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Abstract 

Knowledge of the clinical spectrum of rare genetic disorders helps in disease management and variant 

pathogenicity interpretation. Leveraging electronic health record (EHR)-linked genetic testing data from 

the eMERGE network, we determined the associations between a set of 23 hereditary cancer genes and 

3017 phenotypes in 23544 individuals. This phenome-wide association study replicated 45% (184/406) of 

known gene-phenotype associations (P = 5.1´10-125). Meta-analysis with an independent EHR-derived 

cohort of 3242 patients confirmed 14 novel associations with phenotypes in the neoplastic, genitourinary, 

digestive, congenital, metabolic, mental and neurologic categories. Phenotype risk scores (PheRS) based 

on weighted aggregations of EHR phenotypes accurately predicted variant pathogenicity for at least 50% 

of pathogenic variants for 8/23 genes. We generated a catalog of PheRS for 7800 variants, including 5217 

variants of uncertain significance, to provide empirical evidence of potential pathogenicity. This study 

highlights the potential of EHR data in genomic medicine. 
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Understanding the phenotypic consequences of genomic variation is critical to genomic medicine. 

Uncovering gene-phenotype relationships facilitates clinical diagnoses, leads to better treatment, 

improves  prognosis prediction, and provides insights into disease etiology and potential therapeutic 

targets1,2. The application of next generation sequencing (NGS) has markedly accelerated the discovery of 

novel Mendelian disease genes and has expanded our knowledge of the characteristic phenotypes 

associated with genetic disorders. These are epitomized by hereditary cancer genes. It has been shown 

that their associated phenotypes can extend beyond predisposition to cancer3-5. For example, 

developmental disorders are often found in patients with hereditary cancer syndromes5. However, 

substantial gaps in knowledge about the spectrum of phenotypes have been noted6, suggesting the need 

for infrastructure and resources to systematically assess gene-phenotype associations6,7. In this study, we 

used electronic health record (EHR) data to systematically evaluate a wide range of phenotypes associated 

with hereditary cancer genes. 

The clinical consequences of a genetic variant depend on the variant’s pathogenicity and its 

penetrance. The American College of Medical Genetics and Genomics (ACMG) has defined a set of 59 

genes, including 25 associated with cancer syndromes8, in which variants are known to cause disorders 

with clearly defined phenotypes that are clinically actionable. However, our ability to predict the 

pathogenicity of rare genetic variants remains poor, and these actionable genes still contain many variants 

of uncertain significance (VUS). We have previously demonstrated that aggregating related EHR 

phenotypes for Mendelian diseases could aid in variant interpretation9,10.  

Here, we used EHR and genetic testing data from 10 clinical sites in the Electronic Medical 

Records and Genomics (eMERGE) Network11 to study a broad range of phenotypes associated with 

hereditary cancer genes. We replicated known gene-phenotype associations in a phenome wide 

association study (PheWAS). We next identified new associations and replicated them in an independent 

cohort of patients undergoing clinical genetic testing. We then tested the utility of EHR phenotypes in 
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assessing the pathogenicity of rare variants through the application of phenotype risk scores (PheRS)9,10 to 

aid in future variant interpretation in clinical genetic testing.   

Results 

Figure 1 provides an overview of the study design. Our primary study population included 23,544 

individuals from 10 sites who were sequenced on a custom NGS panel that includes 31 genes with known 

associations with hereditary cancers including,  25 of which were included drawn from the ACMG59 list8 

and 6 additional genes (ATM, BLM, CHEK2, PALB2, POLE, and POLD1) selected by participating 

sites11. We assembled an independent cohort of 3242 individuals by linking the Vanderbilt hereditary 

cancer registry (HCR) that documented testing results of patients undergoing clinical genetic testing for 

hereditary cancer syndromes to the EHR database at Vanderbilt. Supplemental Table S1 summarizes the 

distribution of demographics and mean follow-up time for each site in the eMERGEseq cohort and the 

HCR cohort. The classification of variants in both cohorts was performed by the Clinical Laboratory 

Improvement Amendments (CLIA) and the College of American Pathologists (CAP)-accredited 

molecular genetic laboratories as described in the Methods section and elsewhere11. For each gene, we 

defined individuals with pathogenic/likely pathogenic (P/LP) variants as carriers and those with 

benign/likely benign (B/LB) variants or no rare variants (minor allele frequency < 0.001) as non-carriers. 

We identified 892 carriers for 23 genes in the eMERGEseq cohort. The HCR cohort included 434 carriers 

for 19 of these 23 genes. Distributions of carriers, non-carriers and individuals with variants of uncertain 

significance (VUS) for each gene are presented in Supplemental Table S2.  

PheWAS replicated known associations 

To validate the PheWAS approach in uncovering phenotypes associated with hereditary cancer 

genes, we assessed whether PheWAS could replicate known gene-phenotype relationships. PheWAS 

replicated 184 out of 406 (45%) known gene-phenotype associations as documented in the Online 
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Mendelian Inheritance in Man (OMIM) database (Figure 2 and Supplemental Table S2). The probability 

of replicating 184 associations out of 406 tests by chance, under the null hypothesis of no association, is 

5.1´10-125. When limiting analyses to cancer phenotypes in the gene-disease relationship with definite 

clinical validity assessed by ClinGen12,13, PheWAS replicated 73% (33/45, P =1.8 ´10-33 , under the null 

hypothesis of no association) of these gene-cancer associations (Supplemental Table S3). Thirty-two out 

of 38 (88%) associations with high penetrance and 44 out of 60 (73%) associations with high to moderate 

penetrance were replicated while only 3 out of 14 (21%) with moderate penetrance and 2 out of 11 (18%) 

with low penetrance were replicated (Figure 2). The most common categories of phenotypes  replicated 

were developmental, neurological, congenital, and neoplastic.  

A total of 42 known gene-phenotype associations exceeded the phenome-wide significance level 

with a P< 2.5´10-5. These associations included BRCA1 and BRCA2 with breast cancer, MLH1, MSH2, 

MSH6, and PMS2 with colorectal cancer, MSH2 with endometrial cancer, RB1 with malignant neoplasm 

of the retina, RET with thyroid cancer, SDHD with paraganglioma, TSC2 with benign neoplasm of the 

kidney and PTEN and VHL with phakomatosis (odds ratios (ORs) ranged from 4.8-7598.0, Supplemental 

Table S4). 

PheWAS identified new gene-phenotype associations  

A total of 95 associations found in the eMERGEseq cohort exceeded the phenome-wide significance level 

at a P < 2.5 × 10-5 , and 211 associations showed suggestive statistical evidence with a P < 5 × 10-4 . After 

removing known associations and associations related to known phenotypes, six novel associations with a 

P < 2.5 × 10-5 were identified, namely, BRCA1 and BRCA2 with ovarian cysts (OR = 5.9, P = 3.3 × 10-10 

and OR = 4.1, P = 3.3 × 10-9, respectively), SDHx (SDHB, SDHC and SDHD) with Budd-Chiari 

syndrome (OR = 364.5, P = 1.2 × 10-6), TSC2 with dementia (OR = 54.9, P = 8.0 × 10-6), MSH6 with 

premature separation of placenta (OR= 73.7, P = 9.8 × 10-6), and PMS2 with other infection during labor 

(OR=155.1, P = 1.8 × 10-5). We also found 64 new gene-phenotype associations with suggestive evidence 
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with a P < 5 × 10-4. Notably, among genes for the Lynch syndrome, we found evidence of association 

with digestive diseases, including MLH1 with ulceration of the lower gastrointestinal (GI) tract (OR= 

26.8, P =  8.3× 10-5) and MSH6 with gastrointestinal angiodysplasia (OR = 15.0, P =  8.3× 10-5, 

Supplemental Table S5). 

To replicate associations found in the eMERGEseq cohort and to identify additional new 

associations, we evaluated 6433 associations in the HCR dataset (n = 3242). Combining results from both 

datasets, we replicated associations of BRCA1 and BRCA2 with ovarian cysts, MLH1 with ulceration of 

the lower GI tract, APC with benign neoplasms of the liver and intrahepatic bile ducts, CHEK2 with 

leukemia, PMS2 with spermatocele, and RET with diplopia. We also identified additional new 

associations, including MSH6 with bladder cancer,  APC with gastritis and duodenitis, MEN1 with acute 

pancreatitis, VHL with congenital malformations of the spleen, BRCA1 with vitamin D deficiency, 

MUTYH with polycystic ovarian syndrome, and PMS2 with cannabis dependence. All results are 

presented in Table 1, Figure 3 and Supplemental Table S6. 

We performed conditional analyses to test for statistical independence of the novel associations 

from known associations (Supplemental Table S7). In the eMERGEseq cohort, after controlling for 

known phenotypes, all new associations remained materially unchanged except the association of MEN1 

with acute pancreatitis and BRCA1 with vitamin D deficiency (P > 0.1 after adjustment of known 

phenotypes). In the HCR cohort, after controlling for known phenotypes, associations of BRCA1 with 

ovarian cysts, VHL with congenital malformations of the spleen, RET with diplopia, and MEN1 with 

acute pancreatitis attenuated with a P > 0.1 while the other new associations remained largely unchanged.  

We conducted clinical chart reviews for all patients with readily accessible EHRs in the  

Synthetic Derivative (SD) and Research Derivative (RD) at VUMC to gather more information about the 

diagnoses related to new associations revealed in the meta-analysis. We confirmed the presence of the 

diagnoses by reviewing pathology reports, radiology imaging, and clinical narratives. We found patterns 
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of co-occurrence of both novel and previously known phenotypes among the HCR patients. These 

included  ovarian cysts with ovarian cancer in BRCA1 carriers, diplopia with thyroid cancer in RET 

carriers, and acute pancreatitis with MEN1 diagnoses, which might explain the attenuated associations 

after controlling for known phenotypes in the HCR cohort (Supplemental Table S8). Notably, we did not 

find pancreatic cancer diagnoses among MEN1 carriers with acute pancreatitis. We also did not find 

evidence that patient with ovarian cysts were actually cases of ovarian cancer that had been misdiagnosed 

in BRCA2 carriers. Approximately 50% of the ovarian cyst cases in BRCA2 carriers were diagnosed 

before their genetic diagnoses, for whom findings from examinations were incidental. The remaining 

patients were diagnosed during screening after their genetic diagnosis, suggesting that increased screening 

in this population could contribute to the observed association. 

This meta-analysis also revealed 21 associations with suggestive evidence with a P < 5 × 10-4 

(Supplemental Table S6), including SDHx genes with trigeminal nerve disorders (OR = 16.0, P = 4.0 ×10-

5),  MSH2 and MSH6 with endometrial hyperplasia (OR = 14.0, P = 7.3 ×10-5 and OR = 10.7, P = 5.7 ×10-

5 , respectively), BRCA1 with leiomyoma of uterus (OR= 2.3, P = 1.4 ×10-4), PMS2 with infections of 

genitourinary tract in pregnancy and intrauterine death (OR =10.8, P = 2.3 ×10-4 and OR= 32.0, P = 2.4 

×10-5, respectively), and MSH6 with rupture of uterus (OR=16.7, P = 3.9 ×10-4). 

We also evaluated carriers with variants with markedly reduced penetrance. It remains unclear 

whether MUTYH heterozygotes in the general population were at a higher risk of colon cancer or 

polyps14. To study the impact of MUTYH heterozygous variants, we conducted a PheWAS in the 

eMERGEseq population of individuals with one P or LP variant only. The most statistically significant 

associations were found with cystitis (OR = 2.1, P = 9.1 ×10-7) and sinusitis (OR = 1.5, P = 8.6 ×10-6). No 

evidence of association with colorectal cancer or polyps was found (Supplemental Figure 3). For the 188 

APC I1370K carriers, the most statistically significant associations were found with noise effects on the 

inner ear (OR = 45.7, P = 6.6 ×10-6 ), disorders of refraction and accommodation (OR = 0.4, P = 1.5 ×10-

5) as well as benign prostatic hyperplasia (OR= 3.1, P = 3.0 ×10-5, Supplemental Figure 4). 
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PheRS provided evidence for the pathogenicity of rare variants 

To test whether PheRSs that aggregate EHR phenotypes could aid in assessing the pathogenicity of 

variants, we first derived PheRS based on phenotypes curated by OMIM as previously described9,10 and 

explored their associations with 7800 rare variants of the 23 genes, including 377 classified as P/LP, 1 as 

risk allele, 2205 as B/LB, and 5217 as VUS in the eMERGEseq cohort. We tested associations between 

PheRSs and these variants using linear regression, assuming a dominant genetic model for variants in all 

genes except those in MUTYH for which a recessive model was assumed. Regression coefficients (betas) 

and P values are presented in Supplemental Table S9. Using the criteria of a positive beta estimate and a 

nominal P < 0.05 for each association test, 71 out of 377 P/LP variants (18%) showed evidence of 

pathogenicity, while only 65 out of 2205 B/LB variants (3%) showed evidence of pathogenicity (under 

the null hypothesis of no association, P = 1.2 ×10-26). With the same criteria, 181 out of 5217 (3%) VUS 

showed evidence of pathogenicity. When evaluating by each gene separately, at least 50% of the P/LP 

variants in genes MEN1 (1/1), MUTYH (1/1), PTEN (6/9), RB1(1/2), SDHD (1/2), TSC1 (2/4), TSC2 

(10/10) and VHL (3/4) showed evidence of pathogenicity.  

To test the potential utility of new phenotypes identified in the PheWAS to improve PheRS for 

predicting pathogenicity of untested variants, we derived new PheRSs for genes with new phenotypes by 

incorporating these phenotypes in addition to OMIM phenotypes. Regression coefficients and P values of 

the new PheRSs with rare variants are presented in Supplemental Table S10. Results with a P < 0.001 are 

showed in Table 2. Distributions of regression coefficients of variants of each category of interpretation 

by each gene are presented in Figure 4. As expected, a larger beta for P/LP variants in the new PheRS 

compared with OMIM PheRS for all genes evaluated were observed. For VUS, which were not analyzed 

in the PheWAS analyses, a wider distribution of betas was observed for genes APC, RET, TSC2 and VHL 

than that of B/LB variants while no such differences were found for BRCA1/2, PMS2, MLH1 and MSH6. 

The PheRS for 188 VUS were associated with an increased risk of diseases, while another 164 VUS were 

associated with a reduced risk, suggesting a protective effect (Supplemental Table S10). For example, we 
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found that a VUS variant APC c.385G>C  was associated with an elevated PheRS for familial 

adenomatous polyposis (FAP) (beta = 2.3, P = 5.6 × 10-6). Clinical profiles of carriers of this variant 

suggested an attenuated form of FAP. Notably, 2 out of 4 patients were also with the diagnosis of gastritis 

and duodenitis, a new phenotype identified in the PheWAS. 

Discussion 

We present a scalable approach to discover new phenotypes related to hereditary cancer genes and 

evaluate the pathogenicity of variants using EHR data. We demonstrated the validity of the PheWAS 

approach by replicating 73% of the established primary gene-cancer associations and 45% of all gene-

phenotype associations documented in OMIM. PheWAS also revealed new phenotypes that were 

replicated in an independent EHR-derived cohort. PheRS that aggregated associated phenotypes predicted 

pathogenicity of rare variants and provided evidence for the pathogenicity of 5217 VUS in hereditary 

cancer genes.  

This study demonstrated the feasibility of rapid phenotype discovery of rare genetic disorders in 

EHR data. PheWAS replicated nearly half of the gene-phenotype relationships documented in the OMIM 

database that curates many decades of knowledge of these genes15. Replication rates were significantly 

higher among those with a higher estimated life-time risk, supporting that EHR data could recapitulate 

previous findings in a relatively precise manner. Many of the nonreplicated associations were related to 

disorders or symptoms which were more likely to be under-documented in the system of billing codes, 

such as dental caries and pigmentation disorders. Future studies that incorporate additional data such as 

clinical notes and images will improve the resolving power. 

This study revealed 14 novel gene-phenotype associations, for which phenotypes were found in 

the genitourinary, digestive, congenital, metabolic, mental and neurologic categories in addition to 

neoplasms. These findings, although yet to be validated in additional studies, further support that 

hereditary cancer syndromes can have a broad clinical spectrum3. Most of these associations would have 
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been difficult to detect in observational studies that are primarily designed based upon prior knowledge16. 

For example, this analysis revealed associations of PMS2 with spermatoceles and cannabis dependance 

that are not typically on the radar for Lynch syndrome. Chart review results suggested that some of the 

phenotypes could be symptoms of underlying diseases that had been known. For example, the association 

of RET with diplopia was likely to be mediated by neuroendocrine disorders including tumors. However, 

diplopia has been largely underreported in MEN2 patients in previous studies and thus has not been 

documented in the OMIM database. We believe that it is important to recognize relevant symptoms in the 

EHR systems, which can serve an early sign of underlying diseases such as cancers and thus facilitate 

early detection. Similarly, we also reported a suggestive association of SDHx genes with trigeminal nerve 

disorders that could be an early sign of paragangliomas. We also observed that increased screening in 

carriers could contribute to some associations, including BRCA1/2 and ovarian cyst and VHL with 

congenital malformations of spleen. Although results from chart reviews suggested that a remarkable 

proportion of these patients were diagnosed with indications other than screening, additional studies are 

needed to elucidate these associations.  

Our results generate new data for hypotheses around the pathogenesis of some common diseases. 

We found that MEN1 carriers were associated with a 32-fold increased risk of acute pancreatitis. This was 

consistent with a recent study that identified an essential role of MEN1 in exocrine pancreas homeostasis 

in response to inflammation that contributes to pancreatitis in mouse models17. Several previous studies 

suggested that MUTYH contributed to inflammatory-related disorders18. We found that MUTYH 

homozygotes or compound heterozygotes were associated with polycystic ovarian syndrome, for which 

chronic inflammation has been proposed to be a key contributor19. We also found a Bechet’s syndrome 

diagnosis in a MUTYH compound heterozygote. Additionally, we found that MUTYH heterozygotes were 

more likely to develop cystitis and sinusitis compared to non-carriers. These together provide supporting 

evidence for a role of MUTYH in disorders with an inflammatory basis.  

Rapid and accurate variant interpretation remains a challenge in clinical genetics. We have 

previously showed that PheRS could augment variant interpretation9,10. Using PheRS including new 
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phenotypes identified from the PheWAS serves as a test of the potential utility of these new phenotypes. 

As expected, we observed remarkable differences in the predicted pathogenicity by PheRS between 

pathogenic and benign variants. We found that the majority of VUS were not associated with an elevated 

PheRS, which was consistent with previous studies showing that the majority of VUS would be 

downgraded to benign if reclassified20. Nevertheless, we found that by adding new phenotypes into the 

PheRS, several VUS were associated with a higher predicted level of pathogenicity (a larger beta), 

suggesting that the possibility that employing additional related phenotypes could improve variant 

interpretation. Replication in additional studies will be needed to evaluate the pathogenicity of these VUS. 

Limitations of this study include the use of phecodes, which are phenotypes based on 

aggregations of related billing codes. While phecodes have been shown to be an effective tool for 

replicating genetic associations with EHR data21-23, they are unable to capture all phenotypes, including 

some unique characteristics of hereditary cancer syndromes. For example, patients with familial 

adenomatous polyposis typically present with numerous polyps, a condition which lacks a specific billing 

code. This analysis did not take into account the specific age of disease diagnosis, adjusting for the last 

age of the participant documented instead. Our next step is to develop algorithms for deep phenotyping to 

identify detailed characteristics of cancers and other diseases through analyses of images, laboratory 

measurements and clinical narratives. 

In summary, we demonstrated that PheWAS in EHR datasets has potential for phenotype 

expansion of hereditary cancer genes. We showed that aggregating clinically significant alleles increased 

the power to detect phenotypes, which is particularly meaningful for rare genetic disorders with smaller 

study cohorts. Studying rare disorders at the population level requires very large cohorts. Just as EHR-

linked genotyping array data enabled the rapid expansion of GWAS cohorts for the discovery of new 

associations, EHR-linked sequence data will provide a similar resource to expand our knowledge of the 

phenotypic consequences of Mendelian disease-causing genes. We anticipate that applying these 

approaches to large datasets such as the UK Biobank24 and the All of Us Research Program25 will help 
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reveal the true clinical spectrum of genetic diseases, aid in variant interpretation, and ultimately facilitate 

precision medicine. 
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Methods 

Study populations 

The eMERGEseq cohort is comprised of 24956 biobank or prospectively recruited individuals from ten 

clinical sites under the eMERGE network. These individuals were either unselected or were enriched for 

specific clinical phenotypes depending on site-specific interest11. For cancer-related phenotypes, the 

UW/KPW site was enriched for individuals with colorectal cancer/polyps diagnoses. Additionally, two 

sites, CCHMC and CHOP, included pediatric patients. The major goal of this project was to study and 

improve the process of returning actionable genetic results to clinicians and patients26. A detailed 

description of each site, including enrollment criteria, specific research interest and enrichment of 

phenotypes, was reported elsewhere11. All studies were approved by local Institutional Review Boards 

(IRBs). For this study, we removed individuals without International Classification of Diseases (ICD) 

codes in the EHRs. A total of 23544 individuals were retained for analyses. 

The replication dataset was obtained from the hereditary cancer registry (HCR) at Vanderbilt 

University Medical Center (VUMC), which included 3794 individuals who received clinical genetic 

testing for hereditary cancer from 2012 to 2020. This study was approved by the IRB at VUMC. We 

obtained the EHR data of 3739 individuals through the Research Derivative (RD), a database of clinical 

and related data derived from EHR systems27. Through reviewing clinical charts in the RD and records in 

the HCR, we removed patients who were participants of the eMERGEseq project (n=14) and family 

members of the index patients who were enrolled in the registry due to cascade testing (n=483). A total of 

3242 patients retained for analyses. This cohort was enriched for individuals at a high risk of hereditary 

cancer syndromes, with 98% reporting a family history of cancers and 65% reporting a personal history of 

cancer. Specifically, approximately 50% of all patients reported a breast cancer diagnosis. This cohort 

also included pediatric cancer patients. The ages at the first cancer diagnoses ranged from 1 year old to 90 

years old, with a mean age of 50.4 years old, as documented in the EHRs. 
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Gene panel and sequencing in eMERGEseq and genetic testing in HCR 

Details on the design of the sequencing panel of the eMERGEseq project have been previously 

described11. Briefly, this panel comprises a total of 109 genes and 1550 single nucleotide variants (SNVs). 

The 109 genes include 58 genes from the American College of Medical Genetics and Genomics 

(ACMG59) actionable finding list8. Additionally, each of the participating sites nominated 6 genes 

relevant to site-specific research interest. In this study, we focused on hereditary cancer genes on  this 

panel, including 25 ACMG genes: APC, BMPR1A, BRCA1, BRCA2, MEN1, MLH1, MSH2, MSH6, 

MUTYH, NF2, PMS2, PTEN, RB1, RET, SDHAF2, SDHB, SDHC, SDHD, SMAD4, STK11, TP53, TSC1, 

TSC2, VHL, and WT1, and 6 cancer-related genes nominated by participating sites: BLM, CHEK2, 

POLD1, POLE, PALB2, and ATM. 

The genetic testing in the HCR was performed by commercial molecular diagnostic laboratories. 

Classification of variants 

Variant classifications in the eMERGEseq were performed by two laboratories at the sequencing centers, 

according to ACMG/Association of Medical Pathology (ACMG/AMP) guidelines and some specific 

modifications from ClinGen Sequence Variant Interpretation Working Group and ClinGen Expert Panels 

as previously described11. Variants were classified into pathogenic (P), likely pathogenic (LP), variant of 

uncertain significance (VUS), likely benign (LB) and benign (B). No P/LP variants for cancer syndromes 

were detected for BLM, BMPR1A, NF2, POLD1, POLE, SDHAF2, SMAD4, and STK1111. We only 

included variants with an allele fraction > 30%.  

Variant classification in the HCR was performed by CLIA and CAP-accredited molecular genetic 

testing laboratories. We compared results of classification for the same variants identified in both datasets 

(n=11). The variant VHL p.R200W was classified as a VUS in the eMERGEseq dataset, while it was 

classified as a pathogenic variant (P) in the HCR dataset. Previous studies showed that this variant was 
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not associated with the von Hippel Lindau (VHL) disease but congenital erythrocytosis28. Therefore, we 

considered this variant a VUS in the analysis in the HCR dataset. The interpretations for the remaining 10 

variants were consistent between these two datasets. 

For each gene, we defined patients with P/LP variants as carriers and patients with B/LB variants 

or no rare variants as non-carriers, and patients with VUS as VUS carriers. The distribution of carriers, 

non-carriers, and patients with VUSs for each gene is listed in Supplemental Table 2.  

PheWAS phenotyping 

PheWAS phenotypes were defined using phecodes, which are manually grouped ICD-9 and ICD-10 

codes developed to facilitate EHR based genetic research. In this study, we modified and expanded our 

previous phecode map (version 1.2) that linked ICD codes to 1967 phenotypes29,30 by adding more 

granular phenotypes, including those related to Mendelian disorders and other traits in the congenital, 

neonatal, developmental, ocular, and pregnancy categories. Using the EHR data from a cohort of 2.6 

million patients from the Synthetic Derivative (SD) at VUMC31,  this new algorithm derived 3368 

phecodes from 16245 unique ICD-9 codes and 18893 unique ICD-10 codes, spanning the following 

categories: auditory, cardiovascular, congenital, dermatologic, developmental, digestive, endocrine, 

genitourinary, hematopoietic, infectious, musculoskeletal, neonate, neoplastic, ocular, pregnant, 

psychiatric, pulmonary, and symptoms/signs.  

We derived 3186 unique PheWAS phenotypes from 2,134,933 unique dates of ICD-9 and -10 

codes in the EHRs of the eMERGEseq cohort. We removed phenotypes with < 5 cases. A total of 3017 

phenotypes remained. To empirically estimate the phenome-wide significant P-value threshold, we 

conducted 10,000 PheWAS with a random variable using data from the eMERGEseq cohort and analyzed 

the distributions of minimum P-values (Pmin) for each PheWAS. The 95th percentile of Pmin was 

2.5 × 10−5, and we defined this P-value as the empirical phenome-wide significance threshold at a 
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significance level of α = 0.05 (Supplemental Figure 1), which was equivalent to the Bonferroni correction 

of 2000 independent tests. We also defined a suggestive association P-value threshold by 1 divided by the 

number of independent tests, which was 5 × 10−4 in this study, representing the level where, under the null 

hypothesis, one false positive is expected per phenome scan, as proposed by Lander and Kruglyak for a 

genome-wide scan32. 

Identification of known gene-phenotype associations 

We retrieved the clinical synopses for each gene from the Online Mendelian Inheritance in Man (OMIM), 

a comprehensive, authoritative compendium of human genes and genetic phenotypes15, which have been 

annotated with the Human Phenotype Ontology (HPO)33. We modified some of the associations 

according to other authoritative resources including Orphanet34, GeneReviews,,35 and the National 

Comprehensive Cancer Network (NCCN) guidelines36-41. We also retrieved data of gene-diseases validity 

from ClinGen12. We defined gene-cancer associations with definitive evidence of clinical validity by 

ClinGen working groups as established gene-cancer associations13. We also obtained data on the life-time 

risk of each phenotype for carriers of each gene from these resources as well as from the most recent 

analyses from large cohorts42-46.  The list of known associations was reviewed by CJZ and GLW, 

representing an ad hoc assessment of a combination of literature review and clinical expert review, to 

categorize associations by penetrance. The complete list of gene-phenotype associations and results of 

these associations using PheWAS phenotypes in the eMERGEseq cohort are found in Supplemental Table 

S3. 

PheWAS analyses 

In the eMERGEseq cohort, we used a minimum code count threshold of one phecode to define 

cases for a phenotype. We defined controls as those who never had the phecode. We included genes with 

at least 2 carriers. We focused on phenotypes that were documented in the carriers. The number of 
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phenotypes found in carriers for each gene is shown in Supplemental Figure 2.  For phenotypes found in 

carriers, each gene-phenotype association was tested independently using the firth logistic regression 

adjusted for age, unique years of records in the EHR, sex, eMERGE sites, and the first 4 principal 

components (PCs). Analyses were performed assuming an autosomal dominant inheritance for all genes 

with the exception of MUTYH, for which an autosomal recessive inheritance was assumed. For 

phenotypes only found in the non-carriers, we performed a supplementary Fisher’s exact test analysis to 

evaluate their associations with the gene. To increase the power to uncover new phenotypes for genes 

with less than 10 carriers, we grouped genes into the same pathway according to their molecular functions 

and clinical spectrums if available. Specifically, we grouped SDHB, SDHC and SDHD into one pathway 

(“SDHx”). 

We categorized all associations found in the eMERGEseq into three groups: known associations, 

associations related to known associations (elevated cancer antigen 125 for BRCA1/2, for example),  and 

potentially new associations.  

We considered a known phenotype-gene association replicated in our analysis if the PheWAS had 

a P < 0.05 with the expected direction of effect between phenotype and genetic variant. Using the same 

approach as we previously reported30,  to test the probability of replicating X out of Y known associations 

at a = 0.05, we calculated based on the probability of drawing P-values randomly from a normal 

distribution with at least X of them having a P < 0.05 (X being the number of replicated associations). 

Thus, the probability of getting X gene-phenotype associations replicated (P < 0.05) out of Y tested 

associations is: !(#) = &(', #)!!(1 − !)"#!, where P = 0.05 and C(Y,X) represents the number of 

combinations among Y items selecting X. 

Replication in the HCR dataset 
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The HCR cohort is comprised of patients who received hereditary cancer panel testing and are thus at a 

higher risk of hereditary cancer syndromes compared with the general population, with 98% reporting a 

family history of cancer and 65% reporting a personal history of cancer. It is likely that carriers and non-

carriers in this cohort are more similar in clinical phenotypes, compared to those representing the general 

population. If associations were replicated in this cohort, the probability that they were replicated in 

cohorts based on general populations would be higher. 

In the HCR dataset, for phenotypes found in carriers, each gene-phenotype association was tested 

independently using firth logistic regression adjusted for age, years in records, sex, and race documented 

in the EHR, assuming an autosomal dominant inheritance for all genes with the exception of MUTYH, for 

which an autosomal recessive inheritance was assumed. The number of phenotypes evaluated in each 

gene is shown in Supplemental Figure 2. A total of 6433 gene-phenotype associations were found in both 

the eMERGEseq and the HCR datasets. A fixed-effect meta-analysis was used to estimate the 

summarized effect size and  P-values. All P-values in this study were two-sided. 

We performed conditional analyses to determine whether the new associations were associated 

with known phenotypes by adjusting for known phenotypes in the regression. 

We conducted chart reviews to confirm the diagnoses of the PheWAS phenotypes and to study 

the relationships between new and known phenotypes. Specifically, for the PheWAS phenotype ovarian 

cysts, we reviewed all cases among BRCA1/2 carriers in the HCR cohort (21 and 24 cases among carriers 

of BRCA1 and BRCA2, respectively). We also reviewed a random subset of 54 cases among non-carriers 

of BRCA1/2. We tested the hypothesis that there was no difference in terms of the PheWAS phenotype 

capturing the actual diagnoses for ovarian cyst between carriers and non-carriers. Under this null 

hypothesis, P =1 for both genes. Results of clinical chart review are found in Supplemental Table 8. 

PheRS analyses 
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PheRS based on OMIM phenotypes 

 As previously described9,10, the PheRS for each gene for each individual is calculated as the sum of 

clinical features (phecodes) observed in a given individual weighted by the log inverse prevalence of the 

phecode. For genes with more than one primary diseases, we combined related diseases into one single 

feature set (Supplemental Table S2). For example, we combined breast cancer and pancreatic cancer for 

the gene PALB2, termed as PALB2-associated cancers. For phecodes that are specific to a subgroup of the 

population, we used the total number of this subpopulation as the denominator to calculate the prevalence. 

For sex-specific traits, we used the number of patients of the specific sex as the denominator. For 

example, for prostate cancer, we used the total number of male patients as the denominator. For 

phenotypes in the pregnancy category, we used the number of patients with at least one of the pregnant 

phenotypes in the cohort as the denominator. Weights for each phecode were calculated as the negative 

log inverse prevalence in the eMERGEseq cohort. For each gene and each individual, the raw PheRS was 

calculated by summing the weight of each phecode in the EHRs. These PheRSs were termed as the 

OMIM PheRSs. 

PheRS based on OMIM and new phenotypes 

We derived new PheRSs for genes APC, BRCA1, BRCA2, CHEK2, MLH1, MSH6, MEN1, PMS2, RET , 

TSC2, and VHL by incorporating new, significantly associated phenotypes identified in this study. The 

new phenotypes that were included in the new PheRS are presented in Supplemental Table S11.  

Similarly, we calculated the weight for each phecode as the negative log inverse prevalence in the 

eMERGEseq cohort. We calculated PheRSs by summing the weights of each phecode documented in the 

EHRs. These PheRSs were termed as the new PheRSs. 

Assessment of pathogenicity of rare variant through PheRS 
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We derived residual PheRS (rPheRS) using a linear regression with the raw PheRS as the outcome, 

adjusted for age, sex, number of unique years in the EHR and the first 4 PCs. We applied inverse normal 

transformation to transform the rPheRS if the skewness was larger than 2.  

We tested the association of all rare variants in the genes with the rPheRS or transformed rPheRS 

using a multivariate linear model adjusted for the first 4 PCs. We calculated P values using the score 

statistics. We consider associations with a P < 0.05 and a positive beta estimate indicating an increased 

burden of diseases as evidence of pathogenicity and associations with a P < 0.05 and a negative beta 

estimate indicating a decreased burden of diseases as evidence of protectiveness. Results of associations 

of PheRSs including the new PheRS and the OMIM PheRS with rare variants are presented in 

Supplemental Table S10. 
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Data and code availability  

Genetic and phenotypic data of the eMERGEseq cohort are publicly available in the dbGaP repository 

under phs001616.v1.p1. All summary statistics for significant gene-phenotype associations from both the 

eMERGEseq and the HCR cohorts are provided in the supplemental Table S3-6. All summary statistics 

for associations of PheRS with genetic variants are provided in Supplemental Table S9-10. Codes for 

PheWAS and PheRS analyses will be available at https://github.com/chenjiezeng/CancerPheWAS.
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Table 1.  Novel associations discovered via PheWAS. All results with a P < 2.5 × 10-5 and in both cohorts with a consistent direction of effect 
are included. 

Gene Phenotypes eMERGEseq HCR Meta 
OR (95% CI) P OR (95% CI) P OR (95% CI) P 

BRCA2 Ovarian cyst 4.1 (2.6-6.5) 3.3 ×10-9 2.6 (1.6-4.5) 2.9 × 10-4 3.4 (2.4-4.8) 8.3 × 10-12 
BRCA1 Ovarian cyst 5.9 (3.4-10.3) 3.3 ×10-10 1.8 (1.1-3.1) 0.03 3.2 (2.2-4.7) 3.4 × 10-9 
MSH6* Malignant neoplasm of the bladder 8.3 (2.3-29.5) 0.001 19.0 (4.3-83.3) 9.6 × 10-5 11.8 (4.5-30.9) 5.2 × 10-7 
APC Benign neoplasm of the liver and 

intrahepatic bile ducts 
61.0 (7.7-486.0) 1.0 × 10-4 26.5 (3.5-202.3) 0.002 39.8 (9.3-169.8) 6.5 × 10-7 

APC Gastritis and duodenitis 3.3 (1.0-11.3) 0.05 9.4  (3.7-24.3) 3.4 × 10-6 6.5 (3.0-13.5) 1.2 × 10-6 
MLH1 Ulceration of the lower GI tract 26.8 (5.1-113.9) 9.3 × 10-5 12.4 (2.0-77.5) 0.007 19.0 (5.6-64.7) 2.5 × 10-6 
MEN1 Acute pancreatitis 48.5 (3.1-765.5) 0.006 27.3 (4.7-158.7) 2.4 × 10-4 32.2 (7.3-142.1) 4.6 × 10-6 
CHEK2 Leukemia 4.4 (2.2-8.9) 3.6 × 10-5 5.0 (2.4-8.6) 0.05 4.5 (2.4-8.6) 4.9× 10-6 
VHL Congenital malformations of spleen 111.4 (6.6-1880.1) 0.001 170.5 (6.1-4766.6) 0.002 133.1 (15.4-1148.4) 8.6 × 10-6 
PMS2 Spermatocele 20.5 (4.1-101.2) 2.1 × 10-4 19.1 (1.5-242.8) 0.02 20.1 (5.2-77.7) 1.4 × 10-5 
BRCA1 Vitamin D deficiency 0.5 (0.3-0.9) 0.03 0.2 (0.1-0.4) 1.6 × 10-5 0.3 (0.2-0.6) 1.4 × 10-5 
MUTYH Polycystic ovarian syndrome 33.9 (2.3-501.3) 0.01 53.8 (5.8-502.1) 4.7 × 10-4 44.6 (8.0-248.7) 1.5 × 10-5 
PMS2 Cannabis dependence 15.7 (2.6-95.8) 0.003 184.3 (8.3-4085.9) 9.7 × 10-4 29.3 (6.2-140.0) 2.2 × 10-5 
RET Diplopia 9.9 (3.0-32.2) 1.4 × 10-4 8.4 (0.9-82.7) 0.07 9.6 (3.4-27.3) 2.4 × 10-5 

OR:  odds ratios, CI: confidence interval. GI: gastrointestinal. We utilized firth logistic regression in this PheWAS using a dominant model with 

the exception of MUTYH, which assumed a recessive model. We report all associations not in OMIM exceeding the phenome-wide significance 
threshold for each gene at P < 2.5 ×10-5 for this study (see Methods section). We report associations with a summarized P-value < 2.5 × 10-5.  
Detailed information for all associations is provided in Supplementary Table S5. Note that some of the phenotypes could be symptoms for 
underlying diseases that have been known to be associated with the gene. We conducted conditional analyses and clinical chart to further 
understand these associations. Details of analyses and reviews are presented in Results section and Supplemental Table 6 &7. 
*Although transitional cell carcinoma has been reported with Lynch syndrome, MSH6’s association with this phenotype has not been clearly 
shown. 
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Table 2. Association results of PheRS for hereditary cancer syndromes.  List includes all rare variants with P < 0.001 in the eMERGEseq 
cohort. Positive betas are associated with an increased risk of disease, and negative betas are associated with a decreased risk of disease.  

Gene Variant Diseases No. of 
HET 

Variant 
Interpretation 

OMIM PheRS New PheRS 
Beta P* Beta P* 

RET c.2671T>G (p.Ser891Ala) Multiple endocrine neoplasia II 13 P 1.9 2.4 × 10-12 2.1 1.2× 10-14 

APC c.4594G>A (p.Asp1632Asn) Familial adenomatous polyposis 1 VUS 7.0 1.8× 10-12 7.1 1.2× 10-14 

APC c.694C>T (p.Arg232Ter) Familial adenomatous polyposis 1 P 4.4 1.1× 10-5 6.1 8.6× 10-10 

RET c.1858T>C (p.Cys620Arg) Multiple endocrine neoplasia II 1 P 5.7 1.1× 10-8 5.6 1.7× 10-8 

MEN1 c.307delC (p.Leu103fs) Multiple endocrine neoplasia I 2 P 3.9 3.7× 10-8 3.9 3.7× 10-8 

TSC2 c.1792T>C (p.Tyr598His) Tuberous sclerosis 3 P 3.0 1.8× 10-7 3.1 9.6× 10-8 

RET c.626-4G>A** Multiple endocrine neoplasia II 3 VUS 3.1 7.2× 10-8 3.1 1.2× 10-7 

APC c.385G>C (p.Glu129Gln) Familial adenomatous polyposis 4 VUS 2.2 1.2× 10-5 2.3 5.6× 10-6 

RET c.431G>A (p.Arg144His) Multiple endocrine neoplasia II 1 VUS 4.6 4.3× 10-6 4.5 6.4× 10-6 
BRCA1 c.68_69delAG (p.Glu23Valfs) Hereditary breast and ovarian 

cancer 
15 P 0.8 1.3× 10-3 1.1 2.3× 10-5 

TSC2 c.5347G>A (p.Glu1783Lys) Tuberous sclerosis 2 VUS -2.9 4.5× 10-5 -2.9 4.8× 10-5 

VHL c.500G>A (p.Arg167Gln) Von Hippel-Lindau disease 1 P 4.1 4.9× 10-5 4.1 4.9× 10-5 

TSC2 c.4495_4512del 
(p.1502_arg1507del) 

Tuberous sclerosis 
1 P 4.0 5.7× 10-5 4.0 5.7× 10-5 

TSC2 c.3750C>G (p.Tyr1250Ter) Tuberous sclerosis 1 P 3.9 9.0× 10-5 3.9 9.2× 10-5 

VHL c.432_438del (p.Glu145Trpfs) Von Hippel-Lindau disease 1 P 3.8 1.2× 10-4 3.8 1.2× 10-4 

APC c.2600C>T (p.Thr867Ile) Familial adenomatous polyposis 1 VUS 3.6 3.6× 10-5 3.8 1.7× 10-4 

APC c.5241G>A (p.Met1747Ile) Familial adenomatous polyposis 1 VUS 4.1 4.4× 10-4 3.7 1.8× 10-4 

VHL c.264G>T (p.Trp88Cis) Von Hippel-Lindau disease 1 LP 3.7 2.1× 10-4 3.7 2.1× 10-4 

TSC2 c.4581dup (p.Glu1528Ter) Tuberous sclerosis 1 P 3.7 2.3× 10-4 3.7 2.3× 10-4 

BRCA2 c.3974_3975insTGCT (p. 
Ala1325Cysfs) 

Hereditary breast and ovarian 
cancer 

1 P 3.3 8.7× 10-4 3.5 4.0× 10-4 

APC c.1409-2A>G** Familial adenomatous polyposis 1 LP 3.2 1.6× 10-3 3.5 4.8× 10-4 

TSC2 c.1070C>T (p.Ala357Val) Tuberous sclerosis 21 VUS 0.8 5.2× 10-3 0.7 6.4× 10-4 

BRCA2 c.7068_7069del 
(p.Gln2356Hisfs)  

Hereditary breast and ovarian 
cancer 

4 P 1.6 1.2× 10-3 1.7 7.8× 10-4 
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PheRS: phenotype risk score. P: Pathogenic; LP: Likely pathogenic; VUS: variant of unknown significance; LB: likely benign. The inheritance 
patterns for these gene-diseases pairs are autosomal dominant. The new PheRS were derived using phenotypes identified in this study and those 
documented in the OMIM database. The PheRS OMIM were constructed based on phenotypes curated by OMIM. Variants were classified by 
ACMG-accredited laboratories at the sequencing centers of the eMERGE network. Details of variant classifications are presented in Methods. The 
genomic position for each variant (GRCh37) is presented in the Supplemental Table 9. 
*P values for singletons are likely not stable, although betas for these variants could represent evidence of possible pathogenicity. ** RET c.626-4G>A is 
an intron variant, APC c.1409-2A>G is a splice acceptor variant.  
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Figure 1 Study Flowchart. To identify phenotypes associated with hereditary cancer genes, we revised and expanded the PheWAS 
mapping algorithm to derive 3326 unique phenotypes from ICD9/10 codes. Leveraging genetic testing data from the Electronic 
Medical Records and Genomics (eMERGE) network III, we identified carriers of P/LP alleles of cancer susceptible genes in 23544 
individuals from the 10 clinical sites under the eMERGE network and compared their clinical phenotypes with those of non-carriers 
through PheWAS. We validated new phenotypes associated with these genes in an independent cohort of 3242 patients undertaking 
clinical genetic testing at Vanderbilt University Medical Center (VUMC) and enrolled in the hereditary cancer registry (HCR). All 
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variants in both studies were classified by CLIA and CAP-accredited molecular genetic testing laboratories. To explore the utility of 
phenotypes, we computed phenotype risk scores (PheRS) using phenotypes documented in the OMIM databases and new phenotypes 
identified in this study. We tested associations between PheRSs for hereditary cancer genes and rare variants. P/LP: pathogenic/likely 
pathogenic; VUS: variant of uncertain significance; and B/LB: benign/likely benign. 
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Figure 2.   PheWAS study of  23,544 eMERGEseq participants confirms known gene-phenotype associations for cancer susceptibility 
genes.  

a. PheWAS replicated known gene-phenotype associations in the eMERGEseq cohort. Strength of the association is plotted along the y axis 
as −log10(P), and phenotypes are represented on the x axis, grouped by each gene. Orange dots represent the known associated 
phenotypes. Those with a P < 1× 10−7  are heighted.  The dashed line indicates P = 2.5 × 10−5, representing the empirical phenome-wide 
significance for each gene.  

b. Number of replicated gene-phenotype associations according to penetrance of genes in the phenotypes. We defined replicated associations 
as associations with a P < 0.05 and a consistent direction of effect in the PheWAS. Penetrance categorizations based on the estimated 
lifetime risk are provided in Supplemental Table 3. 
 

c. Number of replicated gene-phenotype associations according to the categories of phenotypes. 
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Figure 3 Meta-analysis of PheWAS results from the eMERGEseq and the hereditary cancer registry (HCR) at VUMC. Labeled phenotypes 
with red dots represent those not in OMIM that were significant in the meta-analysis of results from the eMERGEseq and the independent cohort 
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(hereditary cancer registry at VUMC) with a P< 2.5 × 10−5. We combined SDHB, SDHC and SDHD genes into one group to increase power. 
TSC1, TSC2, and WT1 are not reported as there were no carriers in the HCR set. Strength of the association estimated from the meta-analysis of 
results from both studies is plotted along the y axis as −log10(P_summary), and phenotypes are represented on the x axis, grouped by each gene or 
pathway. Known phenotypes that were highly statistically significantly with cancer genes in the meta-analysis are labeled. The dashed line 
indicates P = 2.5 × 10−5, representing the phenome-wide significance for each gene/pathway. 
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Figure 4. Phenotype risk scores provides evidence for the assessment of the pathogenicity of rare variants Regression coefficients for new 
PheRS and OMIM PheRS on rare variants. We derived new PheRS by incorporating new phenotypes. The detailed information of the new 
phenotypes is presented in Supplemental Table 11. Y axis represents the beta coefficients for both PheRSs for each variant. The x axis represents 
the classification for the variants.  
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