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risk heterogeneity in compartmental hiv transmission models of art as prevention in
sub-saharan africa: a scoping review

Abstract

Background. Transmission models provide complementary evidence to clinical trials about the potential
population-level incidence reduction attributable to ART (ART prevention impact). Different modelling
assumptions about risk heterogeneity may influence projected ART prevention impacts. We sought to re-
view representations of risk heterogeneity in compartmental HIV transmission models applied to project
ART prevention impacts in Sub-Saharan Africa. Methods. We systematically reviewed studies published
before January 2020 that used non-linear compartmental models of sexual HIV transmission to simulate
ART prevention impacts in Sub-Saharan Africa. We summarized data on model structure/assumptions
(factors) related to risk and intervention heterogeneity, and explored multivariate ecological associations
of ART prevention impacts with modelled factors. Results. Of 1384 search hits, 94 studies were included.
64 studies considered sexual activity stratification and 39 modelled at least one key population. 21 stud-
ies modelled faster/slower ART cascade transitions (HIV diagnosis, ART initiation, or cessation) by risk
group, including 8 with faster and 4 with slower cascade transitions among key populations versus the
wider population. In ecological analysis of 125 scenarios from 40 studies (subset without combination in-
tervention), scenarios with risk heterogeneity that included turnover of higher risk groups were associated
with smaller ART prevention benefits. Modelled differences in ART cascade across risk groups also influ-
enced the projected ART benefits, including: ART prioritized to key populations was associated with larger
ART prevention benefits. Of note, zero of these 125 scenarios considered lower ART coverage among key
populations. Conclusion. Among compartmental transmission models applied to project ART prevention
impacts in Sub-Saharan Africa, representations of risk heterogeneity and projected impacts varied consid-
erably. Inclusion/exclusion of risk heterogeneity with turnover, and intervention heterogeneity across risk
groups could influence the projected impacts of ART scale-up. These findings highlight a need to capture
risk heterogeneity with turnover and cascade heterogenetiy when projecting ART prevention impacts.
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heterogeneity in transmission models 3

1 Introduction

As of 2019, two thirds (25.7 million) of all people living with HIV globally were in Sub-Saharan Africa
(SSA), where an estimated one million new HIV infections were acquired in 2019 [1]. HIV treatment to
reduce onward transmission remains a key element of combination HIV prevention [2]. Following empirical
evidence of partnership-level efficacy of ART in preventing HIV transmission [3, 4, 5], and model-based
evidence of “treatment as prevention” [6, 7, 8], several large-scale community-based trials of universal test-
and-treat (UTT) were recently completed. These trials found that over 2-to-4 years, cumulative incidence
under UTT did not significantly differ from cumulative incidence under ART according to national guide-
lines [9, 10, 11]. Thus the population-level reductions in incidence anticipated from transmission modelling
were not observed in these trials [12, 13].

One theme in the proposed explanations for limited population-level ART prevention effectiveness was
heterogeneity in intervention coverage and its intersection with heterogeneity in transmission risks [14, 12].
While viral suppression improved under UTT in all three trials, 21–54% of study participants remained
unsuppressed [11, 9, 10]. Populations experiencing barriers to viral suppression under UTT may be at highest
risk for acquisition and onward transmission, including key populations such as women and men engaged in
sex work, and men who have sex with men [15, 16]. Data suggest subgroups not formally described as key
populations, such as youth, and men who have sex with women, including clients of sex workers, may also
experience barriers to engagement in ART care [17, 18, 19]. Indeed, data suggest UTT scale-up in practice
has not reach subgroups equally [20].

Risk heterogeneity can be defined by various factors affecting acquisition and onward transmission risk, and
is a well-established determinant of the emergence and persistence of HIV epidemics [21, 22]. Systematic
model comparison studies by Hontelez et al. [23] and Rozhnova et al. [24] found that projected prevention
impacts of ART scale-up were smaller when more heterogeneity was captured in the model. Given the
upstream and complementary role of transmission modelling in estimating the prevention impacts of ART [7,
25], we sought to examine how heterogeneity in risk and ART uptake has been represented in mathematical
models used to assess the prevention impacts of ART scale-up in SSA. We conducted a scoping review and
ecological regression with the following objectives. Among non-linear compartmental models of sexual HIV
transmission used to simulate the prevention impacts of ART in SSA:

1. In which epidemic contexts (geographies, populations, epidemic phases) have these models been ap-
plied?

2. How was the model structured to represent key factors of risk heterogeneity?
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heterogeneity in transmission models 4

3. What are the potential influences of representations of risk heterogeneity on the projected prevention
benefits of ART in the overall population?

2 Methods

We conducted a scoping review according to the PRISMA extension for scoping reviews (Appendix D).

2.1 Conceptual Framework for Risk Heterogeneity

We defined “factors of risk heterogeneity” as epidemiological phenomena and stratifications of populations,
rates, or probabilities which may/not be included in transmission models. We defined 4 domains in which
such factors might influence the transmission impact of ART:

• Biological Effects: differential transmission risk within HIV disease course that may coincide with
differential ART coverage [26]

• Behaviour Change Effects: differential transmission risk due to behavioural changes related to engage-
ment in the ART cascade [27, 28]

• Network Effects: differential transmission risk within sub-populations that increases the challenge of
epidemic control through core group dynamics [22, 29, 30]

• Cascade Effects: differential transmission risk within sub-populations who experience barriers to ART
care and achieving viral suppression, such as youth and key populations [31, 32, 15, 20]

We then compiled a list of key factors of risk heterogeneity, and their possible mechanisms of influence on
ART prevention impact (Table 1).

2.2 Search

We searched MEDLINE and EMBASE via Ovid using search terms related to Sub-Saharan Africa (SSA),
HIV, and transmission modelling (Table A.1). Search results were de-duplicated and screened by title and
abstract in Covidence [43], followed by full-text screening using the criteria below. One reviewer (JK)
conducted the search, screening, and data extraction.
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heterogeneity in transmission models 6

2.2.1 Inclusion/Exclusion Criteria

Table A.2 lists complete inclusion/exclusion criteria and related definitions. We included peer-reviewed,
primary modelling studies that used non-linear compartmental models of sexual HIV transmission to project
the prevention impacts of ART in any setting within SSA. We included studies published in English anytime
before Jan 1, 2020, that simulated at least one scenario with increasing ART coverage, possibly alongside
other interventions. The included studies formed Dataset A, used to complete objectives 1 and 2. A subset
of Dataset A formed Dataset B, used to complete objective 3. Studies in Dataset B met three additional
criteria: 1) examined scale-up of ART coverage alone (versus combination intervention); 2) examined ART
intervention for the whole population (versus ART prioritized to subgroups); and 3) reported HIV incidence
reduction and/or cumulative HIV infections averted relative to a base-case scenario reflecting status quo.

2.3 Data Extraction

Data extraction used the full text and all available supplementary material. Data were extracted per-study
for objectives 1 and 2, and per-scenario for objective 3, possibly including multiple time horizons. Detailed
variables definitions are given in Appendix B.

2.3.1 Epidemic Context

For objective 1, we extracted data on geography, epidemic phase, and key populations explicitly considered
in the model. We categorized studies by country, SSA region, and scale of the simulated population (city,
sub-national, national, regional). We classified epidemic size at time of ART intervention using overall HIV
prevalence (low: <1%, medium: 1-10%, high: >10%), and epidemic phase using overall HIV incidence trend
(increasing, increasing-but-stabilizing, stable/equilibrium, decreasing-but-stabilizing, and decreasing).

We extracted whether any of the following key populations were modelled: female sex workers (FSW); male
clients of FSW (Clients); men who have sex with men (MSM); transgender individuals; people who inject
drugs (PWID); and prisoners. FSW were defined as any female activity group meeting 3 criteria: <5% of
the female population; <1/3 the client population size; and having >50× the partners per year of the lowest
sexually active female activity group [44, 42]. Clients were defined as any male activity group described as
clients of FSW, and being >3× the FSW population size. We also extracted whether any groups in the model
were described as MSM, transgender, PWID, or prisoners.
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2.3.2 Factors of Risk Heterogeneity

For objective 2, we examined if/how the factors of risk heterogeneity outlined in Table 1 were simulated in
each study. We examined the number of risk groups defined by sex/gender and/or sexual activity, and any
turnover of individuals between activity groups and/or key populations.

We classified how partnership types were defined: generic (all partnerships equal); based only on the activity
groups involved; or overlapping, such that different partnership types could be formed between the same two
activity groups. We extracted whether partnerships considered different numbers of sex acts and condom
use, and whether models simulated any degree of assortative mixing by activity groups (preference for like-
with-like) versus proportionate (random) mixing. The number of age groups was extracted, and whether
mixing by age groups was proportionate, strictly assortative, or assortative with age differences. We extracted
whether age conferred any transmission risk beyond mixing, such as different partnership formation rates.

Finally, we extracted whether rates of HIV diagnosis, ART initiation, and/or ART discontinuation differed
across risk strata (sex/gender, activity, key populations, and/or age), and if so, how they differed.

2.3.3 Prevention Impact of ART Scale-Up

For objective 3, we extracted the following data for each intervention scenario within Dataset B: the years
that ART scale-up started (t0) and stopped (tf); the final overall ART coverage achieved and/or the final
ART initiation rate (per person-year among PLHIV not yet in care); the criteria for ART initiation (e.g.
CD4 count); and the relative reduction in transmission probability on ART. Then, we extracted the relative
reduction in incidence and/or proportion of infections averted relative to the base-case scenario for available
time horizons since t0.

We conducted an ecological analyses across all modelled scenarios to examine the relationship between factors
of risk heterogenetiy and projected ART impacts, adjusting for other factors that could influence impacts.
For each factor of risk heterogeneity, we compared projected ART impacts (incidence reduction/infections
averted) across different factor levels (whether or not, and how the factor was modelled). We estimated the
effect of each factor level on ART impacts using linear multivariate regression, with generalized estimating
equations [45] to control for clustering due to multiple estimates per study/scenario. Time since t0 was
included as a covariate, and two variables were removed due to missingness. No variable selection was used
to avoid biasing effect estimates [46]. We also plotted impacts versus time since t0, stratified by factor levels.
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3 Results

The search yielded 1384 publications, of which 94 studies were included (Figure 1). These studies (Dataset A,
Appendix A.3) applied non-linear compartmental modelling to simulate ART scale-up in SSA, of which 40
reported infections averted/incidence reduction due to population-wide ART scale-up without combination
intervention, relative to a base-case reflecting status quo (Dataset B).

3.1 Epidemic Context

Table 2 summarizes key features of contexts within SSA where the prevention impacts of ART have been
modelled. 61 studies modelled HIV transmission at the national level; studies also explored regional (1), sub-
national (16), and city-level (16) epidemic scales. South Africa was the most common country simulated (52
studies); Figure C.1 illustrates the number of studies by country. East Africa was the most represented SSA
region, being simulated in 77 studies, followed by Southern (72), West (28), and Central Africa (13).

ART prevention impacts were most often modelled in high-prevalence (>10%) epidemics (41 studies) and
medium-prevalence (1-10%) epidemics (23) (Figure C.2). No studies reported overall HIV prevalence of
<1% at time of intervention, although for 30 studies, HIV prevalence was not reported or varied across
simulated contexts/scenarios. The median [min, (IQR), max] year of intervention was 2014 [1990, (2010,
2015), 2040]; at which time HIV prevalence (%) was 15 [2, (6, 19), 32] (Figure C.2); and incidence (per 1000
person-years) was 14 [1, (9, 20), 50] (Figure C.3). Most reported incidence trends were decreasing or stable
(45 of 48 reporting, Figure C.4).

3.1.1 Key Populations

FSW were explicitly modelled in 39 studies. Among these (of studies where it was possible to evaluate): 21
(of 25) were <5% of the female population; 14 (of 24) were <1/3 the size of the client population; and 15 (of
22) had >50× partners per year versus the lowest sexually active female activity group. Clients of FSW were
modelled as a unique group in 31 studies, among which 8 (of 17 reporting) were >3× the size of the FSW
population. In another 8 studies, clients were defined as a proportion of another group, among which 6 (of
7) were >3× the FSW population size. Studies explicitly modelled men who have sex with men (MSM) in
28 studies; transgender in 0; people who inject drugs (PWID) in 11; and prisoners in 2.
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Figure 1: PRISMA flowchart of study identification
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Table 2: Summary of epidemic contexts within Sub-Saharan Africa where the prevention impacts of ART
have been modelled

Study Characteristic Studies

Geographic scale Regional 1
National 61
Sub-national 16
City 16

Modelled South Africa 52
countries a Kenya 22

Zambia 10
Other 29

HIV prevalence Low (<1%) 0
Mid (1-10%) 23
High (>10%) 41
Unclear/Varies 30

Incidence trend Decreasing 10
at scenario Dec-to-stable 24
divergence Stable 11

Inc-to-stable 1
Increasing 2
Unclear/Varies 46

Key populations FSW b 39
included Clients c 31

MSM 28
Transgender 0
PWID 11
Prisoners 2

Total studies: 94. FSW: female sex workers; Clients: clients of sex workers; MSM: men who have sex with men; PWID: people
who inject drugs. a Does not sum to 94 as some studies modelled multiple countries. b Groups described as FSW, not considering the
epidemiological definitions given in Appendix B.2.1. c Likewise for clients, and excluding studies where clients were modelled as a
proportion of another risk group.
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3.2 Heterogeneity Factors

3.2.1 Biological Effects

The median [min, (IQR), max] number of states used to represent HIV disease (ignoring treatment-related
stratifications) was 5 [1, (3, 6), 25] (Figure C.5), and 2 studies represented HIV along a continuous dimension
using partial differential equations. States of increased infectiousness associated with acute infection and
late-stage disease were simulated in 68 and 74 studies, respectively.

The relative risk of HIV transmission on ART was 0.08 [0, (0.04, 0.13), 0.3] (Figure C.6), representing an
average “on-treatment” state in 78 studies, versus a “virally suppressed” state in 15. Treatment failure due to
drug resistance was simulated in 24 studies, including: 23 where individuals experiencing treatment failure
were tracked separately from ART-naive; and 1 where such individuals transitioned back to a generic “off-
treatment” state. Another 6 studies included a similar transition that was not identified as treatment failure
versus ART cessation. Transmissible drug resistance was simulated in 9 studies.

3.2.2 Behavioural Effects

Reduced sexual activity during late-stage HIV was simulated in 25 studies, including at least one state
with: complete cessastion of sexual activity (14); reduced rate/number of partnerships (9); and/or reduced
rate/number of sex acts per partnership (6).

Separate health states representing diagnosed HIV before treatment, and on-treatment before viral suppres-
sion were simulated in 30 and 17 studies, respectively. 22 studies modelled behaviour changes following
awareness of HIV+ status, including: increased condom use (12); fewer partners per year (4); fewer sex acts
per partnership (3); serosorting (1); and/or a generic reduction in transmission probability (8).

ART cessation was simulated in 35 studies, including: 16 where individuals no longer on ART were tracked
separately from ART-naive; and 19 where such individuals transitioned back to a generic “off-treatment”
state. Another 6 studies included a similar transition that was not identified as treatment failure versus ART
cessation.

3.2.3 Network Effects

Populations were stratified by activity (different rates and/or types of partnerships formed) in 59 studies,
and by sex/gender in 64. The number of groups defined by sex/gender and/or activity was 6 [1, (2, 9), 19]
(Figure C.7); and by activity alone (maximum number of groups among: women who have sex with men,
men who have sex with women, MSM, or overall if sex/gender was not considered) was 3 [1, (1, 3), 18]. The
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highest activity groups for females and males (possibly including FSW/clients) comprised 2 [< 1, (2, 4), 23]
and 9 [< 1, (2, 14), 35] % of female and male populations, respectively (Figures C.9 and C.10).

Turnover between activity groups and/or key populations was considered in 28 studies, of which 9 con-
sidered turnover of only one specific high-activity group or key population. Another 7 studies simulated
movement only from lower to higher activity groups to re-balance group sizes against disproportionate HIV
mortality.

Among 59 studies with activity groups, sexual mixing was modelled as assortative in 57 and proportionate
in 2. Partnerships had equal probability of transmission in 39 studies, including all studies without activity
groups. Partnerships were defined by the activity groups involved in 44 studies, among which transmission
was usually lower in high-with-high activity partnerships than in low-with-low, due to fewer sex acts (31)
and/or increased condom use (23). Transmission risk in high-with-low activity partnerships was defined
by the: susceptible partner (9); lower activity partner (11); higher activity partner (3); or both partners’
activity groups (15); yielding indeterminate, higher, lower, or intermediate per-partnership transmission
risk, respectively. Partnerships were defined based on overlapping types, such that different partnership
types could be formed between the same two activity groups in 11 studies. All overlapping partnership types
had differential total sex acts and condom use.

Age groups were simulated in 32 studies, among which, the number of age groups was 10 [2, (4, 34), 91]
(Figure C.8), and 2 studies simulated age along a continuous dimension. Sexual mixing between age groups
was assumed to be assortative either with (23) or without (3) average age differences between men and
women; or proportionate (6). Differential risk behaviour by age was modelled in 29 studies.

3.2.4 Cascade Effects

Differential transition rates along the ART cascade were considered in 21 studies, including differences be-
tween genders in 15; age groups in 7; and key populations in 12. Another 2 studies did not simulate differ-
ential cascade transitions, but justified the decision using context-specific data. Differences between genders
included rates of HIV diagnosis (11); ART initiation (6); and ART cessation (1), with cascade engagement
higher among women, in most cases attributed to antenatal services. Differences between age groups also
affected rates of diagnosis (6); ART initiation (1); but not ART cessation (0). Among key populations, lower
rates of diagnosis, ART initiation, and retention were simulated in 0, 2, and 4 studies respectively, while higher
rates were simulated in 8, 2, and 1.
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Figure 2: Effect estimates for selected factors of heterogeneity on incidence reduction (%, IR) and cumulative
infections averted (%, CHI) from linear multivariate regression with generalized estimating equations.

Numerical results given in Table 3. KP: key populations. priority: modelled ART cascade transitions were faster in KP vs overall due
to prioritized programs; same: cascade transitions were assumed the same in KP as overall; diff: cascade transitions were slower among
men. Factor definitions are given in Appendix B.

3.3 ART Prevention Impact

Dataset B comprised 40 studies, including 125 scenarios of ART scale-up. Relative incidence reduction
(IR) with ART scale-up as compared to status quo was reported in 23 studies (61 scenarios); proportion
of cumulative infections averted (CIA) due to ART scale-up in 24 (75); and 7 (11) reported both. Some
scenarios included multiple time horizons.

Table 3 summarizes projected ART prevention impacts (IR, CIA), stratified by heterogeneity and contextual
factors, plus adjusted effect estimates for each factor from multivariate analysis. Figures C.11–C.19 illustrate
unadjusted impacts stratified by factor levels, while Figures C.20 and 2 (subset) illustrate effect estimates.
Compared to models with homogeneous risk, including risk heterogeneity via static activity groups but
without key populations was associated with slightly higher impacts—adjusted effect (95% CI): 4 (-14, 22)%
IR, 24 (12, 36)% CIA. Including key population(s) and assuming similar ART cascade across groups was
also associated with higher impact: 72 (-31, 175)% IR, 20 (11, 28)% CIA. However, including turnover of
one/more higher risk group(s) was associated with smaller ART prevention impacts: -82 (-153, -11)% IR,
-86 (-103, -70)% CIA. Taken together, models that captured heterogenetiy in risk across activity groups
and/or key population(s) with turnover were associated with reduced ART prevention impacts.
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Table 3: Projected ART prevention impacts, stratified by factors of risk heterogeneity and contexts

Incidence Reduction (%) Cumulative Infections Averted (%)

Factor Level N a Median (IQR) Effect b (95% CI) b N a Median (IQR) Effect b (95% CI) b

Risk Stratif. & None 98 19 ( 7 , 44 ) ref 45 29 ( 18 , 47 ) ref
Cascade Diff. Activity (No KP) 22 35 ( 22 , 46 ) 4 ( -14 , 22 ) 39 6 ( 3 , 22 ) 24 ( 12 , 36 )

+ KP (Same) 5 41 ( 6 , 50 ) 72 ( -31 , 175 ) 8 10 ( 3 , 21 ) 20 ( 11 , 28 )
+ KP (Priority) 1 85 ( 85 , 85 ) 136 ( 73 , 199 ) 23 21 ( 11 , 41 ) 131 ( 97 , 166 )

Activity Turnover No 117 26 ( 8 , 45 ) ref 87 20 ( 5 , 35 ) ref
Yes 9 22 ( 21 , 50 ) -82 ( -153 , -11 ) 28 18 ( 7 , 38 ) -86 ( -103 , -70 )

Sex/Gender Stratif. No 97 21 ( 7 , 44 ) ref 39 29 ( 18 , 44 ) ref
& Cascade Diff. Yes (Same) 22 41 ( 30 , 53 ) -4 ( -32 , 23 ) 48 8 ( 3 , 24 ) -49 ( -62 , -36 )

Yes (Men Low) 7 21 ( 2 , 22 ) 5 ( -41 , 50 ) 28 16 ( 4 , 35 ) -125 ( -143 , -108 )
Partnership Types Generic 107 21 ( 8 , 44 ) ref 48 28 ( 15 , 42 ) ref

By Groups 16 33 ( 22 , 52 ) -22 ( -53 , 9 ) 66 11 ( 3 , 28 ) 34 ( 20 , 49 )
Overlapping 3 50 ( 45 , 62 ) 8 ( -52 , 69 ) 1 58 ( 58 , 58 ) -9 ( -60 , 43 )

Time Horizon 0-10 36 17 ( 7 , 35 ) ref 40 14 ( 3 , 26 ) ref
(years) 11-20 63 20 ( 8 , 42 ) 3 ( -3 , 9 ) 60 22 ( 8 , 38 ) 9 ( 2 , 17 )

21-30 15 47 ( 39 , 65 ) 3 ( -7 , 13 ) 11 23 ( 7 , 47 ) 12 ( 6 , 19 )
31+ 12 46 ( 24 , 57 ) 12 ( 5 , 20 ) 4 34 ( 29 , 40 ) 5 ( 1 , 8 )

HIV Prevalence 11+ 112 22 ( 8 , 44 ) ref 75 18 ( 4 , 35 ) ref
(%) 1-10 14 43 ( 36 , 49 ) -9 ( -49 , 31 ) 39 26 ( 11 , 36 ) -9 ( -20 , 2 )

0-1 0 — ( — , — ) 1 49 ( 49 , 49 ) -3 ( -30 , 24 )
HIV Incidence Increasing 2 40 ( 38 , 43 ) 5 32 ( 29 , 41 )
Trend c Inc-to-stable 1 97 ( 97 , 97 ) 1 68 ( 68 , 68 )

Stable 17 21 ( 20 , 29 ) 24 4 ( 2 , 7 )
Dec-to-stable 81 15 ( 6 , 43 ) 11 1 ( -8 , 28 )
Decreasing 1 57 ( 57 , 57 ) 13 29 ( 19 , 38 )

RR Transmission 0.0-0.039 11 22 ( 14 , 35 ) ref 44 6 ( 2 , 27 ) ref
on ART 0.04-0.099 42 49 ( 34 , 67 ) 55 ( 22 , 89 ) 60 27 ( 15 , 38 ) -41 ( -54 , -29 )

0.1+ 73 12 ( 5 , 30 ) 9 ( -31 , 48 ) 11 19 ( 1 , 33 ) -20 ( -26 , -13 )
CD4 Threshold for Symptomatic 3 38 ( 37 , 41 ) 47 ( 25 , 68 ) 24 4 ( 2 , 7 ) -30 ( -46 , -15 )
ART Initiation 200 3 28 ( 26 , 32 ) ref 4 28 ( 24 , 30 ) ref

350 10 29 ( 22 , 38 ) 15 ( 3 , 28 ) 18 18 ( 13 , 27 ) 3 ( -2 , 7 )
500 15 29 ( 16 , 43 ) 27 ( 8 , 45 ) 13 29 ( 23 , 35 ) 17 ( 10 , 24 )
Any 41 56 ( 22 , 75 ) 30 ( 14 , 47 ) 22 51 ( 28 , 62 ) 42 ( 37 , 48 )
Mixed 54 10 ( 5 , 31 ) 1 ( -31 , 32 ) 34 16 ( 5 , 37 ) 63 ( 54 , 72 )

ART Coverage 0-59 3 28 ( 26 , 31 ) 11 30 ( 13 , 43 )
Target (%) c 60-84 13 29 ( 21 , 41 ) 22 22 ( 8 , 39 )

85+ 13 46 ( 36 , 66 ) 21 36 ( 26 , 43 )
Acute Infection No 35 22 ( 10 , 57 ) ref 15 38 ( 24 , 50 ) ref

Yes 91 26 ( 9 , 44 ) 52 ( 13 , 91 ) 100 16 ( 5 , 32 ) 51 ( 36 , 66 )
Late-Stage Infection No 38 39 ( 13 , 56 ) ref 12 36 ( 20 , 48 ) ref

Yes 88 22 ( 8 , 43 ) -23 ( -37 , -8 ) 103 18 ( 5 , 34 ) -37 ( -65 , -9 )
Trans. Drug Resist. No 114 21 ( 7 , 43 ) ref 102 18 ( 5 , 36 ) ref

Yes 12 72 ( 39 , 85 ) -4 ( -46 , 39 ) 13 26 ( 20 , 30 ) -3 ( -8 , 3 )
HIV Morbidity No 102 21 ( 7 , 45 ) ref 73 27 ( 13 , 42 ) ref

Any 24 34 ( 22 , 46 ) 35 ( 16 , 54 ) 42 6 ( 3 , 23 ) -20 ( -26 , -14 )
HTC Behav. Change No 112 21 ( 7 , 45 ) ref 81 23 ( 11 , 38 ) ref

Any 14 41 ( 29 , 49 ) -39 ( -73 , -4 ) 34 6 ( 3 , 22 ) -13 ( -18 , -7 )
a N: number of unique scenarios and time horizons; sums across factor levels may be less than 126 and 115 due to missing variables.
b Effect estimates from linear multivariate regression with generalized estimating equations [45]; effects are illustrated in Figure C.20.
c Omitted from regression model due to missing data. RR: relative risk; HTC: HIV testing and counselling; KP: key populations.
priority: modelled ART cascade transitions were faster in KP vs overall due to prioritized programs; same: cascade transitions were
assumed the same in KP as overall. Factor definitions are given in Appendix B.
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After including risk heterogeneity, further capturing differential ART cascade across activity groups or key
populations was associated with differences in projected ART prevention impacts. Models stratified by
sex/gender, and those that captured lower ART cascade among men were associated with a smaller CIA:
-49 (-62, -36)% and -125 (-143, -108)%, respectively; although similar effects were not observed for IR:
-4 (-32, 23)% and 5 (-41, 50)%. Where key populations were expliciltly modelled, including ART cascade
prioritized to any key population(s) was associated with increased impact, enough to overcome reductions
due to turnover: 136 (73, 199)% IR, 131 (97, 166)% CIA. No studies in Dataset B examined lower ART
cascade among key population(s).

4 Discussion

Model-based evidence continues to support evaluation and mechanistic understanding of ART prevention
impacts. Such evidence may be sensitive to modelling assumptions about risk heterogeneity. Via scoping re-
view, we found that stratification by sexual activity and key population(s) was considered in approximately
2/3 and 2/5 of studies to date, respectively; 1/3 considered risk group turnover and 1/4 considered differen-
tial ART cascade by any risk group. In multivariate ecological analysis, we found that projected incidence
reductions and propoportions of infections averted were influenced by risk heterogeneity when risk group
turnover and differential ART cascade were also considered.

Our findings suggest that the proportion of onward transmission prevented through ART may be reduced via
turnover. Data suggest considerable within-person variability in sexual risk among key populations, includ-
ing MSM, FSW, and clients of FSW [47, 48, 49], as well as in the wider population [50]. This risk variability is
often reflected in compartmental models as risk group turnover. Previous modelling suggested that turnover
could increase the prevention benefits of treatment [51]; however, the model in [51] was calibrated to overall
equilibrium prevalence, allowing the reproduction number to decrease with increasing turnover. By con-
trast, when calibrating to group-specific prevalence with turnover, greater risk heterogeneity is inferred with
versus without turnover, and the reproduction number may actually increase [41]. Turnover of higher risk
groups can also reduce ART coverage in those groups through net outflow of treated individuals, and net
inflow of susceptible individuals, some of whom then become infected [41]. Thus, mechanistically, turnover
could reduce the transmission benefits of ART. These findings suggest that turnover is important to capture
as part of modeling risk heterogeneity, and as such, models would benefit from surveys, cohorts, and repeated
population size estimates that can provide data on individual-level trajectories of sexual risk, such as duration
in sex work [29].

Most models assumed equal ART cascade transition rates across subgroups, including diagnosis, ART initia-
tion, and retention. However, recent data suggest differential ART cascade by sex, age, and key populations
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[32, 52, 53, 20]. These differences may stem from the unique needs of subgroups and is one reason why
differentiated ART services are a core component of HIV programs [18, 54]. Moreover, barriers to ART
may intersect with transmission risk, particularly among key populations, due to issues of stigma, discrim-
ination, and criminalization [55, 12]. Our ecological analysis estimated that differences in cascade by sex
(lower among men) or risk (key populations prioritized) had a large influence on projected ART prevention
benefits. Thus, opportunities exist to incorporate differentiated cascade data, examine the intersections of
intervention and risk heterogeneity, and to consider the impact of HIV services as delivered on the ground.
Similar opportunities were noted regarding modelling of pre-exposure prophylaxis in SSA [56]. Depending
on the research question, the modelled treatment cascade may need to include more cascade steps and states
related to treatment failure/discontinuation.

The next generation of ART prevention impact modelling can be advanced by leveraging rapid growth in data
on risk heterogeneity and its intersection with intervention heterogeneity [57, 58, 59]. Key populations often
reflect intersections of risk heterogeneity with turnover, and intervention heterogeneity (cascade differences),
which together suggest the unmet needs of key populations play an important role in the overall dynamics of
HIV transmission in SSA [60, 61]. Although none of the models in the review considered a lower ART cascade
among key populations, data suggest large cascade differences, most notably lower proportions across the
cascade, among key populations in SSA [31, 15, 52]. Similarly, we found that the number of modelled clients
per female sex worker, and the relative rate of partnership formation among female sex workers versus other
women did not always reflect available data syntheses for sex work [29, 42]. Among studies with different
partnership types, only 1/5 modelled main/spousal partnerships—with more sex acts/lower condom use—
between two higher risk individuals, while 4/5 modelled only casual/commercial partnerships among higher
risk individuals. However, data suggest that female sex workers form main/spousal partnerships with regular
clients and boyfriends/spouses from higher risk groups [42]. Improved modelling and prioritization of sevices
designed to reach key populations will rely on continued investment in community-led data collection for
hard-to-reach populations.

Our scoping review has several limitations. First, we examined key populations based as traditionally de-
fined [40], based on social and economic marginalization and criminalization in SSA, and future work would
benefit from examing risk heterogenetiy across more subgroups, such as mobile populations and adolescent
girls and young women, where data suggest cascade disparities and risk heterogeneity [62, 63]. Second, our
conceptual framework for risk heterogeneity did not explicitly examine heterogeneity related to anal sex,
which is associated with higher probability of HIV transmission; nor did we examine structural risk factors
like violence [64, 65]. Third, we did not extract whether models were calibrated, and if so, which parameters
were fixed versus fitted. If certain parameters were fitted, it could explain some counterintuitive effect esti-
mates. For example, modelling increased infectiousness in late-stage HIV was associated with reduced ART
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prevention impacts. However, in most studies, newly ART-eligible patients via scale-up had earlier stage
HIV; therefore, such patients would have lower modelled infectiousness than late-stage HIV, and lower in-
fectiousness than in a model with uniform infectiousness fitted to the same data. A similar mechanism could
explain increased ART prevention impacts when including acute infection. Importantly, we conducted an
ecological analysis, and within-model comparisons like [30, 23] that explore the influence of each key factor
identified in this review would be an important next step.

In conclusion, model-based evidence of ART prevention impacts could likely be improved by: 1) capturinig
risk heterogeneity with risk group turnover, as a determinant of inferred risk heterogeneity during model
calibration, and to reflect challenges to maintaining ART coverage among risk groups with high turnover;
2) integrating data on differences in ART cascade between sexual risk groups, to reflect services as delivered
on the ground; and 3) capturing heterogenetiy in risks related to key populations, to reflect intersections of
transmission risk and barriers to HIV services that may undermine the prevention benefits of ART.
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A Search Strategy

We designed our search strategy with guidance from an information specialist at our affiliate library (KF).

A.1 Search Terms
Our search strategy and step-wise results are as follows, where term/ denotes a MeSH term, and .mp searches
the main text fields, including title, abstract, and heading words. We searched MEDLINE and EMBASE via
Ovid on 2020 March 20. Duplicate studies were removed automatically by Ovid and by Covidence; four
additional duplicates with subtly different titles were later identified and removed manually.

Table A.1: Search terms and hits

Term Hits

M1 238,076 model, theoretical/
M2 334,921 model, biological/
M3 302,802 computer simulation/
M4 196,814 patient-specific modeling/
M5 67,459 monte carlo method/
M6 32,801 exp stochastic processes/
M7 455,312 (model* ADJ3 (math* OR transmission OR dynamic* OR epidemi* OR compartmental OR

deterministic OR individual OR agent OR network OR infectious disease* OR markov OR
dynamic* OR simulat*)).mp.

M8 1,369,153 OR/ M1-M7

H1 290,863 exp HIV/
H2 651,624 exp HIV infections/
H3 753,274 (HIV OR HIV1* OR HIV2* OR HIV-1* OR HIV-2*).mp.
H4 369,182 hiv infect*.mp.
H5 538,214 (human immun*deficiency virus OR human immun* deficiency virus).mp.
H6 216,228 exp Acquired Immunodeficiency Syndrome/
H7 235,971 (acquired immun*deficiency syndrome OR acquired immun* deficiency syndrome).mp.
H8 954,470 OR/ H1-H7

G1 3512 Angola/ OR Angola.mp.
G2 9273 Benin/ OR Benin.mp.
G3 5809 Botswana/ OR Botswana.mp.
G4 9983 Burkina Faso/ OR Burkina Faso.mp.
G5 2055 Burundi/ OR Burundi.mp.
G6 16,822 Cameroon/ OR Cameroon.mp.
G7 1196 Cape Verde/ OR Cape Verde.mp.
G8 15,416 Central African Republic/ OR Central African Republic.mp. OR CAR.ti.
G9 3075 Chad/ OR Chad.mp.
G10 995 Comoros/ OR Comoros.mp.
G11 13,737 Democratic Republic of the Congo/ OR Democratic Republic of the Congo.mp. OR DRC.mp.
G12 959 Djibouti/ OR Djibouti.mp.
G13 1131 Equatorial Guinea/ OR Equatorial Guinea.mp.
G14 1437 Eritrea/ OR Eritrea.mp.
G15 35,959 Ethiopia/ OR Ethiopia.mp.
G16 4500 Gabon/ OR Gabon.mp.
G17 6626 Gambia/ OR Gambia.mp.
G18 25,213 Ghana/ OR Ghana.mp.
G19 360,920 Guinea/ OR Guinea.mp.
G20 2625 Guinea-Bissau/ OR Guinea-Bissau.mp.

continued . . .
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. . . continued

Term Hits

G21 9730 Cote d’Ivoire/ OR Cote d’Ivoire.mp. OR Ivory Coast.mp.
G22 46,917 Kenya/ OR Kenya.mp.
G23 1649 Lesotho/ OR Lesotho.mp.
G24 4239 Liberia/ OR Liberia.mp.
G25 11,386 Madagascar/ OR Madagascar.mp.
G26 16,367 Malawi/ OR Malawi.mp.
G27 9111 Mali/ OR Mali.mp.
G28 1573 Mauritania/ OR Mauritania.mp.
G29 2373 Mauritius/ OR Mauritius.mp.
G30 8502 Mozambique/ OR Mozambique.mp.
G31 3818 Namibia/ OR Namibia.mp.
G32 35,455 Niger/ OR Niger.mp.
G33 82,192 Nigeria/ OR Nigeria.mp.
G34 13,547 Republic of the Congo/ OR Republic of the Congo.mp. OR Congo-Brazzaville.mp.
G35 1545 Reunion/
G36 7597 Rwanda/ OR Rwanda.mp.
G37 342 "Sao Tome and Principe"/ OR "Sao Tome and Principe".mp.
G38 16,674 Senegal/ OR Senegal.mp.
G39 1566 Seychelles/ OR Seychelles.mp.
G40 5456 Sierra Leone/ OR Sierra Leone.mp.
G41 4667 Somalia/ OR Somalia.mp.
G42 114,536 South Africa/ OR South Africa.mp.
G43 1193 South Sudan/ OR South Sudan.mp.
G44 21,680 Sudan/ OR Sudan.mp.
G45 2409 Swaziland/ OR Swaziland.mp. OR Eswatini/ OR Eswatini.mp.
G46 32,442 Tanzania/ OR Tanzania.mp.
G47 3749 Togo/ OR Togo.mp.
G48 37,399 Uganda/ OR Uganda.mp.
G49 13,506 Zambia/ OR Zambia.mp.
G50 15,755 Zimbabwe/ OR Zimbabwe.mp.
G51 482,060 exp africa south of the sahara/ OR sub-saharan.mp. OR south of the sahara.mp.
G52 982,505 OR/ G1-G51

X1 2190 M8 AND H8 AND G52
X2 2160 X1 NOT animal/
X3 2155 limit X2 to english language
X4 2125 limit X3 to yr="1860 - 2019"
X5 1384 remove duplicates from X4
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A.2 Inclusion/Exclusion Criteria

Table A.2: Criteria for inclusion and exclusion

Include Exclude

Publication Type

• English language • non-English language
• published before 2020 • published in or after 2020
• peer-reviewed journal article • non-peer-reviewed article

• review article 1

• textbook, grey literature
• opinions, comments, correspondence
• conference abstracts and proceedings
• model comparison study

Mathematical Modelling of HIV Transmission

• sexual HIV transmission model • no sexual HIV transmission modelled
• non-linear HIV transmission model 2 • HIV transmission model is linear
• population-level dynamics • only within-host/cellular/protein modelling
• compartmental model 3 • individual-based model

Context & Objectives

• any region in Sub-Saharan Africa (SSA) 4 • only regions outside SSA modelled
• assess prevention impact of ART scale-up for all 5 • only theoretical context modelled

• only individual-level benefits of ART modelled
• only prevention benefits of other interventions
• no base-case scenario reflecting status quo *

• only ART-combination interventions *

• only ART intervention targeted to some risk groups *

• only ART prevention impacts reported for some risk groups *

• ART prevention impacts not reported 5*

1 Review articles were included if they also presented new HIV transmission modelling results fitting our criteria. 2 We define a non-linear
model as one where the number of infections projected at time 𝑡 is an iterative function of the number of infections previously projected
by the model before time 𝑡. 3 We define a compartmental model as one where the system variables represent the numbers of individuals
in each state, rather than unique individuals. 4 SSA was defined based on the countries in the UN regions of East, South, Central, and
West Africa, plus South Sudan (see Table A.1 for full country list). Studies were included if the model was parameterized/calirated to
reflect at least one context within SSA. Only model parameters & outcomes for SSA contexts were extracted. 5 Articles reporting HIV
incidence reduction and/or cumulative HIV infections averted among the whole population due to increased coverage or initiation rate
of ART for the whole population. * Used to define Dataset B only.
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A.3 Included Studies

A.3.1 Dataset B

[1] 2005 Salomon et al. [2] 2006 Abbas, Anderson, and Mellors
[3] 2009 Granich et al. [4] 2009 Hallett et al.
[5] 2010 Bacaer, Pretorius, and Auvert [6] 2010 Pretorius et al.
[7] 2011 Metzger, Lloyd-Smith, and Weinberger [8] 2012 Yusuf and Benyah
[9] 2012 Andrews et al. [10] 2012 Granich et al.

[11] 2012 Wagner and Blower [12] 2013 Abbas et al.
[13] 2013 Long and Stavert [14] 2013 Cremin et al.
[15] 2013 Alsallaq et al. [16] 2014 Nichols et al.
[17] 2014 Nichols et al. [18] 2014 Alistar, Grant, and Bendavid
[19] 2014 Eaton and Hallett [20] 2015 Ying et al.
[21] 2015 Low et al. [22] 2015 Khademi, Anand, and Potts
[23] 2015 Gilbert et al. [24] 2015 Heaton et al.
[25] 2016 Rahman, Vaidya, and Zou [26] 2016 Gilbert et al.
[27] 2016 Blaizot et al. [28] 2016 Ying et al.
[29] 2016 Barnighausen, Bloom, and Humair [30] 2016 Heffernan et al.
[31] 2017 Maheu-Giroux et al. [32] 2017 Maheu-Giroux et al.
[33] 2017 Volz et al. [34] 2017 Blaizot et al.
[35] 2018 Mukandavire et al. [36] 2018 Guillon
[37] 2018 Akudibillah, Pandey, and Medlock [38] 2018 Stuart et al.
[39] 2018 de Montigny et al. [40] 2019 Hauser et al.

A.3.2 Dataset A less B

[41] 2006 Johnson and Dorrington [42] 2006 Baggaley, Garnett, and Ferguson
[43] 2006 Wilson, Kahn, and Blower [44] 2008 Bacaer et al.
[45] 2009 Chigidi and Lungu [46] 2010 Williams et al.
[47] 2011 Nyabadza and Mukandavire [48] 2012 Barnighausen, Bloom, and Humair
[49] 2013 Wagner, Coburn, and Blower [50] 2013 Decker et al.
[51] 2013 Wirtz et al. [52] 2014 Shafer et al.
[53] 2014 Hove-Musekwa et al. [54] 2014 Braithwaite et al.
[55] 2014 Nichols et al. [56] 2014 Abu-Raddad and Awad
[57] 2014 Anderson et al. [58] 2014 Alistar et al.
[59] 2014 Cori et al. [60] 2014 Stover et al.
[61] 2014 Wirtz et al. [62] 2015 Korenromp et al.
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B Definitions & Extraction

Data were obtained from (in order of precedence): article text; article tables; article figures; appendix text;
appendix tables; appendix figures; and likewise for articles cited like “the model is previously described
elsewhere”. Data were assessed from figures with the help of a graphical measurement tool.1

Fitted Parameters: For the values of fitted parameters, we used the posterior value as reported, including the
mean or median of the posterior distribution, or the best fitting value. If the posterior was not reported, we
used the mean or median of the prior distribution, including the midpoint of uniform sampling ranges.

B.1 Epidemic Context

Let t0 be the time of ART scale-up/scenario divergence in the model.
HIV Prevalence: As reported in the context overall at t0: Low: <1%; Medium: 1-10%; High: >10%.
Epidemic Phase: As projected in the base-case scenario in the context overall between t0 and roughly t0 + 10
years: Increasing (linear or exponential); Increasing but stabilizing; Stable; Decreasing but stabilizing; Decreasing
(linear or exponential).
Geographic Scale: For studies of one geographic context, scale was defined as one of: regional: multiple
countries; national: one country; sub-national: smaller than a country but greater than a city; city: one city
or less. For studies that consider multiple geographic contexts, scale was defined as multi-x, where x is the
smallest geographically homogeneous scale considered from the list above.
Country: The countries counted were: Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Cape Verde,
Central African Republic, Chad, Comoros, Democratic Republic of the Congo, Djibouti, Equatorial Guinea, Eritrea,
eSwatini, Ethiopia, The Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Côte d’Ivoire, Kenya, Lesotho, Liberia,
Madagascar, Malawi, Mali, Mauritania, Mauritius, Mozambique, Namibia, Niger, Nigeria, Republic of the Congo,
Reunion, Rwanda, Sao Tome and Principe, Senegal, Seychelles, Sierra Leone, Somalia, South Africa, South Sudan,
Sudan, Tanzania, Togo, Uganda, Zambia, Zimbabwe. See Table A.1 for related search terms. If a study modelled
multiple countries at a national scale or smaller, the counter for each country was incremented.

B.2 Risk Heterogeneity

B.2.1 Key Populations

Female Sex Workers: Any female activity group meeting 3 criteria: representing <5% of the female popu-
lation; and being <1/3 × the size of client population or highest non-MSM male activity group; and having
>50 × the partners of the lowest sexually active female activity group [95, 96, 97]. We also noted whether
the authors described any activity groups as FSW. If it was not possible to evaluate any criteria due to lack
of data, then we assumed the criteria was satisfied.
Clients of FSW: Any male activity group meeting 2 criteria: described as representing clients of FSW; being
>3 × the size of the FSW population [96]. If group sizes were not reported, then we assumed an activity
group described as clients met the size criterion. We also noted whether clients were described as comprising
a proportion of another male activity group.
Men who have Sex with Men: Any male activity group(s) described by the authors as MSM.
Transgender People: Any activity group(s) described by the authors as transgender.

1WebPlotDigitizer: https://apps.automeris.io/wpd/
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People who Inject Drugs: Any activity group(s) described by the authors as PWID.
Prisoners: Any activity group(s) described by the authors as prisoners.

B.2.2 Activity Groups

Activity groups were defined as any stratification based on sex/gender and the number and/or types of part-
nerships formed, including key populations, but excluding stratifications by age.
Count: We counted the number of modelled activity groups in total, and separately for women who have
sex with men, men who have sex with women, and MSM.
Highest Risk Group Size: The proportion of men and women in the highest risk group.
Turnover: Turnover refers to movement of individuals between activity groups and/or key populations re-
flecting sexual life course. We defined four classifications of turnover if activity groups were modelled: None:
no movement between activity groups; High-Activity: only movement between one high activity group or
key population and other activity group(s); Multiple: movement between multiple pairs of risk groups; Re-
placement: only movement from low to high activity to maintain high activity group size(s) against dispro-
portionate HIV mortality.

B.2.3 Partnerships

Approaches: How studies defined partnerships, classified into one of three approaches: Generic: all partner-
ships are equal; By-Group: partnership types are defined only by the activity groups involved; Overlapping:
multiple partnership types can be formed by the same pair of activity groups. Within By-Group, we classi-
fied how the parameters of the partnership were defined, as based on either: the susceptible partner; the lower
activity partner; the higher activity partner; or some consideration of both partners.
Characteristics: Whether any of the following varied between different partnership types: Condom Use: pro-
portion of sex acts protected; Total Sex: total number of sex acts, possibly defined by differences in partnership
duration and/or frequency of sex.
Mixing: Mixing by activity group was classified as either: Proportionate: proportionate to the total number of
partnerships offered by each risk group; Assortative: any degree of preferential partnership formation between
individuals of the same or similar risk groups.

B.2.4 Age Groups

Count: The number of age groups considered in the model.
Risk: Whether age groups differed in any characteristic that conferred transmission risk (binary).
Mixing: We classified whether partnership formation between age groups was assumed to be: Proportionate:
proportionate to the number of partnerships offered by each age group; Strictly Assortative: any degree of
preferential partnership formation between individuals of the same or similar age groups that is equal for
both sexes. Off-Diagonal: any degree of preferential partnership formation between younger women and
older men.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2021. ; https://doi.org/10.1101/2021.03.29.21254586doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.29.21254586
http://creativecommons.org/licenses/by-nc-nd/4.0/


heterogeneity in transmission models A.8

B.3 HIV Natural History

Count: The number of states of HIV infection considered in the model, excluding stratifications related to
treatment. If states were defined by both CD4 and viral load, then the count considers all unique combina-
tions.
Acute Infection: Whether any state represented increased infectiousness associated with acute infection (bi-
nary).
Late-Stage Infection: Whether any state(s) considered increased infectiousness associated with late-stage
infection (binary).
HIV Morbidity: Whether any state(s) considered decreased sexual activity associated with late-stage disease
(binary), and how that decreased was modelled: Inactive: complete cessation of sexual activity; Partners: de-
creased rate of partnership formation; Sex Acts per Partnership: decreased frequency of sex per partnership;
and/or Generic: representative decreased probability of transmission.

B.4 Antiretroviral Therapy

B.4.1 Transmission

Transmission Reduction due to ART: The relative reduction in probability of transmission (0 is perfect pre-
vention, 1 is no effect) among individuals who are virally suppressed; if viral suppression was not explicitly
modelled, then the relative reduction among individuals who are on treatment was used.
Transmitted Resistance: Any consideration of 1+ strains of HIV which are transmitted and for which ART
had reduced benefits. We did not document the number of resistant strains, or characteristics of resistance
and transmissibility.

B.4.2 Treatment Cascade States

Forward Cascade: We extracted whether each of the following states were included (binary): Diagnosed:
aware of their HIV+ status, but have not yet started ART; Not Yet Virally Suppressed: started ART, but are
not yet virally suppressed; Virally Suppressed: on ART and achieved viral suppression; and Generic On ART :
simplifications of any/all of the above.
Stopping ART: We extracted whether individuals stopped ART, either due to: Treatment Failure: ART is no
longer efficacious due to resistance; or ART Cessation: ART is discontinued for other reasons, such as barriers
to access or side effects. We also extracted whether individuals stopping ART for either reason were tracked
separately, or whether they re-entered a generic ART-naive state, such as “Diagnosed”.
Differential Cascade Transitions: We extracted whether rates of transitioning along the ART cascade, includ-
ing: rate of HIV diagnosis; rate of ART initiation; and rate of ART cessation, differed by any of the following
stratifications: sex; age; activity; and key populations. If the study did not mention possible differences in such
rates, then we assumed that no differences were modelled.

B.4.3 Behaviour Change

HIV Counselling: Whether any sexual behaviour change associated with HIV testing and counselling was
applied to individuals in the diagnosed and/or on-ART states (binary), and what changed: Condom Use:
increased; Serosorting: any; Partners: decreased rate of partnership formation; Sex Acts per Partnership: decreased
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frequency of sex per partnership; and/or Generic: representative decreased probability of transmission due to
counselling.

B.5 ART Prevention Impact

The following data were extracted per scenario, rather than per-study.

B.5.1 Intervention

ART Initiation Criteria: What criteria were used for ART eligibility as part of the intervention: Symptomatic
(AIDS); CD4 < 200; CD4 < 350; CD4 < 500; All individuals; Other.
Intervention Population: Among which population sub-group(s) was the scale-up of ART coverage/initiation
applied. Only scenarios with ART intervention for all individuals were included in Dataset B.
Impact Population: Among which population sub-group(s) was the ART prevention impact measured. Only
scenarios measuring ART prevention impacts in all individuals were included in Dataset B.
ART Coverage Target: The proportion of people living with HIV in the intervention population who are
on ART by the end of ART scale-up.
ART Initiation Rate Target: The rate at which people living with HIV in the intervention population initiate
ART by the end of ART scale-up.
Intervention t0 and tf : The years at which ART scale-up as part of the intervention started and stopped,
respectively. If interventions were modelled as instantaneous, such as increasing ART initiation rate, then we
considered t0 = tf. Impact time horizons were measured relative to t0.

B.5.2 Impact

For both measures of ART prevention impact, we extracted reported values from the text for any available
time horizon, as well as figure data for any of the following time horizons, if available: 5, 10, 15, 20, 30, and
40 years, with the help of a graphical measurement tool. If only absolute values were reported, we calculated
the relative reductions manually. Where reported, we extracted confidence intervals for each outcome.
Relative Incidence Reduction: The relative reduction in overall annual HIV incidence (per 1000 person-
years) in the intervention scenario as compared to the baseline scenario, both after an equal number of years
since t0 (time horizon). For example, if the baseline and intervention scenarios predicted overall HIV inci-
dence of 1 and 0.7 per 1000 person-years 5 years after t0, then the relative incidence reduction for the 5-year
time horizon would be 30%.
Proportion of Infections Averted: The relative reduction in cumulative new HIV infections in the inter-
vention scenario as compared to the baseline scenario, both after an equal number of years since t0 (time
horizon). For example, if the baseline and intervention scenarios predicted 1000 and 700 new infections 5
years after t0, then the proportion of infections averted for the 5-year time horizon would be 30%.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2021. ; https://doi.org/10.1101/2021.03.29.21254586doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.29.21254586
http://creativecommons.org/licenses/by-nc-nd/4.0/


heterogeneity in transmission models A.10

C Supplemental Results

Additional information on data sources, analysis, and results are available in the public repository:
https://github.com/mishra-lab/sr-heterogeneity-hiv-models

C.1 Map

50°S

40°S

30°S

20°S

10°S

 0°

10°N

20°N

30°N

20°W  0° 20°E 40°E 60°E

Studies

1

2

5

10

20

50

10

20

% HIV
Prevalence

Figure C.1: Map showing number of studies (of 94 total) applying HIV transmission modelling in each
country vs the number of people living with HIV (PLHIV, millions)
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C.2 Risk Heterogeneity

C.2.1 Distributions

The following figures illustrate the distributions (number of studies) of various parameter values and mod-
elling assumptions related to factors of heterogeneity and intervention contexts.
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Figure C.3: HIV incidence at 𝑡0 (per 1000 PY)
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Figure C.5: Number of HIV states
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Figure C.6: Relative infectiousness on ART
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Figure C.10: Proportion of men in the client or
highest activity male group
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C.3 ART Prevention Impact

The following figures illustrate the projected ART prevention impact (Dataset B), stratified by various factors
of heterogeneity and intervention contexts (colours). Left panels show the relative HIV incidence reduction
(IR); right panels show the proportion of cumulative HIV infections averted (CIA); both as compared to a
base-case scenario reflecting status quo. If any study included multiple scenarios of ART scale-up, then each
scenario was included separately; if any scenario reported multiple time horizons, each time horizon was
included separately. The number of studies (scenarios) reporting incidence reduction, cumulative infections
averted, both, or either was: 23 (61), 24 (75), 7 (11), and 40 (125), respectively. If any factor could not be
quantified due to missing data or varying values, it was omitted from that plot. In box plots, the numbers of
unique scenario time-horizons contributing to each box are given above it.
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Figure C.11: Risk Stratification & ART cascade differences
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Figure C.12: Any activity group turnover
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Figure C.13: Sex stratification & any ART cascade differences
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Figure C.14: Type of partnership definition
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Figure C.15: HIV prevalence at 𝑡0 (%)
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Figure C.16: HIV epidemic phase
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Figure C.17: CD4 initiation criteria
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Figure C.18: ART intervention coverage target
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Figure C.19: Relative infectiousness on ART
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Figure C.20: Effect estimates for factors of heterogeneity on incidence reduction (%, IR) and cumulative
infections averted (%, CHI) from linear multivariate regression with generalized estimating equations.

Numerical results given in Table 3. RR: relative risk; HTC: HIV testing and counselling; KP: key populations. priority: modelled ART
cascade transitions were faster in KP vs overall due to prioritized programs; same: cascade transitions were assumed the same in KP as
overall. Factor definitions are given in Appendix B.
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Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for 
Scoping Reviews (PRISMA-ScR) Checklist 

SECTION ITEM PRISMA-ScR CHECKLIST ITEM 
REPORTED 
ON PAGE # 

TITLE 

Title 1 Identify the report as a scoping review. 

ABSTRACT 

Structured 
summary 

2 

Provide a structured summary that includes (as 
applicable): background, objectives, eligibility criteria, 
sources of evidence, charting methods, results, and 
conclusions that relate to the review questions and 
objectives. 

INTRODUCTION 

Rationale 3 

Describe the rationale for the review in the context of 
what is already known. Explain why the review 
questions/objectives lend themselves to a scoping 
review approach. 

Objectives 4 

Provide an explicit statement of the questions and 
objectives being addressed with reference to their key 
elements (e.g., population or participants, concepts, and 
context) or other relevant key elements used to 
conceptualize the review questions and/or objectives. 

METHODS 

Protocol and 
registration 

5 

Indicate whether a review protocol exists; state if and 
where it can be accessed (e.g., a Web address); and if 
available, provide registration information, including the 
registration number. 

Eligibility criteria 6 
Specify characteristics of the sources of evidence used 
as eligibility criteria (e.g., years considered, language, 
and publication status), and provide a rationale. 

Information 
sources* 

7 

Describe all information sources in the search (e.g., 
databases with dates of coverage and contact with 
authors to identify additional sources), as well as the 
date the most recent search was executed. 

Search 8 
Present the full electronic search strategy for at least 1 
database, including any limits used, such that it could be 
repeated. 

Selection of 
sources of 
evidence† 

9 
State the process for selecting sources of evidence (i.e., 
screening and eligibility) included in the scoping review. 

Data charting 
process‡ 

10 

Describe the methods of charting data from the included 
sources of evidence (e.g., calibrated forms or forms that 
have been tested by the team before their use, and 
whether data charting was done independently or in 
duplicate) and any processes for obtaining and 
confirming data from investigators. 

Data items 11 
List and define all variables for which data were sought 
and any assumptions and simplifications made. 

Critical appraisal of 
individual sources 
of evidence§ 

12 

If done, provide a rationale for conducting a critical 
appraisal of included sources of evidence; describe the 
methods used and how this information was used in any 
data synthesis (if appropriate). 

Synthesis of results 13 
Describe the methods of handling and summarizing the 
data that were charted. 

N/A

Meth 2.3 App B

Meth 2.3 App B

Introduction

Methods 2.2
Appendix A.2

N/A

1

Abstract

Methods 2.3
Appendix B

Methods 2.2
Appendix A.2

Introduction

Methods 2.2
Appendix A.1

Methods 2.2
Appendix A.1
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SECTION ITEM PRISMA-ScR CHECKLIST ITEM 
REPORTED 
ON PAGE # 

RESULTS 

Selection of 
sources of 
evidence 

14 

Give numbers of sources of evidence screened, 
assessed for eligibility, and included in the review, with 
reasons for exclusions at each stage, ideally using a flow 
diagram. 

 

Characteristics of 
sources of 
evidence 

15 
For each source of evidence, present characteristics for 
which data were charted and provide the citations. 

 

Critical appraisal 
within sources of 
evidence 

16 
If done, present data on critical appraisal of included 
sources of evidence (see item 12). 

 

Results of 
individual sources 
of evidence 

17 
For each included source of evidence, present the 
relevant data that were charted that relate to the review 
questions and objectives. 

 

Synthesis of results 18 
Summarize and/or present the charting results as they 
relate to the review questions and objectives. 

 

DISCUSSION 

Summary of 
evidence 

19 

Summarize the main results (including an overview of 
concepts, themes, and types of evidence available), link 
to the review questions and objectives, and consider the 
relevance to key groups. 

 

Limitations 20 Discuss the limitations of the scoping review process.  

Conclusions 21 
Provide a general interpretation of the results with 
respect to the review questions and objectives, as well 
as potential implications and/or next steps. 

 

FUNDING 

Funding 22 

Describe sources of funding for the included sources of 
evidence, as well as sources of funding for the scoping 
review. Describe the role of the funders of the scoping 
review. 

 

JBI = Joanna Briggs Institute; PRISMA-ScR = Preferred Reporting Items for Systematic reviews and Meta-Analyses 
extension for Scoping Reviews. 
* Where sources of evidence (see second footnote) are compiled from, such as bibliographic databases, social media 
platforms, and Web sites. 
† A more inclusive/heterogeneous term used to account for the different types of evidence or data sources (e.g., 
quantitative and/or qualitative research, expert opinion, and policy documents) that may be eligible in a scoping 
review as opposed to only studies. This is not to be confused with information sources (see first footnote). 
‡ The frameworks by Arksey and O’Malley (6) and Levac and colleagues (7) and the JBI guidance (4, 5) refer to the 
process of data extraction in a scoping review as data charting. 
§ The process of systematically examining research evidence to assess its validity, results, and relevance before 
using it to inform a decision. This term is used for items 12 and 19 instead of "risk of bias" (which is more applicable 
to systematic reviews of interventions) to include and acknowledge the various sources of evidence that may be used 
in a scoping review (e.g., quantitative and/or qualitative research, expert opinion, and policy document). 
 
 

From: Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews 
(PRISMAScR): Checklist and Explanation. Ann Intern Med. 2018;169:467–473. doi: 10.7326/M18-0850. 
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Discussion

Discussion
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