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Abstract 
 
Growth faltering in children arises from metabolic and endocrine dysfunction driven by complex 
interactions between poor diet, persistent infections and immunopathology. Here, we determined 
the progression of the plasma lipidome among Gambian children and assessed its influence on 
growth faltering over the first 2 years of life using panel vector autoregression modelling. We 
further investigated temporal associations among lipid clusters. We observed that measures of 
stunting, wasting and underweight significantly influence each other, and that lipid groups 
containing PUFA and phosphatidylcholines significantly influence growth outcomes. Linear 
growth was influenced by the majority of lipids, indicating a higher nutritional demand to improve 
height compared to weight among growth-restricted children. Our results indicate a critical role for 
PUFAs and choline in early life dietary interventions to combat the child growth faltering still so 
prevalent in low-income settings.  
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Introduction 
 
The first 1000 days (from conception to 2 years of age) are critically important in determining 
individual health trajectories to adulthood, and exposures during this period – especially nutritional 
exposures – can have lasting impact1. The causes of malnutrition are complex and multi-faceted, 
involving the interplay between nutrition, hygiene, infections, maternal health, economic status and 
other socio-demographic factors2. Malnutrition, which in this paper refers to undernutrition, is 
characterized by stunting (having a length-for-age z score (LAZ) below -2 standard deviations 
(SD)), wasting (below -2 SD weight-for-length (WLZ)) or underweight (below -2 SD weight-for-
age (WAZ))3. Stunting is believed to be a result of chronic nutrient deprivation (chronic 
malnutrition), whereas wasting results from short-term malnutrition (hence, often referred to as 
acute malnutrition). Underweight is a reflection of both wasting and stunting4. Global estimates 
suggest that in 2019, 144 million children under 5 years of age were stunted while 47 million were 
wasted5, and this number is expected to rise due to the effect of the SARS-CoV-2 pandemic6. 
 
Omics-based approaches have been used to gain a deeper understanding into the biochemical and 
metabolic perturbations that occur among children with malnutrition. However, the majority of 
these reports have focused on analysing samples and data from cross-sectional studies 7-10; data 
from longitudinal studies is needed to help understand the timing and direction of associations. By 
following the metabolome and lipidome progression over time in a single individual, resolution is 
enhanced, since inter-individual sources of variability (i.e. differences in (epi)genetic and lifestyle 
characteristics) are controlled. However, longitudinal analysis of high-dimensional data in field-
based settings and among populations most at risk from undernutrition, especially metabolomics 
and lipidomics, remains challenging. Further, where longitudinal analyses exist, data analysis 
methods employed have been limited to assessing the progression of metabolic features over time, 
ranking the most dynamic features11-15, and not exploring potential causality or associations among 
the different metabolic features over time. 
 
While the systems biology field has been exploring novel approaches to investigate longitudinal 
data and its association with specific clinical outcomes, other disciplines, such as econometrics and 
social sciences, have been analysing the same types of problems using robust data analysis 
approaches backed by strong mathematical foundations 16-20. In our current study, we investigated 
the association between longitudinal progression of the lipidome and growth outcomes in the first 
2 years of life among children in The Gambia using an econometric approach applied to systems 
biology. Here, we adopt a panel vector autoregressive (PVAR) model in a generalized method of 
moments (GMM) framework to investigate the directions of potential causation between serum 
lipids and growth outcomes in these children. 
 
Results 
 
Population characteristics 
 
A total of 1631 serum samples were analysed from 409 individual children from 3 months of age 
up to 2 years (5 time points). A total of 205 children had samples from all 5 timepoints, 77 from 4 
timepoints, 63 from 3 time points and the remainder (65) had samples from 2 timepoints 21. Table 
1 highlights child characteristics, by timepoint. In general, a decline over time in WLZ, LAZ and 
WAZ was observed, indicating growth faltering in this population. Males had significantly lower 
WLZ, LAZ and WLZ than females across the first 2 years, but their growth patterns were not 
different from each other (i.e. no interaction between sex and age was found, p = 0.70). 
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Table 1. Growth characteristics of 410 Gambian children in the first 2 years of life 

 Age in weeks Trend* 
 12 24 52 78 104  

N 298 327 323 345 338  
N girls (%) 138 

(46.3) 
155 

(47.4) 
157 

(48.6) 
165 

(47.8) 
158 

(46.7) 
 

Weight-for-age z-score 
(WAZ), mean ± SD 

-0.70 
(1.04) 

-0.81 
(1.17) 

-1.26 
(1.06) 

-1.28 
(1.06) 

-1.38 
(0.93) 

β = -0.22 
p <0.001 

Length-for-age z-score 
(LAZ), mean ± SD 

-0.37 
(1.04) 

-0.46 
(1.03) 

-1.03 
(1.03) 

-1.13 
(1.05) 

-1.33 
(0.94) 

β = -0.28 
p <0.001 

Weight-for-length z-
score (WLZ), mean ± 
SD 

-0.52 
(1.12) 

-0.63 
(1.22) 

-1.03 
(1.14) 

-1.01 
(1.07) 

-0.97 
(0.93) 

β = -0.16 
p <0.001 

*partial correlation (β) and p-value obtained using fixed effects panel model analysis, i.e. by 
estimating the following equation Yit=αi+βTt+εit, with Yit the respective growth parameter (WAZ, 
LAZ, or WLZ), αi the individual fixed-effect representing unobserved time-constant characteristics 
of the child, and Tt the time-trend variable, which takes values between 1 (12 weeks) and 5 (104 
weeks). A total of 203 children have complete time-series data (49.6%). 
 

 
Figure 1. Growth patterns of children from 12 weeks to 104 weeks of life. Clusters of similar growth curves 

were generated using latent class mixed modelling. (a) 3 latent groups representing different LAZ progression in 

the population – 25% belonged to cluster 1, 32% to cluster 2, and 43% to cluster 3. For WAZ (b) and WLZ (c), 

2 latent groups were obtained but 98-99% of the population belonged to cluster 2. A few children showed an 

increasing trend in their WAZ (3) and WLZ (9) in the first 2 years of life. 

 
Using latent class linear mixed models, we identified sub-clusters within the population 
characterized by different growth patterns in the first 2 years of life. For LAZ, we identified 3 
patterns of growth (Figure 1a). Cluster 1 (32%) included children who started with low LAZ at 
week 12 and maintained their LAZ over time. Cluster 2 (43%) included children with the highest 
LAZ at week 12, which gradually decreased over time but did not drop below -2 SD, indicating 
that children in this cluster were not considered stunted as classified by the World Health 
Organization (WHO) definition. Almost half (49.7%) of the children belonged to Cluster 3, which 
was characterized by mid-level LAZ at week 12 and having a steep decline in LAZ towards stunting 
over time. By week 104, 26% (25/95) of those in cluster 1 became stunted, whereas this was 47% 
(65/138) in cluster 3.  
 
For WAZ (Figure 1b) and WLZ (Figure 1c), 2 clusters were identified but 98% and 99% of the 
children belonged to the second cluster for WAZ and WLZ, respectively. Three children had WAZ 
of -2.68 ± 1.52) at week 12 but caught-up in weight by week 104 (WAZ = 0.12 ± 1.47). In addition, 
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the WLZ of 9 children at week 12 (WLZ = -1.36 ± 1.20) had significantly increased by week 104 
(WHZ = 0.82 ± 1.13) (p < 0.05). 
 
Lipidome progression in the first 2 years of life 
 
The total serum lipids (sum of all individual lipids) did not significantly change in the first 2 years 
of life, indicating that the lipid pool is conserved during infant growth (Figure 2a). However, serum 
lipid composition appeared to change over time. The serum concentration of most lipids identified 
(175/278, 63%) significantly decreased over time, whereas 17% (48/278) had a significant upward 
trend. Several lipids (55/278, 30%) on the other hand, were conserved during the first 2 years of 
life (Figure 2b). The progression of all identified lipids with age is shown in Supplementary Table 
1. 
 
To reduce the number of independent variables for succeeding analyses, we identified clusters of 
highly correlated lipids (“modules”) using weighted correlation network analysis22. Lipids assigned 
to their respective modules potentially share similar physiological and molecular characteristics, as 
modules reflect functional relationships (physical and non-physical interactions) among its 
members22. Each module is characterized by an eigenlipid (MEq, where q denotes the module), 
which is a unique representation that most closely reflects the collective behaviour of the module23. 
This indicates that the progression of lipids in each module through time is reflected by the 
dynamics of the MEq. About 87% (241/287) of the lipids were clustered into ten modules, whereas 
the remaining 37 (13%) lipid species were unassigned (grey module, ME5). Module assignment of 
all lipids are detailed in Supplementary Table 2. To obtain an overview of the inter-lipid 
correlations, we plotted the module correlation network (Figure 2c), which shows that several 
modules are more closely correlated, creating bigger clusters of lipids as depicted on a heatmap 
showing hierarchical clustering (Figure 2d). 
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Figure 2. Lipid progression in the first 2 years of life among children in The Gambia. (a) Sum of total lipids over 

time. Fixed effects panel model revealed no significant change in total lipids through time (p = 0.70). (b) Number 

of lipids significantly (p = 0.05 adjusted for false discovery rate) altering through time; ↑ indicates significant 

increase, ↓ significant decrease and ↔ no significant change after Bonferonni correction. (c) Weighted correlation 

network showing 11 lipid clusters obtained using the WGCNA package in R. (d) Inter-modular relationship 

showing closely related lipid clusters. (e) Progression of eigenlipid (MEq, where q is the module number), which 

represents the collective behaviour of the lipids in the module, through time. Significance levels: *** indicate p < 

0.0001, ** = p < 0.001, * = p <0.01. Comparisons were made using paired t-test comparing the time point and 

the preceding time point. Grey shadow for each line graph indicates the 95 % confidence interval.
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Table 2. Association* between module eigenlipid (MEq) and growth outcomes through time in the first 2 years of life 

Module Size§ Outcomes Main Composition@ 

  WAZ LAZ WLZ  

ME1 16 -2.65 -0.06 -3.67 Ether-linked PCs and PSc, oxidised PCs 
  (<0.001) (0.92) (<0.0001)  
ME2 39 2.55 0.58 2.66 All PUFA-containing lipids (both n-3 (22:6, 20:5) and n-6 (20:4)), the 

cholesterol esters, PCs, PC-O/PC-PE-O/PE-P   (<0.001) (0.54) (0.011) 
ME3 31 -1.36 -1.47 -1.49 Most common TGs and DGs 
  (0.14) (0.19) (0.22)  
ME4 26 0.13 -0.08 0.47 PA, PEs  
  (0.84) (0.92) (0.70)  
ME5 37 -2.43 -0.34 -3.67 Unassigned lipids; free FAs and FA oxidation products and their esters 
  (<0.001) (0.71) (<0.0001)  
ME6 11 1.26 -0.59 1.41 TG containing PUFAs 
  (0.15) (0.54) (0.22)  
ME7 14 0.26 0.76 0.09 LysoPC mainly SFA and MUFA (sn1) 
  (0.74) (0.50) (0.91)  
ME8 11 -0.89 -1.38 -0.82 LysoPC mainly MUFA and PUFA (sn2) 
  (0.27) (0.20) (0.51)  
ME9 25 0.83 -0.64 1.45 Most abundant PCs 
  (0.27) (0.54) (0.22)  
ME10 41 1.13 1.25 0.38 Most common cholesterol esters and sphingomyelins 
  (0.18) (0.19) (0.74)  
ME11 27 -0.47 -1.29 -1.18 All small TGs and in-source fragments and isotopes. 
  (0.63) (0.20) (0.33)   

*upper numbers are partial coefficients extracted from the fixed effects panel model, lower numbers in parenthesis are FDR-adjusted p-values. Boxes 
are coloured blue when a significantly positive association was found and red when negative. Fixed effects panel models estimated the following 
equation Yit=αi+βTt+ Eit +εit, with Yit the respective growth parameter (WAZ, LAZ, or WLZ), αi the individual fixed-effect representing unobserved 
time-constant characteristics of the child, and the time-trend variable, which takes values between 1 (12 weeks) and 5 (104 weeks), and Eit the 
respective eigenlipid. 
§number of lipids belonging to the module 
@PC: phosphatidylcholine, PS: phosphatidylserine, PE: phosphatidylethanolamine, TG: triglycerides, DG: diglycerides, FA: fatty acid, SFA: saturated 
FA, PUFA: polyunsaturated FA, MUFA: monounsaturated FA, PA: phosphatidic acid
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The weighted correlation network analysis clustered lipids with very similar chemical or biological 
characteristics into different modules (Table 2). Most notably, triglycerides (TG) with 
polyunsaturated (n > 5) fatty acid (PUFA) side chains (ME6) were clustered differently from 
shorter-chain TGs (ME11) and TG with PUFA containing fewer double bonds (n < 4). The most 
abundant phosphatidylcholines (PC) found in serum were clustered in ME9, whereas cholesterol 
esters and sphingomyelins were clustered in ME10. Cholesterol esters and PCs with PUFA side 
chains however were clustered in a different module (ME2). LysoPC with saturated FA (ME7) 
were also clustered differently from lysoPCs with PUFA (ME8). Oxidised PCs and ether-linked 
PCs were clustered in ME1. Finally, any lipid that did not belong to any other module was clustered 
in ME5. However, these lipids also shared common characteristics such that this module is 
composed of free FAs and FA oxidation products and their esters. Therefore, this module cannot 
be discounted. Each module had a characteristic progression from 12 to 104 weeks of infant age, 
where the biggest changes occurred between week 12 and week 24 (Figure 2e). 
 
Lipids associated with LAZ. Adjusting for age, we did not find any MEq significantly associated 
with LAZ over time. However, associations did appear when age in weeks (included in the model 
as a time trend) was removed. This indicates that the eigenlipids were significantly associated with 
other factors changing through time but not with LAZ itself. 
 
We also did not find any significant differences in the MEq progression through time among the 
three LAZ clusters, indicating that general lipid progression is similar in all the children in this 
population through the first 2 years of life (Figure 3a). Multidimensional scaling analysis shows that 
MEq induced a time-dependent clustering of the observations, but no latent class-specific 
clustering is evident (Figure 3b). Analysis of individual lipid species instead of MEq also showed 
that lipid progression was not dependent on the LAZ growth trajectory (Supplementary Table 3). 
 
 

 
Figure 3. Eigenlipid progression of the children grouped based on latent class linear mixed modelling. (a) Each 

facet represents a module obtained from weighted correlation network analysis. No significant differences in the 

time-course progression of MEq were observed among the 3 clusters in all modules. (b) Multidimensional scaling 

analysis showing time-dependent clustering of observations but no distinction between latent classes 

 
Lipids associated with WAZ and WLZ. WAZ and WLZ were highly correlated in all time points 
(r = 0.83, p < 0.001). Consequently, similar modules are associated with these anthropometric 
measures. Adjusting for age, serum levels of oxidized and ether-linked PCs (ME1) and free fatty 
acids (ME5) tend to have an opposite trend with WAZ and WLZ progression (p < 0.001). 
Conversely, the progression of PUFA-containing lipids (ME2) tended to have the same trends as 
WAZ and WLZ (p < 0.001) over time. As highlighted, almost all children followed the same WAZ 
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and WLZ growth trajectory, except for a very small number of children who have improved growth 
parameters over time. Hence, we did not compare differences in lipid progression between these 
WAZ and WLZ latent classes, as there would not have been enough observations in the first cluster 
to make a reliable comparison. 
 
Panel vector autoregressive (PVAR) model using system GMM approach 
 
We performed dynamic panel data analysis using panel vector autoregressive modelling to 
investigate a potential causal relationship between lipids and growth outcomes. A first order PVAR 
model (lag t-1) was selected as optimal lag length based on the model selection procedure of 
Andrews and Lu (2001)17.  Supplementary Table 4 explores the potential causal relationship based 
on system GMM-PVAR model for the 3 growth outcomes and 11 lipid modules. We visually 
represented the results as a temporal network as shown in Figure 4. In this temporal network, 
current (Yt) and lagged values (Yt-1) of growth outcomes and each lipid module are combined into 
individual nodes, which are connected with directed edges according to the regression parameters 
(coef) of the model (Supplementary Table 4). The direction of the arrows indicate that current 
values of a node is consistently associated to the next (t+1) value of the other node, or itself in case 
of a loop. Full arrows indicate a positive association while dashed arrows indicate a negative 
association. Only significant (p < 0.05) associations are shown, which mean that the observed 
association is consistent for every time point. Hansen test for over-identifying restrictions did not 
reject the null hypothesis, implying that all instruments used are valid. The stability of the PVAR 
was confirmed as the eigenvalues as strictly less than 1 and none of the roots are outside the unit 
circle (Supplementary Figure 1), indicating that the model is stable and also that our variables are 
stationary24,25. 
 

 
Figure 3. Results of system GMM-PVAR analysis. Temporal network visualization of the system GMM-based panel 

vector auto-regression model. Arrows indicate that a node predicts another node (or itself) in the next time 

point. Full arrows indicate positive while dashed arrows indicate negative association. Loops indicate that current 

value of a node predicts the future value of itself. Arrow thickness depicts the strength of the association. WAZ 

= weight-for-age z-score, WLZ = weight-for-length z-score, LAZ = length-for-age z-score, node annotation for 

ME1 – ME11 are shown in Table 2. All roots are inside the unit circle indicating stability of the model and 

stationarity of the variables (Supplementary Figure 1). WAZ, LAZ, WLZ and all ME eigenlipids were included in 

the model as endogenous variables in the first order (lag -1). Sex variation was accounted by adjusting for sex as 

an exogenous variable. 
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Further, the results indicate that the growth parameters positively influence each other to varying 
degrees; gains in WAZ increases future WLZ and WAZ itself, whereas gains in WLZ will most 
likely result in an increase in LAZ. Length growth also positively influences gains in weight. 
Modules comprising of PUFA-rich lipids (ME2 and ME6), phosphatidylcholines (ME2 and ME9),  
triglycerides (ME2 and ME6) and cholesterol esters (ME2 and ME10) positively impacted WLZ. 
However, these same lipids negatively impacted WAZ in a population with high burden of growth 
faltering. 
 
Most lipid modules had positive causal links with LAZ, indicating that more biological processes 
and building blocks are demanded to increase height rather than weight. In addition to the lipids 
influencing WLZ, LAZ is also influenced by serum levels of phosphatidic acid and 
phosphatidylethanolamine (ME4) and lysoPC containing MUFA and PUFA lipids (ME8). ME9 
had the biggest positive contribution to LAZ and WLZ among all the lipids. These positive causal 
relationships indicate that overall changes in the serum levels of these lipids will likely induce a 
change in LAZ and WLZ in the same direction; increasing serum levels of these lipid groups may 
lead to an increase in LAZ and WLZ. 
 
Ether-linked phosphatidylcholines (ME1), free fatty acids (ME5), SF/MUFA-lysoPCs (ME7) and 
small triglycerides (ME11) did not show significant influence on any of the growth parameters. 
However, these lipids were shown to influence the levels of the other lipids. For instance, levels of 
ME1 and ME5 increase ME9 levels, whereas ME11 decreases ME9. Increasing ME7 led to a 
decrease in ME5 but an increase in ME11. The interplay of the lipids indicate the dynamic 
interactions, including synthesis and oxidation cycles, that occur between the lipid groups. 
 
Discussion 
 
In this study, we introduced a statistical technique typically used in econometrics and social sciences 
to elucidate causal associations among growth outcome parameters and plasma lipids in the first 2 
years of life of African children living in an area with a high burden of growth faltering. Using 
PVAR, we showed which lipids are influential to growth and also how different lipids influence 
each other over time. 
 
We first characterized the children’s growth patterns in clusters using latent class mixed modelling. 
Previous studies that have compared growth parameters in children with metabolites have typically 
characterized children as either growth impaired (e.g. stunted or underweight) or healthy, and 
determined which metabolites or lipids are able to classify them based on this binary 
classification7,26, even for studies that observed children over a period of time14. Using latent class 
modelling, we showed that the children from rural Gambia experienced a general decline in growth 
outcome over time, albeit at different trajectories. This observed growth faltering has been reported 
previously for this cohort of children27,28 and is also observed to be common among children in 
low and middle-income countries29. However, while some children remained stunted over the first 
2 years of life, some children  remained above the stunting cut-off (despite reduced growth) while 
others started as normal and slowly faltered ending up as stunted in the long term. This indicates 
that a binary classification (impaired vs healthy) for growth faltering does not adequately capture 
the growth trajectories in these children. 
 
For weight measures (WLZ and WAZ), we observed a general decline, except in a very small 
number of children who increased in WAZ/WLZ over time, which makes statistical comparison 
difficult. Future studies to investigate the progression of serum lipids among those with different 
WAZ/WLZ trajectories therefore require a much bigger sample size to capture enough number of 
children in both groups. 
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In Supplementary Table 5, we show that a number of studies have followed the metabolic status 
of children through the early years of life, especially in the first 2 years. However, most of these 
studies focused on well-nourished populations. A notable exception to this was the study by 
Giallourou et al14 that followed the changes that occur in the metabolome of children by analysing 
urine and plasma samples at 3, 6, 9, 15 and 24 months of age among children in 3 resource-
constrained countries (Peru, Bangladesh and Tanzania) 14. The authors used a phenome-for-age z-
score (PAZ) and found that PAZ of stunted children lagged compared to healthy children 
indicating poor metabolic maturity. These studies mainly used linear mixed/multi-levels models, 
ANOVA and other multidimensional data analysis techniques (PCA, partial least squares 
regression, ASCA). Although associations with growth outcomes can be deduced using these 
methods, they typically do not show variable interrelatedness and do not assess potential causal 
links between the metabolome/lipidome and growth outcomes. 
 
Similar to Nikkila et al15, who studied serum lipidome progression among Finnish children from 
birth to 2 years, we began by clustering tightly correlated lipids into modules to reduce 
dimensionality. To do this, we used weighted gene correlation network analysis22. We observed that 
the algorithm clustered lipid species based on their chemical features, specifically type of lipid 
species, length and (un)saturation (SFA, MUFA, PUFA). These clusters indicate that serum levels 
of these lipids behave very similarly across time in the population enabling us to generalize their 
association with growth outcomes. We observed that major metabolic changes occurred around 
the first 6 months of life, which corresponded to the start of the transitional feeding in our study 
population – when children started taking other foods apart from breastmilk. In this population of 
infants, rates of exclusive breast feeding (EBF) are high, with a mean duration of EBF across the 
whole of the ENID cohort of 5.2 months 27. 
 
Here, we treated longitudinal biochemical data as panel data, a typical data analysis concept in 
econometrics. Panel data is a hybrid of cross-sectional and time-series analysis, where data is 
collected for N individuals over T occasions, which is typically the most common design used in 
longitudinal systems biology studies. Systems biology can benefit from panel data analysis as is it 
best suited for studies with large N but small T, which is most common especially in clinical studies 
where participants are not able to provide numerous biological samples over long periods of time. 
To the best of our knowledge, this paper is the first to demonstrate the use of panel data analysis 
tools in systems biology. 
 
Despite observing three categories of LAZ trajectories, we found no significant differences in the 
serum lipid profiles of these children over time, which concurs with our basic panel analysis (Table 
2). Contrary to LAZ, we observed that lipolysis products (free fatty acids, oxidised PCs) progress 
reciprocally to the progression of WAZ and WLZ. However, this association does not imply that 
free fatty acids and oxidised PCs cause the decline in WAZ and WLZ in the first 2 years of life. 
One requirement for establishing a causal relationship is to demonstrate consistent significant 
association between current levels of the exposure and future levels of the outcome. One main 
advantage of using dynamic panel analysis strategies is its ability to establish potential causal links 
between outcomes and variables in a longitudinal study30. This is achieved by incorporating lagged 
(t-1…n) values as independent variables in the model, which will lead to biased estimates when 
performed using ordinary linear regression models due to the Nickell bias20. In econometrics, this 
bias is eliminated through using generalized method of moments (GMM) in dynamic panel analysis 
16,18,19,31.  
 
In this study, we employed a system GMM-based panel vector autoregression (PVAR) model, 
which allowed us to simultaneously assess the potential causal links between serum lipid profile 
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and growth outcomes, and also how different lipid species influence each other over time. PVAR 
is a modification of the conventional VAR model, which deals with panel data that typically 
comprise designs with N > T32. PVAR also addresses individual heterogeneity from each individual 
cross-sectional unit (in this case, each child)32. Hence, using this method, we are able to establish 
potential causal links and also assess variable interrelatedness, which previous longitudinal studies 
in children fail to report. 
 
Our results suggest a potential causal association between being underweight to being wasted and 
subsequently stunted. In a compilation of datasets from 1.8 million children in 51 countries, it was 
previously reported that all children that were both stunted and wasted were also underweight33, 
indicating a cross-sectional association among the 3 growth parameters. However, it has also been 
previously demonstrated that wasting precedes stunting and children with low WLZ were at a 
higher risk of linear growth retardation (stunting) especially for those below three years old34-36. 
Wasting at younger age (from 6 – 17 months) was associated with stunting from 18 months of age. 
This association was however not observed when wasting occurred below 6 months of age34,35. 
These earlier reports indicate that the association between the three growth outcomes was 
accurately captured by the PVAR model, indicating the validity of our approach. 
 
In the interpretation of the lipid data, it is important to understand that circulating lipids in the first 
years of life play a crucial role growth and develop of many vital organs, most of all the brain, which 
requires lipid for growth and myelination. However, most information we have in the literature is 
still mainly limited to European or other high income studies. In a European study, full term infants 
fed a higher level (3.2%) of alpha-linolenic acid (ALA) during the first 4 months of life had higher 
plasma levels of docosahexaenoic acid (DHA) and lower mean group weight than infants on a 
0.4% ALA formula. These results concur with our PVAR model indicating a negative causal link 
between PUFA-rich lipids (ME2 and ME6) and WAZ. 
 
Our results demonstrated that in this population, the majority of lipids contributed to LAZ, 
indicating higher energy and biochemical requirements for increasing linear growth than increasing 
weight. In fact, WLZ alone is insufficient to influence future LAZ and several lipid clusters are 
needed to improve LAZ. This shows that more factors are associated with stunting than is 
explained by prior wasting, as also previously hypothesized34. The different classes of lipids 
involved indicate that it is not only the lipids that provide energy that are limiting growth.  Most 
notably, lysoPCs comprised of MUFA and PUFA (ME8) were exclusively positively causal to LAZ 
compared to WLZ and WAZ. Evidence on the effect of PUFA, especially DHA, prenatal 
supplementation on infant height has been inconsistent37. In one study, prenatal DHA 
supplementation resulted to a significant increase in infant height at age 18 months compared to 
placebo38 but this effect was no longer observed when the children were followed to 60 months of 
age39. Moreover, cord blood PUFA levels were found to have a sex-specific association with infant 
height at 6 month of age, where n-3 PUFA levels were associated with higher infant length in males 
while higher n-6 PUFA concentrations were associated with lower length in infancy. However, 
higher cord blood n-3:n-6 ratio was associated with higher infant length at 6 months of age. These 
associations were however no longer observed at later time points (from 2 years of age)40. It is 
important to interpret these results in relation to nutrient availability. Brain development and 
growth requires large amounts of PUFAs as the brain’s lipid composition comprises 35% PUFAs, 
which cannot be synthesized de novo41. Hence, insufficient PUFA intake may require the body to 
use energy for fatty acid desaturation to enable brain development and growth, limiting the energy 
available for lateral growth. Supplementation with PUFAs can therefore have very different effects 
on growth depending on the availability of other nutrients. Hence, the potential effect of PUFA 
on LAZ may not be consistent. For instance, we have previously shown that PUFA 
supplementation did not improve growth and cognitive function of breast-fed infants in The 
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Gambia despite increasing plasma PUFA levels42. PUFA intake was therefore not the limiting 
factor.  
 
Of all lipids contributing to LAZ, phosphatidylcholines (ME9) has the highest influence on LAZ 
and WLZ. A metabolomics study reported reduced urinary levels of betaine and dimethylglycine, 
which are endogenous choline metabolites, in stunted Brazilian children, indicating possible 
reduction of choline bioavailability from the diet26. Choline is an essential nutrient and is a 
precursor for phosphatidylcholines. Low serum choline was also previously reported to be 
associated with linear growth failure among children in Malawi43. Eggs, particularly the egg yolk, 
are one of the main sources of dietary choline44. Clinical trials using egg supplementation reported 
improved LAZ and height gain among children in Ecuador45 and Uganda46, respectively. Although 
eggs contain many other important nutrients, our data suggests that this efficacy could be due at 
least in part to the increase in intake of phosphatidylcholine precursors. 
 
Our current results demonstrate that all lipids species containing PUFAs (ME2, ME6 and ME8) 
and phosphatidylcholines (ME2, ME9) were positively contributing to infant LAZ in the first 2 
years of life. This underlines the importance of availability of essential lipids in early life nutrition 
in these populations. More importantly, this highlights the need to use evidence from studies in the 
target populations, rather than relying on evidence of just European studies. Growth faltering 
among children in LMICs occur at a population-level29, which indicates the need to study its 
determinants at a community-level instead of looking at individuals. As the majority of these 
children in our study were exclusively breastfed until 5 months of age, poor maternal breastmilk 
lipid composition could be an underlying factor associated with growth faltering. A survey of 
breastmilk composition from mothers in area with high burden of infant growth faltering is 
therefore warranted, and could be a target for intervention.  
 
Furthermore, environmental factors potentially contribute to the malabsorption of PUFAs and 
choline in these children. Environmental enteric dysfunction is a subclinical state of intestinal 
inflammation commonly observed in children in LMICs47, which may affect absorption of these 
lipids from breastmilk. Hence, efforts to improve sanitation and reduce incidence of infections in 
children may improve bioavailability of essential lipids, which leads to improved growth outcomes. 
 
Although this paper greatly contributes to the very limited data available on the interaction between 
lipids and growth outcomes in the first 2 years of life, we acknowledge that our study would be 
improved if children with more variable growth trajectories were included. In this study population, 
most children exhibited very similar growth trajectories and most children were growth impaired, 
especially stunted. Future studies involving children with different growth outcomes within the 
same population is therefore warranted. 
 
In this study, we used a high-throughput lipidomics method, which does not provide a more 
thorough lipid identification compared to liquid chromatography-mass spectrometry-based 
techniques. However, the weighted correlation network analysis allowed us to cluster lipids with 
similar structural and biochemical properties, which compensates for the lack of specificity in 
individual lipid identifications. 
 
The causal link between underweight and wasting to stunting indicates that measures and 
interventions to address childhood stunting may require prevention of underweight and wasting 
earlier in life. Demonstrating the role of circulating lipids in growth regulation among infants in 
low-resource areas offers insights into potential intervention strategies based on nutritional 
formulation with specific lipid compositions or those that trigger increase in circulating levels of 
specific lipid species, especially PUFAs and PCs. 
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Methods 
 
Study Population 
The analyses presented included data and samples collected as part of the Early Nutrition and 
Immune Development (ENID) study, a randomised trial conducted in the rural West Kiang region 
of The Gambia between April 2010 and February 2015. The full ENID trial protocol is described 
in Moore et al 21 and the trial was registered as ISRCTN49285450. Briefly, mother-infant pairs were 
recruited in pregnancy (< 20 weeks gestation) and followed until two years post-partum. During 
pregnancy, women were randomly assigned to four trial arms, comparing combinations of protein-
energy and multiple micronutrients and from six to 18 months of age, their infants received either 
a daily multiple micronutrient enriched lipid based nutritional supplement (LNS) or a placebo LNS. 
As part of the trial design, infant anthropometry and blood samples were collected at clinic visits 
at 12, 24, 52, 78 and 104 weeks of infant age. Full details of measurement and sample collection 
protocols can be found in the trial protocol27. The analyses presented here were not planned in the 
original study design and used data and samples from the first 400 infants born into the ENID 
trial.  
 
The ENID trial was approved by the joint Gambian Government / MRC Unit The Gambia Ethics 
Committee (projects SCC1126v2 and L2010.77) and written, informed consent was obtained from 
all the participants prior to enrolment.  
 
Untargeted lipidomics analysis 
Serum samples were stored at -80°C until assay. Lipids were extracted as described previously48. 
Briefly, 100 µl of LC–MS grade water and 150 µl of internal standard mix were added to 15 µl of 
serum in a 96 well glass coated plate prior to mixing for 10 s. Subsequently, 750 µl of LC–MS grade 
methyl-tertiary butyl ether (MTBE) and a further 200 µl of LC–MS grade water were added to each 
well before shaking for 10 s. Once mixed, plates were spun at 845×g for 2 min to achieve phase 
separation with 25 µl of the upper organic phase transferred to a new glass coated plate with 90 µl 
of MS-mix (7.5 mM ammonium acetate in IPA:CH3OH 2:1), which was subsequently added to 
each well. 
 
DIMS lipidomic profiling 
Samples were infused into an Exactive Orbitrap (Thermo, Hemel Hempstead, UK) using a Triversa 
Nanomate (Advion, Ithaca, USA). Data collection began 20 s after the infusion began, initially analysing 
samples in the positive ionisation mode with an ionisation voltage of 1.2 kV applied. Data was acquired 
between 150 and 2000 m/z with a scan rate of 1 Hz giving a mass resolution of 65,000 at 400 m/z. A more 
detailed description of the instrument parameters can be found in Harshfield, et al. 48. 
 

Processing lipidomic data 
Raw data files were converted to .mzXML files using msConvert (ProteoWizard)49, and were subsequently 
processed in R (version 3.2.2) using an in-house script to compare spectra against a list of 1649 lipid species, 
with a relative intensity and mass deviation value recorded for each lipid in every sample. We applied 4 
filtering steps for quality control of the data and focus subsequent analysis on analytically robust signals. 
The first step was to remove lipids with a mean mass deviation between expected and recorded mass of 
greater than 5 ppm, the second step was to remove signals with an average intensity in the samples less than 
5 times greater than in the blanks. The third step was to remove signals with 0 values in greater than 10% 

of samples. The final step was to remove lipids with an r < 0.9 in our QC dilution series. 
 

Data analysis 
 
Analysis of growth outcomes. The changes in WAZ, LAZ and WLZ over time were determined 
using fixed effect panel model using growth outcomes as: 
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Yit = αi + β1(age)it + uit (eq 1) 

 
Where αi (i = 1…n) is the intercept for each child, Yit is either WAZ, LAZ or WLZ for a given 
child (i) at a particular age (t), and uit is the error term. This was implemented using the plm 
package50 in R (version 3.6). 
 
We then clustered the children based on the growth patterns using latent class mixed modelling 
implemented using the lcmm51 package. LAZ, WAZ and WLZ values of the children in all the time 
points were used as dependent variables, while sex and age were independent variables. Missing 
measurements were considered missing-at-random and hence children with incomplete 
measurements were included. Age and child ID were used as random effect to allow varying 
intercepts and slopes per individual time series. A 5-quantile splines function was employed for 
estimation. The number of latent classes was tested between 2 to 4 and model selection was based 
on the Akaike information criterion (AIC). For estimating LAZ, a 3 latent class-model yielded the 
least AIC value whereas a 2 latent class-models yielded least AIC values for both WAZ and WLZ. 
 
Correlation network analysis. To reduce data complexity, clusters of tightly correlated lipids were 
determined using weighted co-expression network analysis (WGCNA22). Scale-free topography 

typical of biological networks (r² ≳ 0.8)23 for our data was achieved using β = 18 for a signed 
network. A Pearson correlation (sij) matrix was then generated between each lipid pairs (i and j), 
which was transformed into an adjacency matrix through the power transformation, 
 

aij = (
1+ 𝑠𝑖𝑗

2
)

β

 (eq 2) 

 

This power transformation punishes weak and negative correlations while amplifying strong 
positive correlations. As this study aimed to determine the dynamic changes in lipids over time, a 
signed network was used to determine lipids that move in the same direction over time.  Using 
hierarchical clustering embedded with the WGCNA package, tightly correlated lipids are clustered 
into modules using the blockwiseModules function, setting the minimum number of lipids forming a 
module to 10. The network was visualized using igraph52. 
 
Association between modules and growth outcomes. Each member of the module is 
characterized by an eigenlipid (E(q), where (q) denotes the module) through a singular value 
decomposition. The E(q) represents the collective behaviour of the particular module23. The 
progression of individual lipids or module E(q) in the first 2 years of life was assessed using fixed 
effects panel model as in eq 1 but with E(q) as additional independent variable: 
 

Yit = αi + β1(age)it + β2 (E
(q))it + uit (eq 3) 

 
Where (E(q))it indicates the E(q) of child i at time t. Significant associations of growth outcomes and 
lipids through time were detected using p < 0.05 after adjusting for false discovery rate (FDR) 53. 
 
Panel vector autoregression model 
 
A PVAR model uses lags of endogenous variables and analyses interdependencies among variables 
of interest (LAZ, WAZ, WLZ and 11 lipid modules obtained from the weighted correlation 
network analysis). We thus estimated a 14-variate PVAR model of order p with panel-specific fixed 
effects represented by the following equation: 
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Yit=∑l=1
pAlyi,t-l +vit+eit (eq 4) 

 

where Yit is a (1 ×14) vector of endogenous variables for the ith cross-sectional unit (child) at time 
t; yi,t-l be an 14×1 vector of lagged endogenous variables (l being number of lags); vit and eit are 

(1 × 14) vectors of dependent variable-specific fixed-effects and idiosyncratic errors, respectively. 
Al represents the 14x14 matrix of endogenous parameters to be estimated. 
 
Following the procedure of Sigmund and Ferstl (2019)25, we used unbalanced panel data and 
estimated PVAR models by fitting a multivariate panel regression of each dependent variable on 
lags of itself using generalized method of moments (GMM). GMM specification requires 
stationarity which means that all unit roots of the PVAR model fall should inside the unit circle. 
 
The PVAR model was specified by first specifying the maximum lag order of the model using the 
method described by Andrews and Lu (2001)17. Due to maximum t = 5, we only tested for either 
first order (t-1) and second order (t-2) panels. Lag selection was based on the AIC and BIC criteria. 
Then, a first difference and system-GMM approaches with either first different or forward 
orthogonal deviation (fod) transformation were assessed. The stability of the model was then 
tested. The system-GMM model with fod transformation yielded a stable model and was hence 
used in the final analysis. The PVAR model was generated using the package panelvar in R25. 
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