which was converted to the 

International Standard Classification for Education (ISCED) coding of educational attainment 

(sTable 1) (15).  

Cardiovascular risk factors and cardiovascular disease 

Cardiovascular risk factors were included in our study if there is evidence from randomized 

controlled trials, Mendelian randomisation studies, or clinical studies, that they are a causal risk 

factor for CVD (see sTable 2 for studies) and have suitable GWAS summary statistics available. 

Additionally, we included polygenic scores for a number of CVD subtypes. In total, 9 polygenic 

scores were included in our analyses, these were; alcohol consumption (16), BMI (17), type 2 

diabetes (18), low density lipoprotein cholesterol (LDL-C) (19), lifetime smoking behaviour (20) 

and systolic blood pressure (21). Polygenic scores for cardiovascular subtypes included in 

analyses were atrial fibrillation (5), coronary heart disease (CHD) (6) and stroke (7). 

Cardiovascular risk factors were measured at baseline assessment centres, whilst incident 

cardiovascular outcomes (atrial fibrillation, CHD, stroke and type 2 diabetes) were determined 
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by linked mortality records and hospital inpatient records (see sTable 3). A full description of 

how each risk factor/outcome was measured, both phenotypically and genetically, is presented 

in the Supplementary Methods. 

Deriving polygenic scores 

Summary statistics of the associations of the single-nucleotide polymorphisms (SNPs) with each 

cardiovascular risk factor/outcome were downloaded from MR-Base (22) or the relevant GWAS. 

We used the most recent GWAS for each risk factor/ outcome excluding UK Biobank 

participants to avoid bias by sample overlap. The 1000 genomes project was used to find proxy 

SNPs in LD with SNPs not found in UK Biobank. Pruning of SNPs was carried out using the clump 

command in PLINK using an r2 parameter of 0.25 and a physical distance threshold for clumping 

of 500kB. Polygenic scores were constructed using a range of p-value thresholds p≤5×10-8 

(genome-wide significant), ≤0.05, and ≤0.5. As the p-value threshold increases, the variance 

explained by the polygenic score typically increases. However, increasing the numbers of SNPs 

increases the risk of pleiotropy and false positive effects. The pruned SNPs from each GWAS 

were harmonised with the SNPs from UK Biobank, aligning the effect estimates and alleles. Any 

SNPs that could not be harmonised, palindromic SNPs (where alleles on the forward and 

reverse strand are read the same) or triallelic SNPs were excluded from polygenic scores. The 

polygenic scores were created by multiplying the number of effect alleles for each participant 

by the association of the SNP with the phenotype in each GWAS, then summed across all SNPs 

associated with each phenotype. All polygenic scores were standardized for use in analyses and 

reflect a one standard deviation (SD) change. 
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Main analyses are presented using polygenic scores derived at the genome-wide significance 

threshold with other polygenic score thresholds presented in the supplement. 

Exclusion criteria 

Reverse causality can introduce bias when the temporality of the exposure and outcome is mis-

specified and the outcome itself affects the exposure (23). Although a cardiovascular diagnosis 

in later life can not alter genetic variants defined at conception, and indeed is unlikely to 

change educational attainment typically determined by early adulthood, a diagnosis may lead 

to behavioural or lifestyle changes which change the relative importance of the polygenic score 

in determining the outcome state. To avoid bias by reverse causality, analyses of cardiovascular 

outcomes were carried out prospectively and individuals were excluded if they had experienced 

at least one diagnosis of any of the outcomes considered in analyses at, or before, baseline 

(atrial fibrillation, CHD, stroke and type 2 diabetes). Additionally, participants were excluded if 

they had experienced any one of myocardial infarction, angina, transient ischaemic attack, 

peripheral arterial disease, familial hypercholesterolaemia, type 1 diabetes and chronic kidney 

disease, which can all result in statins being prescribed to prevent CVD which may lead to 

behaviour change and therefore reverse causality (24). All diagnoses were ascertained through 

linkage to mortality data and hospital inpatient records, with cases defined according to ICD-9 

and ICD-10 codes (sTable 4).   

Quality control of the genetic data was carried out according to the Medical Research Council 

Integrative Epidemiology Unit quality control pipeline, described in full previously (25). In brief, 

individuals were excluded if their genetic sex differed to their gender reported at baseline or for 

having aneuploidy of their sex chromosomes (non-XX or -XY chromosomes). Further individuals 
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were excluded for extreme heterozygosity or a substantial proportion of missing genetic data. 

Related individuals were excluded removing those related to the greatest number of other 

participants, until no related pairs were left (25). This exclusion list was derived in-house using 

an algorithm applied to the list of all the related pairs provided by UK Biobank (3rd degree or 

closer) (sFigure 1). In addition, individuals were excluded if they had withdrawn from UK 

Biobank or were, or may be, pregnant at baseline. 

Individuals were excluded if they were missing data for education, age and sex. Individuals were 

excluded from specific analyses if they were missing phenotypic measurements of the risk 

factor/outcome under consideration (see sFigure 1).  

Statistical Analysis 

Association of educational attainment with outcomes 

Multivariable linear regression (adjusting for age and sex) was carried out to estimate the 

association between educational attainment and cardiovascular risk factors/diseases. 

Association between each polygenic score and observed phenotype 

For each of the cardiovascular risk factors/diseases, we estimated the association between 

each polygenic score and the corresponding phenotypic using multivariable linear regression, 

adjusting for age, sex and 40 genetic principal components to control for population structure. 

For continuous cardiovascular risk factors, measures were standardised, so estimates reflect 

the mean difference in SD of the phenotype for a one SD higher polygenic score. For binary 

outcomes, estimates reflect the risk difference or odds ratio of the outcome per one SD higher 

polygenic score. 
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Effect modification by educational attainment on polygenic scores for cardiovascular risk 

To test for effect modification, the linear model was stratified by years of educational 

attainment. To estimate the magnitude and direction of the effect modification, an interaction 

term was included in the linear model (e.g., polygenic score*education [continuous]). Analyses 

were adjusted for age, sex and 40 genetic principal components. As effect modification is scale 

dependent and, by definition, with two causal risk factors an interaction will be present on at 

least one of the additive and multiplicative scales, tests of effect modification were carried out 

on both the additive and multiplicative scale (26).  

Secondary Analyses 

All analyses were replicated for polygenic scores at P value thresholds of ≤0.05 and ≤0.5. 

Data and code availability 

The data used in this study has been archived with the UK Biobank study and was carried out 

under approved project 10953. The analysis code used is available at 

github.com/alicerosecarter/gxe_cv_riskfactors. 

Results 

UK Biobank cohort 

Eligible UK Biobank participants (55% female) had a mean age of 57 (standard deviation [SD] = 

8.00 years). A higher proportion of participants (33%) left school after 20 years (equivalent to 

obtaining a degree), compared with those who left school after 7 years (equivalent to no formal 

qualifications) (16%) (Table 1).  
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For a P value of ≤5x10-8, the polygenic scores explained between 0.06% (atrial fibrillation) and 

14% (systolic blood pressure) of variance in the phenotypes (sTable 5). 

Association between educational attainment, polygenic scores and cardiovascular risk 

factors use 

Educational attainment was associated with all cardiovascular risk factors/diseases, except for 

LDL-C, although for all outcomes the effect was small (sTable 6). Except for alcohol 

consumption, higher educational attainment led to a reduction in the mean difference of all risk 

factors/diseases (sTable 6).  

Effect modification by educational attainment of genetic susceptibility to cardiovascular 

risk factors  

For most polygenic scores, there was evidence that educational attainment modified the effect 

of the polygenic score on either the additive or multiplicative scale (Figures 1-3 and sTables 7 

and 8). The exception was alcohol consumption, for which there was little evidence on either 

scale.  

On the additive scale, higher educational attainment protected against genetic susceptibility to 

higher BMI, smoking, atrial fibrillation and type 2 diabetes (Figure 1 and Figure 2). For example, 

a one SD increase in polygenic score for smoking increased mean difference in lifetime smoking 

by 0.05 SD (95% CI: 0.04 to 0.06) for those with 7 years education and by 0.03 SD (95% CI: 0.02 

to 0.03) for people with 20 years of education (Figures 1 and 2 and sTable 7) (Peffect modification = 

0.001).  
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Also on the additive scale, higher educational attainment increased genetic susceptibility to 

LDL-C and systolic blood pressure. For example, for those with 7 years of education an increase 

of one SD in the polygenic score for LDL-C increased mean LDL-C by 0.19 SD (95% CI: 0.18 to 

0.19), compared to 0.22 SD (95% CI: 0.22 to 0.23) for people with 20 years of education(Peffect 

modification = 1.12x10-4) per SD increase in polygenic score (Figures 1 and 2 and sTable 7). 

On the multiplicative scale, there was evidence that higher educational attainment increased 

genetic susceptibility to atrial fibrillation and CHD. For example, for a one SD increase in atrial 

fibrillation polygenic score, the odds ratio for atrial fibrillation in individuals with 7 years of 

education was 1.59 (95% CI: 1.45 to 1.57) and for people with 20 years of educational 

attainment the odds ratio was 1.65 (95% CI: 1.59 to 1.71) (Peffect modification = 9.03x10-8) (Figures 1 

and 3 and sTable 8). There was little evidence of modification by education on the 

multiplicative scale for all other polygenic scores.  

For all outcomes, the size of the coefficients for effect modification was small. Non-linear 

effects by strata of educational attainment were observed for a number of outcomes (Figures 2 

and 3).  

Secondary analyses 

Analyses using more liberal P-value thresholds for the polygenic score were broadly consistent 

with the main genome-wide results. Similar directions of effect were observed, for example on 

the additive scale a one unit increase in educational attainment protected against genetic 

susceptibility to BMI and lifetime smoking behaviour (sTable 9 and sTable 10).  
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Discussion 

In this analysis of UK Biobank participants, we found evidence that educational attainment 

modified the risk of genetic susceptibility to some, but not all, cardiovascular risk 

factors/diseases. We had hypothesised that higher levels of education would mitigate genetic 

susceptibility to cardiovascular risk, but in several cases the effect modification was in the other 

direction, i.e., higher education accentuated genetic predisposition. Furthermore, the 

magnitude of the differences in associations between polygenic scores and cardiovascular risk 

factors/disease across levels of educational attainment was small in all cases, and the evidence 

for effect modification was often scale dependent. These results suggest that modification of 

the effect of polygenic scores by educational attainment is unlikely to play a substantial role in 

the generation of educational inequalities in cardiovascular disease. 

Results in context 

A number of studies have sought to identify the interplay between genetic susceptibility to 

cardiovascular risk factors with a range of lifestyle and environmental factors (27-32). However, 

few have considered the role of SEP interacting with genetic risk. 

Two recent studies using UK Biobank have demonstrated that a greater Townsend deprivation 

index accentuated the genetic risk of obesity (8, 9). However, the previous literature has not 

found evidence that education modifies the genetic risk of obesity (9, 10). We have expanded 

on this here by exploring the extent to which education modifies polygenic susceptibility to a 

wide range of cardiovascular risk factors, rather than focussing on one risk factor. In contrast to 

the previous literature, we found evidence that educational attainment modifies genetic 
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susceptibility to BMI. This may be related to power, where previous studies have used smaller 

sample sizes to estimate interactions.  

A further explanation for these differences could be because of the education definition used. 

Here, we converted highest educational qualification to ISCED years of schooling, however 

previous research has defined education as age of completing full time education (9) and 

highest qualification (10).  

Strengths and weaknesses, and caveats to the analysis of effect modification 

There are a number of strengths in this study. Much of the previous literature on 

gene*environment interactions in CVD rely on candidate gene style studies (31, 33, 34), which 

have often been shown to be spurious (35). Here, we have used polygenic scores for nine 

cardiovascular risk factors/diseases. Whilst candidate gene studies typically focus on a single 

genetic variant, or small group of (common) genetic variants that individually explain a large(r) 

amount of the variance in the trait, polygenic scores include a large number of genetic variants 

which each explain a small amount of the variation, but cumulatively explain a large amount 

(36, 37). For most diseases, including CVD, polygenic inheritance of these common variants 

plays a greater role than rare monogenic mutations (37, 38). Therefore, the broad measure of 

genetic susceptibility used here is likely to represent a greater number of biological pathways 

for the aetiology of cardiovascular disease.  

Additionally, we created polygenic scores at a range of P value thresholds. At a more stringent 

threshold (e.g., P≤5x10-8) the genetic variants included are less likely to be pleiotropic (i.e., also 

associated with different phenotypes), but the variance explained by the polygenic score may 
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be lower than with a more liberal threshold (e.g., P≤0.5). Additionally, less stringent clumping 

thresholds were used to improve polygenic prediction, but this may introduce pleiotropic SNPs. 

The lack of evidence for effect modification between education and the polygenic score for 

alcohol consumption observed in this study could be due to insufficient power to detect an 

interaction or because of the way the variable was defined. For example, alcohol consumption 

was defined as drinks per week, but type of alcoholic drink consumed may be an important 

factor which was not accounted for. Additionally, alcohol consumption was self-reported by 

participants, which is prone to recall bias (39, 40). If this recall bias is differential by strata of 

educational attainment, this may lead to a masking of any effect modification between 

educational attainment and genetic susceptibility to alcohol consumption on actual alcohol 

consumed. Alternatively, different patterns of drinking may occur in different strata of 

educational attainment. For example, it has previously been shown that individuals of lower 

SEP are more likely to drink to extreme levels (41), but individuals of higher SEP consume 

similar or even greater amounts of alcohol (42).  

Low statistical power reduces the chance of detecting a true effect should one exist (43). 

Although some power calculators have been developed to calculate power in 

gene*environment interaction analyses (44), to our knowledge none have been developed for 

use with polygenic scores. Therefore, we cannot calculate the theoretical power of these 

analyses. However, it is possible that we did not detect effect modification by education on the 

effects of alcohol consumption due to insufficient power to detect an interaction.  

Studies of effect modification can be biased by reverse causality and confounding. Where 

possible, for example with genetic susceptibility to cardiovascular diagnoses, we restricted 
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analyses to incident cases to avoid bias from behaviour changes following previous disease 

events. Genetic variants are determined at conception, and therefore not affected by 

unmeasured later life confounding factors. However, they can be confounded by population 

structure (45). In this analysis, we controlled for genetic principal components to minimise bias 

due to this.  

One limitation is the generalisability of these results to other populations. UK Biobank is not 

representative of the wider UK population (13). UK Biobank participants are typically more 

highly educated and of a higher SEP. Therefore, evidence of that education modifies the effect 

of polygenic scores in this sample may be due to collider bias caused by non-random selection 

into the study (46).  

Although we have identified evidence to support that education modifies the effect of 

polygenic scores for some cardiovascular risk factors, these effects may differ for alternative 

measures of SEP. Likewise, should different definitions of the outcome variables be used, e.g., 

smoking initiation as opposed to lifetime smoking behaviour, the observed evidence of effect 

modification may change. 

These results do not specifically identify what it is about educational attainment that modifies 

genetic susceptibility to cardiovascular risk factors/outcomes. For example, remaining in 

education may lead to an increased knowledge of the smoking harms, even if they have genetic 

variants increasing their susceptibility to heavier smoking (47). 

Where educational attainment increased genetic susceptibility to cardiovascular disease 

diagnoses, such as atrial fibrillation, it is possible these differences are observed due to 
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differences in rates of diagnosis, which may independently contribute to cardiovascular 

inequalities. Whilst risk factors such as BMI and smoking were measured near universally in 

participants at baseline, cardiovascular diagnoses were ascertained through linkage to hospital 

inpatient records. This may therefore reflect differential diagnosis across strata of educational 

attainment. 

Interpreting analyses of interaction and effect modification  

The terms interaction and effect modification are often used interchangeably in modern 

epidemiology. Whilst statistically the same, the distinction can be made where an interaction is 

defined in terms of the effects of two causal risk factors, whereas effect modification specifies 

that the effect of one causal risk factor varies by strata of a second factor, the effect of which 

on the outcome is not necessarily causal (48). We have used the term effect modification 

throughout this analysis, where we specifically hypothesise that the effect of the polygenic 

scores vary by strata of educational attainment.  

Interaction and effect modification have often been dichotomized into “biologic interaction” 

and “statistical interaction” (49, 50). Biologic interaction is said to be a deviation from an 

additive effect of two causal risk factors on the risk difference of the outcome. However, the 

term biologic interaction has been criticised for being difficult to interpret and giving potentially 

misleading assurances about causal biological mechanisms that have not been assessed (50). 

Statistical interaction is described as the deviation from the expected effect of two joint risk 

factors, under the assumption the risk factors are independent, either on the additive or the 

multiplicative scale (50). When two risk factors are causal, as is the case in our analyses, there 
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should always be evidence of an interaction on at least one of the scales, therefore we present 

results on both the additive and the multiplicative scales (26). This is an important distinction 

from previous analyses, which have typically only reported results on the additive scale (8, 9). 

Importantly for public health relevance is to interpret the magnitude of any differences in 

associations between the effect of the polygenic scores across strata of education. These were 

uniformly small in this analysis and the direction of the effect was not consistent. This indicates 

that any effect modification by educational attainment on the effect of genetic susceptibility to 

cardiovascular risk factors/disease is unlikely to contribute to the mechanisms driving 

inequalities in cardiovascular risk.  

Conclusions 

In this study we have found that educational attainment modifies genetic susceptibility to a 

number of cardiovascular risk factors. The direction of this effect was mixed, and the size of the 

effect modification coefficients were small. This suggests that effect modification by 

educational attainment on the effect of genetic susceptibility to cardiovascular risk factors or 

cardiovascular disease is unlikely to contribute to the mechanisms driving inequalities in 

cardiovascular risk.  
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Table 1: Descriptive characteristics of the main analysis sample compared with all 

individuals in UK Biobank at baseline 

Variable 
Analysis sample Full UK biobank* 

(N = 320 120) (N = 502 156) 
Continuous variables N Mean (SD) N Mean (SD) 

Age 320 120 56.66 (8.00) 502 156 56.54 (8.09)  
Drinks per week 318 300 8.17 (9.05) 497 917 7.79 (9.05)  

BMI 319 201 27.3 (4.72) 499 065 27.43 (4.8)  
LDL-C 304 700 3.61 (0.86) 468 390 3.56 (0.87)  

Systolic blood pressure 292 277 138.16 
(18.58) 456 647 137.79 

(18.62)  
Smoking (lifetime behaviour) 301 684 0.32 (0.66) 318 112 0.34 (0.67)  

Categorical variables N Frequency 
(%) N Frequency 

(%) 
Sex Female 320 120 175 108 (55) 502 156 273 025 (54)  

Years of education 

7 years 

320 120 

52012 (16) 

493 033 

84648 (17) 
10 years 54899 (17) 82357 (17) 
13 years 17355 (5) 26857 (5) 
15 years 39144 (12) 58271 (12) 
19 years 51418 (16) 77668 (16) 
20 years 105292 (33) 163232 (33)  

Atrial fibrillation (incident) 
Control 

316 912 
307352 (97) 

495 772 
480007 (97) 

Case 9560 (3) 15765 (3)  
Coronary artery disease 

(incident) 
Control 

317 055 
302574 (95) 

481 533 
458689 (95) 

Case 14481 (5) 22844 (5)  

Type 2 diabetes (incident) 
Control 

316 406 
305327 (96) 

492 726 
472098 (96) 

Case 11079 (4) 20628 (4) 
 

Stroke (incident) 
Control 

320 120 
314191 (98) 

497 151 
487084 (98) 

Case 5929 (2) 10067 (2) 
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Figure 1: Coefficient for educational attainment as an effect modifier of 

polygenic susceptibility to cardiovascular risk factors or diseases on the 

additive and multiplicative scale 
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Analyses adjusted for age, sex and 40 genetic principal components 

Alcohol = drinks per weekly BMI = body mass index; LDL-C = Low density lipoprotein 

cholesterol; smoking = lifetime smoking behaviour; SBP = systolic blood pressure; AF = Atrial 

fibrillation; CHD = Coronary heart disease; T2D = Type 2 diabetes 

Analyses for binary outcomes on the multiplicative scale are presented as log odds ratios 
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Figure 2: Association between polygenic scores for susceptibility to 

cardiovascular risk and phenotypic measure of each risk factor, stratified 

by educational attainment demonstrating effect modification on the 

additive scale 
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Analyses adjusted for age, sex and 40 genetic principal components 

Alcohol (drinks per week) PEM = 0.384; body mass index (BMI) PEM = 0.036; low-density 

lipoprotein cholesterol (LDL-C) PEM = 1.12x10-4; lifetime smoking behaviour PEM = 0.001; systolic 

blood pressure (SBP) PEM = 0.104 

Atrial fibrillation (AF) PEM = 9.03x10-8; coronary heart disease (CHD) PEM = 0.103; type 2 diabetes 

(T2D) PEM = 3.23x10-10; stroke PEM = 0.036 
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Figure 3: Association between polygenic scores for susceptibility to 

cardiovascular risk and phenotypic measure of each risk factor, stratified 

by educational attainment demonstrating effect modification on the 

multiplicative scale 
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Analyses adjusted for age, sex and 40 genetic principal components  

Alcohol (drinks per week) PEM = 0.976; body mass index (BMI) PEM = 0.330; low-density 

lipoprotein cholesterol (LDL-C) PEM = 1.63x10-6; lifetime smoking behaviour PEM = 0.008; systolic 

blood pressure (SBP) PEM = 0.076 

Atrial fibrillation (AF) PEM = 0.008; coronary heart disease (CHD) PEM = 8.94x10-4; type 2 diabetes 

(T2D) PEM = 0.537; stroke PEM = 0.292 

EM = effect modification 
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