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Abstract: We use UK Biobank data to train predictors for 48 blood and urine markers such as HDL,
LDL, lipoprotein A, glycated haemoglobin, ... from SNP genotype. For example, our predictor
correlates ∼ 0.76 with lipoprotein A level, which is highly heritable and an independent risk factor
for heart disease. This may be the most accurate genomic prediction of a quantitative trait that
has yet been produced (specifically, for European ancestry groups). We also train predictors of
common disease risk using blood and urine biomarkers alone (no DNA information). Individuals
who are at high risk (e.g., odds ratio of > 5x population average) can be identified for conditions
such as coronary artery disease (AUC ∼ 0.75), diabetes (AUC ∼ 0.95), hypertension, liver and
kidney problems, and cancer using biomarkers alone. Our atherosclerotic cardiovascular disease
(ASCVD) predictor uses ∼ 10 biomarkers and performs in UKB evaluation as well as or better than
the American College of Cardiology ASCVD Risk Estimator, which uses quite different inputs (age,
diagnostic history, BMI, smoking status, statin usage, etc.). We compare polygenic risk scores (risk
conditional on genotype: (risk score | SNPs)) for common diseases to the risk predictors which result
from the concatenation of learned functions (risk score | biomarkers) and (biomarker | SNPs).

Keywords: Polygenic Scores, Disease Risk, Machine Learning, Atherosclerotic Cardiovascular Dis-
ease, Biomarkers

1. Introduction

Modern machine learning (ML) methods have opened the door to using high dimen-
sional inputs to predict health outcomes and risk. This paper concerns the application of
sparse linear ML to genetic and health information in order to make predictions that could
be useful in a clinical setting. Recent work has highlighted that ML, especially polygenic
predictors, have high potential impact in clinical settings [1–21]. The UK Biobank (UKB)[22]
dataset includes single nucleotide polymorphisms (SNP) genotypes, medical diagnosis
information, and extensive biomarker information (i.e., 48 quantitative outputs of blood
and urine tests) for almost 500k individuals. In this article we describe ML investigations
of the correlation structure between these three categories of data. As described in Figure 1,
we train:

1. Polygenic Score (PGS) predictors of the quantitative biomarker test results from SNPs
alone. These functions predict biomarker level conditional on genotype: PGS =
(biomarker | SNPs).
For example, we predict measured lipoprotein A levels from SNPs, achieving a
correlation of 0.76 between PGS and actual biomarker level. This may be the most
accurate SNP prediction of a complex human trait yet accomplished.

2. Biomarker Risk Scores which predict risk of a specific disease condition using only
measured biomarkers as input: (risk score | biomarkers).
For example, our atherosclerotic cardiovascular disease (ASCVD) predictor uses ∼10
blood biomarkers to predict disease risk. We show that in UKB validation it predicts
disease risk as well as or better than the American College of Cardiology ASCVD Risk
Estimator [23,24], which uses quite different inputs such as age, diagnostic history,
body mass index (BMI), smoking status, statin usage, etc. Liver and kidney problem
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Figure 1. The four different types of predictors appearing in this paper.

risk prediction from biomarkers seems quite promising, based on our results. In total,
we investigate predictions for ASCVD, coronary artery disease (CAD), diabetes type
I & II, hypertension, very inclusive definitions of kidney and liver problems, and
obesity.

3. Finally, by concatenating the predictors in 1 and 2 above, we build functions which
map genotype (SNPs) to disease risk, with biomarkers as an intermediate step. We de-
note these concatenated predictors as: (risk score | biomarkers | SNPs). We emphasize
that concatenation (i.e., F(G(x))) is not the same as training with both biomarkers
and SNPs simultaneously used as features. The concatenated predictors only require
SNPs as input, but use SNP predicted biomarker values as an intermediate step in
calculation of the predicted disease risk. These functions can be compared to standard
Polygenic Risk Scores (PRS) computed directly from SNPs, using disease case status
as the training phenotype: PRS = (risk score | SNPs).

For example, the concatenated function which maps SNPs→ biomarkers→ type 2
diabetes risk performs roughly as well as the PRS for type 2 diabetes (Area Under the
Receiver operator characteristic Curve, AUC, ∼ 0.64).

From our investigations, we conclude that many biomarker levels are not just substan-
tially heritable, but can be predicted with some accuracy from SNPs. This is true despite the
fact that levels fluctuate from day to day for a specific individual! We also conclude that dis-
ease risk prediction from biomarkers alone, via (risk score | biomarkers), is potentially very
powerful, and indeed complementary to existing methods for risk estimation. For example,
we show below that existing ASCVD risk predictors use different and complementary
information to the biomarkers used in our ASCVD (risk score | biomarkers). Our results
suggest that combining this complementary information can lead to stronger prediction
and perhaps new insights into heart disease. Significant analyses of the costs and benefits
of additional inputs have been performed for the existing ASCVD predictor, which is in
clinical use (e.g. [23,24]), including some of the features in our predictor. Our comparison
is limited to risk predictor performance and in the UKB cohort only.

We validate all predictors using sibling data: most of the power to differentiate be-
tween siblings (either in quantitative trait values or disease risk) persists despite similarity
in childhood environments. We also test the fall off in power in distant ancestries (rela-
tive to the European training population). The decline for SNP based predictors varies
as expected with genetic distance, whereas biomarker prediction does not display this
pattern.

Throughout this paper, we refer to the different biomarkers according to the abbrevia-
tions listed in Table 1.
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Table 1. List of all studied blood and urine markers with abbreviations.
Abbr. Full name Abbr. Full name Abbr. Full name

ABC Basophill count DBil Direct bilirubin PCT Platelet crit
AEC Eosinophill count E2 Oestradiol phos Phosphate
ALB Albumin GGT Gamma glutamyltransferase PLT Platelet count
ALC Lymphocyte count gluc Glucose RBC Red blood cell (erythrocyte) count
ALP Alkaline phosphatase HbA1c Glycated haemoglobin (HbA1c) RET Reticulocyte count
ALT Alanine aminotransferase HCT Haematocrit percentage RF Rheumatoid factor
AMC Monocyte count HDL HDL cholesterol SHBG Sex hormone binding globulin
ANC Neutrophill count Hgb Haemoglobin concentration T Testosterone
apoA Apolipoprotein A HLSR High light scatter reticulocyte

count
TBil Total bilirubin

apoB Apolipoprotein B IGF1 IGF-1 TG Triglycerides
AST Aspartate aminotransferase K Potassium in urine TP Total protein
Ca Calcium LDL LDL direct U Urea
chol Cholesterol LpA Lipoprotein A UA Urate
Cr Creatinine MA Microalbumin in urine UCR Creatinine (enzymatic) in urine
CRP C-reactive protein Na Sodium in urine vitD Vitamin D
CysC Cystatin C NRBC Nucleated red blood cell count WBC White blood cell (leukocyte) count

2. Materials and Methods
• Subject data

All research in this paper uses data exclusively from the 2018 UKB release [22,25]
and updates (see Supplementary Information for more details). All statements about sex
or ancestry refer to the self-reported data within this dataset [26]. There is of course a
complicated genetic substructure within each one of these subgroups [27–40], however,
it has been repeatedly demonstrated that self-reporting provides sufficiently good data
for training purposes [41–45]1. We refer to the self-reported ancestries labeled white,
Asian, Chinese, and black in UKB as European, South-Asian, East-Asian and African, in
accordance with the guidelines in [46]. It has been repeatedly confirmed that the power
of polygenic predictors is dependent on both the training and testing ancestries, and that
generally the power of the prediction falls off as a function of genetic distance [47–50]. All
individuals with self-reported admixture were excluded from this study.

• Phenotype data

The phenotypes included in the paper include self-reported UKB statuses, standard
(ICD9, ICD10, OPCS3, OPCS4) codes, diagnosed conditions, thresholds, and combinations
of all the previous items. Full details of how each phenotype is defined is given in the
Supplementary Information.

2.1. Predicting Biomarkers from SNPs

This work primarily focuses on LASSO [51], or compressed sensing [52–55]. LASSO
was chosen because it has been repeatedly shown that sparse, linear methods are among the
most successful in genetic prediction over a wide variety of traits[11,41,43]. Additionally,
sparsity makes application and analysis of the predictors much more computationally
efficient. As genetic predictors move into clinical settings, it will undoubtedly be the case
that optimal prediction algorithms will vary depending on phenotype and training data,
but LASSO currently serves as an excellent jack-of-all-trades. We used LASSO to predict the
48 types of biomarkers listed in Table 1 from SNP data, and denote these type of predictors
as (biomarker | SNPs).

• Data and pre-processing

UKB contains data from repeated visits and for samples with more than one measure-
ment of a certain biomarker the average value was taken. These raw measurements were

1 Genetic prediction in general depends on non-trivial factors including population substructure, size of training sets, algorithms (e.g. sparse vs
non-sparse methods), heritability, environmental factors, and etc. Nonetheless, in many instances self-reported identity is sufficient for training.
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z-scored for men and women separately and consecutively age corrected by subtracting
a linear regression on age-biomarker data obtained from averaging the biomarker value
for all samples born the same year (biomarker-age plots are contained in Supplementary
Information). The parameters for the pre-processing were determined from training sets
with about 340k samples of European ancestry. Evaluation sets of about 20-40k Euro-
pean siblings and all non-European individuals were withheld entirely from training but
pre-processed with the same parameters.

The UKB genotypic data were quality controlled by excluding all SNPs with less
than 3% call success rate and also those with a minor allele frequency (MAF) < 0.001. All
individuals with less than 3% successfully called SNPs were also excluded and, again,
any individual with self-reported mixed ancestry was excluded from this study entirely.
Furthermore, only autosomal genetic information was used, including SNPs located on
chromosomes 1-22 only.

• Predictor training

Five LASSO predictors were trained on each biomarker using cross-validation, ran-
domly drawing 1000 samples from the training set as validation set for each fold. The latter
were used to choose optimal values of the regularization parameter λ (see Supplementary
Information). The top performing predictor — as measured by correlation in the European
corresponding validation set — from each fold was retained providing some statistics for
the uncertainty estimates in the results. More details can be found in the Supplementary
Information.

• Evaluation

Each predictor for each biomarker was evaluated on its corresponding evaluation set
consisting of ∼ 20-40k samples of European ancestry. To test the performance dependence
on ancestry we also applied the predictors to the 9k of South-Asian, 1500 of East-Asian,
and 7k of African ancestry. In section 3.2.2, we report the correlation between the PGS and
the phenotypes as the performance metric for these continuous traits.

Since environmental background, such as life style and diet, and indirect genetic
effects have impacts on most of the biomarkers, we conducted a sibling evaluation. Siblings
generally have more similar backgrounds than randomly chosen pairs, and are also more
genetically similar than unrelated individuals. Retained predictive power among siblings
is hence a strong indication of direct genetic effects. Moreover, the amount of lost power as
compared to the general population can give some idea of the magnitude of environmental
effects, e.g., from childhood environment. (There can also be genetic nurture [56–60]
effects that are not analyzed here.) Childhood environments are more similar among
siblings than between unrelated individuals, and this comparison gives an indication of
whether the instantaneous biomarker measurements in adulthood are sensitive to the
effects of childhood environment. To this end, we constructed both random pairs and
pairs of genetic siblings within the evaluation set of European ancestry. For each pair, we
calculated the difference in phenotype ∆phen and the difference in PGS ∆PGS and compared
the correlations between these quantities corr(∆phen, ∆PGS) within random and sibling
pairs, respectively.

• Genetic architecture

One can define the variance accounted for by each SNP i in a predictor according to

variance accounted for by SNPi = β2
i (1− fi) fi , (1)

where fi is the MAF of SNP i. This is described in greater detail in the Supplementary
Information and in [42]. We use this alongside Manhattan-plots of the effect sizes β in the
results (section 3.1.1) to display the genetic architectures of the top 3 performing (biomarker
| SNPs) predictors. Analogous plots for the rest of the (biomarker | SNPs) predictors are
contained in the Supplementary Information.
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2.2. Methods for disease prediction

We used two approaches to investigate whether biomarkers can be used to predict
disease risk, analogous to how blood tests are used clinically.

Approach 1: We trained predictors to predict case/control status directly from phenotypes,
i.e., using the direct biomarker measurements as features. We denote this type
of predictor (risk score | biomarkers), or biomarker risk score.

Approach 2: Second, we applied these already trained predictors to the predicted pheno-
types, i.e., using the biomarker PGS output from the SNP-based predictors in
section 2.1 as input. As such, we obtain disease risk scores using only SNP data
as input. We denote these concatenated predictors (risk score | biomarkers |
SNPs).

We evaluated this strategy on eight different condition definitions and we present the
details for the two approaches separately. This is done both to display the performance
dependence on the two approaches and since the prediction from biomarkers in approach
1 are very interesting in their own right.

2.2.1. Approach 1: Predicting case status from biomarkers
• Condition definitions

Based on the available UKB data, we defined conditions for CAD, cancer, diabetes
type 1, diabetes type 2, hypertension, kidney problem, liver problem, and obesity. The
detailed definitions for each one of these are to be found in the Supplementary Information.
In general, we chose the definitions to be inclusive; kidney (liver) problem for example
contains almost all kidney (liver) related problems that are reported in UKB, whereas
cancer refers to any type of cancer. Obesity was defined as a BMI over 30. The effects of
changing definitions are further discussed in section 4.

• Predictor training

We used 45 out of the 48 biomarkers as input features, dropping E2, MA, and RF
due to few available measurements, and taking the first available measurement for each
sample. The raw data was pre-processed by sex specific z-scoring and then age correcting
by subtracting a linear regression. Using LASSO, we then trained 5 predictors on the
case/control status, choosing optimal λ by five-fold cross-validation. The training was
done separately for men (N = 106, 656) and women (N = 86, 193) and on European
ancestry only.

• Evaluation

As was done for the (biomarker | SNPs) in section 2.1, about 40k siblings of European
ancestry and all non-European individuals were kept separate from all training and were
used as evaluation set. We measured the predictor performance by AUC and by odds
ratio plots. Additionally, we conducted sibling tests for the (risk score | biomarkers)
predictors to test for environmental effects: we applied the predictors to pairs of siblings
with precisely one case and one control and report the fraction of correctly called affected
sibling, juxtaposed with the same results for random pairs of one case and one control.

It should be emphasized here that we did not take date of onset into account in this
study: disease status was considered on a "life span" (as far as UKB covers) basis such that
cases could have onsets both prior to and after the time of the biomarker measurement.
Prediction in this sense means what can we predict about current or future case status only
knowing a set of momentary biomarker values. Temporal prediction tests (i.e., prospective
prediction) are deferred to later work.

2.2.2. Approach 2: Predicting case status from PGS of biomarkers

To form predictors taking SNP data as input, we concatenated the PGS predictors
from section 2.1 with the biomarker predictors from approach 1, what we call (risk score |
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biomarkers | SNPs). The disease predictors (risk score | biomarkers) were taken as is from
Approach 1 and applied to the z-scored PGS output of the predictors in section 2.1. No
further training was done and the performance was evaluated as for and compared with
the (risk score | biomarkers) predictors.

LpA TBil DBil PLT HDL PCT RBC apoA ALP IGF1 UA apoB
0.0

0.2

0.4

0.6 European South Asian East Asian African

SHBG TG Hgb HCT LDL HLSR TP chol ANC CysC AEC ALB
0.0

0.1

0.2

0.3

0.4

HbA1c AMC WBC phos Cr GGT U ALT AST CRP T RET
0.0

0.1

0.2

0.3

ABC Na gluc ALC UCR K RF Ca vitD MA NRBC E2

0.00

0.05

0.10

Figure 2. Correlations between PGS and phenotype vary from very strong to effectively zero, depending on the
biomarker, and fall off with genetic distance from the training population. The mean of the PGS-phenotype corre-
lation for evaluation sets are listed for all 48 biomarkers, ordered according to the results within Europeans — the ancestry
for the training population. The error bars represent ± the standard deviation for 5 different predictors trained on slightly
different training sets. The dotted line is there to aid graphical comparisons across the rows. The LASSO predictor of
lipoprotein A achieves a correlation of 0.759 within European ancestry, which is the highest correlation for a polygenic trait
we are aware of. The correlation fall-off for the other ancestries generally follows the order European > South Asian > East
Asian > African. Note that the sample sizes for these ancestries are much smaller.

2.3. Comparison with ASCVD Risk Estimator

The ASCVD Risk Estimator [24] is a widely used tool to aid clinicians in risk esti-
mations of and preventative care against atherosclerotic cardiovascular disease. We used
this well-established resource to benchmark the approach of (risk score | biomarkers) pre-
dictors by training a predictor on this condition specifically. ASCVD aggregates several
sub-diagnoses and exists in different versions. Hard ASCVD includes acute coronary
syndromes, death by coronary heart disease, a history of myocardial infarction, and fatal
and non-fatal stroke. A more general (extended) ASCVD definition additionally includes
stable or unstable angina, coronary or other arterial revascularization, transient ischemic
attack, and peripheral arterial disease presumed to be of atherosclerotic origin. We used a
UKB specific extended definition, detailed in the Supplementary Information. The ASCVD
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Risk Estimator requires the input: age, sex, race, systolic and diastolic blood pressure,
total cholesterol, HDL, LDL, history of diabetes, smoking status, time since quit smoking
(if applicable), whether on hypertension treatment, whether on a statin, and whether on
aspirin. It can also use previous data for follow-ups but we restricted our analysis to "first
visit patients" only. All of these data fields can be found in some form in the UKB (the exact
field choices are listed in the Supplementary Information).

The outputs of the ASCVD Risk Estimator are (up to) three risk estimates: 10 year risk,
lifetime risk, and optimal risk, all given as a percentage. Since our UKB data only cover
approximately 10 years from the first biomarker measurement, we exclusively used the 10
year risk output. We applied the underlying function of the ASCVD Risk Estimator to the
corresponding data in UKB and obtained a 10 year risk estimate for 358,650 individuals
for whom we also had an ASCVD case/control status. Strictly speaking, the ASCVD Risk
Estimator was developed for North American cohorts and and based on hard ASCVD
but, as seen in section 3.3, performed very well also in the cohorts of the UKB using the
extended definition. Note, however, the current comparison is not intended as a rigorous
test for deployment.

We then trained a (risk score | biomarkers) predictor on case/control status, analo-
gously to approach 1 in section 2.2, but using ordinary linear regression on the z-scored
biomarker measurements. This outputs a risk score which we mapped to absolute risk
estimates in percentages as follows. The risk scores obtained from applying the predictor on
the training data were binned and, within each bin, the disease prevalence was calculated
from the case/control statuses as an estimated risk for samples with the corresponding risk
scores. This discrete mapping was then made continuous using rolling averages and linear
interpolation. For details see Supplementary Information.

2.3.1. Combination of predictor from biomarkers and the ASCVD Risk Estimator

In the results section 3.3, we show that the ASCVD (risk score | biomarkers) predictor
and the ASCVD Risk Estimator are making complementary predictions. We therefore also
tested a combination of them. We made a linear regression on all the input features from
the two predictors combined (48 continuous and 8 discrete variables), z-scoring the discrete
variables from the ASCVD Risk Estimator input so that everything was on the same scale.
In addition, we made a second regression also including the output of the ASCVD Risk
Estimator to capture the non-linearities within that function. These regressions were made
and evaluated on the same training and evaluation sets as for the (risk score | biomarkers)
predictors.

3. Results
3.1. Predicting Biomarkers from SNPs

The performance of the (biomarker | SNPs) predictors ranges from the highest phenotype-
PGS correlation for a polygenic predictor we are aware of to no predictive power what-
soever. We present the results in order of correlation within European ancestry in Figure
2. The best performing predictor is for lipoprotein A at a correlation of ∼ 0.76. This is
not too surprising as lipoprotein A levels are well-known to be highly heritable [61–64],
related to the LPA gene and other loci [65–74], and thus do not greatly vary by life style
or environment 2. Yet, it is a striking example of predictive power. After lipoprotein A,
we find correlations almost evenly distributed within the correlation range 0.1-0.59 and a
group of 7 almost uncorrelated biomarkers at the bottom. In the same Figure 2, we have
included the performance within the non-European ancestries. Being trained on European
ancestry only, the predictors suffer the now familiar [49,50] fall-off pattern according to
genetic distance, with performance generally being successively worse for South-Asian,
East-Asian, and African ancestries.

2 Lipoprotein A has long been studied because of its association with CAD, atherosclerotic risk, liver problems, metabolism, and even cancer. Further
discussion can be found in the review [75]
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LpA TBil DBil PLT HDL PCT RBC ALP apoA UA SHBG apoB
0.00

0.25

0.50

0.75 random sib sib_0.5 sib_1.0 sib_1.5

Figure 3. Sibling comparisons of correlation between difference in phenotype and difference in PGS, i.e.,
corr(∆phen, ∆PGS), show that most of the correlation is retained also for pairs that share similar environmental back-
grounds. UKBs 4̃0k siblings of European ancestry were paired either randomly or as genetic siblings and were used as
test set. The correlations between the pairs’ differences in phenotype and their differences in PGS was then calculated for
each biomarker, ordered above from strongest to weakest correlation. The error bars indicate ± the standard deviations
for 5 predictors trained on slightly different training sets. The additional three bars labeled sib 0.5, sib 1.0 and sib
1.5, are the results when restricting to siblings with phenotype differences larger than 0.5, 1 and 1.5 standard deviations,
respectively. Two siblings are likely to have more similar environmental backgrounds than random pairs, affecting the
similarity of late-life biomarker measurements independently from (direct) genetic effects. This could explain the decreased
correlation for siblings as compared to random pairs. Yet, the remaining correlations are strong evidence that the predictors
capture some direct genetic effects on the biomarkers. The comprehensive figure for all biomarkers can be found in the
Supplementary Information.

The results from the sibling comparison can be seen in Figure 3. On average, there
is a ∼ 26% drop in correlation when comparing differences within random pairs and
differences within sibling pairs. The figure also shows that siblings that are separated by
more than 0.5, 1.0, and 1.5 times the standard deviation in phenotype are predicted with
increased correlation. The sibling comparisons for the other biomarkers can be found in
the Supplementary Information.

3.1.1. Genetic Architecture

Polygenic predictors have shown to usually use information spread over the entire
genome, even when enforcing sparsity [11,41,42,45]. In Figure 4, we illustrate the genetic
architectures behind three of the top performing (biomarker | SNPs) predictors with Man-
hattan plots of the effect sizes β and the variance accounted for in eq. (1), accumulated
across chromosomes 1-22 (the Supplementary Information contains figures for all biomark-
ers). It shows that both biomarkers with a few very strong loci and biomarkers with an
evenly distributed dependence can be predicted well. Let us make a few remarks on the
top 5 performing predictors (see Supplementary Information for the direct bilirubin and
platelet count plots):

• The lipoprotein A predictor is as expected totally dominated by the single locus on
chromosome 6, the gene carrying its name LPA.

• The total bilirubin predictor is very similar to the one for direct bilirubin. GWASes
have implicated many variants on all but chromosome 15 (according to a GWAS
Catalog[76] trait search) but most have a very minor impact on our predictor. For
example, [77] reported a locus on chromosome 19 but although there are groups of
moderately large β in this region, the entire chromosome 19 does not account for more
than ∼ 1% of total variance in our predictors.

• GWASes for direct bilirubin in the literature [77,78] are generally dominated by vari-
ants in gene UGT1A on chromosome 2. The LASSO predictors pick these up too. In
addition, there is another ∼ 17% variance accounted for by the locus at chromosome
12, also known[78]. Chromosomes 6 and 19 account for ∼ 1% variance each and
have no generally listed loci. The βi with the largest magnitude corresponds to SNP
rs908327 on chromosome 1. It has SNPs in linkage disequilibrium (LD) that have been
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linked to triglycerides[79] but not directly to bilirubin, to our knowledge. It has a very
small MAF, however, and does not account for much variance.

• The predictor for platelet count is very polygenic with the variance accounted for
almost evenly distributed across all 22 chromosomes. Chromosome 12 provides a
small deviation from this pattern, accounting for ∼ 14% of the variance, partly due to
a locus near one end.

• The predictor for HDL is also highly polygenic. Previous GWASes have recorded loci
at all but chromosome 13, which has no large magnitude βi but still accounts for ∼ 1%
of the total variance.
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Figure 4. Manhattan plots of LASSO β — superimposed with the aggregate single snp variance accounted for — show
both highly localized as well as widely polygenic architectures. The predictor for Lipoprotein A is almost entirely
determined by the well-known gene LPA in chromosome 6; the top 50 SNPs in this region account for ∼ 95% of the
aggregate single SNP variance. In contrast, HDL has an almost uniform distribution of the variance accounted for across all
the 22 autosomal chromosomes, despite some loci with high magnitude β-coefficients. (The difference being due to the
MAF in equation (1).) The most significant genetic loci are discussed further in the main text. The plot titles include the
achieved PGS-phenotype correlation and mean number of non-zero β ± the standard deviation for the 5 predictors trained
on each trait.

3.2. Predicting Disease Risk

The results for the disease risk predictors are divided into sections corresponding to
the (risk score | biomarkers) from approach 1 and (risk score | biomarkers | SNPs) from
approach 2, respectively.

3.2.1. Predicting case status from biomarkers

The performance of the (risk score | biomarkers) predictors was evaluated and are
reported as AUCs and odds ratio plots in Figure 5. With training optimized for European
ancestry, we regard the results for this ancestry as the main results and provide the per-
formance in other ancestries for reference. The results vary with the condition. Within
European ancestry, they range from an AUC of .53 (.60) for cancer for women (men) up to
∼ .95 for diabetes type 1 (both sexes). As a comparison, we report below on an ASCVD
predictor with an AUC of ∼ .76 which performs risk prediction as well as or better than
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Figure 5. The predictive power of (risk score | biomarkers) can single out high risk individuals with over 10x odds ratio
for many traits, and AUCs > 0.7 for most traits including tests across ancestry. Left: inclusive odds ratio (OR) plots for
diabetes type 1/2, obesity, kidney problem, liver problem, hypertension, CAD, and any cancer trained and validated on the
European population. Horizontal axis indicates individuals at that percentile and above in PRS. Marker is for predictors
trained and validated on men and marker 4 for predictors trained and validated on women. Error bars represent the
standard error of the mean value with a contribution coming from computing the OR and a contribution from including 5
predictors. Right: AUCs for (risk score | biomarkers) predictors separately trained on men and women. All predictors are
trained on the European population and then validated on European, South Asian, East Asian, and African populations.
The error bars indicate the standard deviations for 5 different predictors and do not reflect the significant uncertainties
arising from limited available statistics (sample sizes are listed in Supplementary Information).

the American College of Cardiology ASCVD Risk Estimator. We discuss this in detail
below in section 4. The odds ratio plots show a wide range of results that also vary with
condition. Figure 5 separates conditions into groups based on the odds ratios of the high
risk outliers. The strength of the diabetes predictors is probably due to their use of blood
biomarkers (e.g. HbA1c) which are standard diagnostic indicators for diabetes. That this
standard diagnostic indicator is so highly ranked lends confidence to the results of the
general methodology.

There are some differences in performance for men and women, most notably in
cancer (possibly due to sex specific cancer variants). The differences are condition specific
and viewed across all conditions the performance is similar. We delay a more detailed
analysis of these differences to future study. The reported performance variations across
the different ancestries are notably smaller and show less of a consistent pattern than what
is the usual case for prediction from genetic information; this is expected since predicting
from biomarkers stays on a higher biological level and does not involve issues such as LD
patterns and tag SNPs etc. Note, however, that these results are limited by the available
statistics, see Supplementary Information for the case/control numbers for each ancestry.

In Figure 6, we also include two examples of the LASSO coefficients for CAD and
type 2 diabetes. For CAD, we find mostly well-known biomarkers with the highest weight,
such as LDL, apolipoprotein B, total cholesterol and HDL. However, for women cystatin C
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Figure 6. Predictors for phenotypes
like CAD and type 2 diabetes from
biomarkers are dominated by a top
few inputs. Relative weights of each
biomarker within predictors for CAD
and type 2 diabetes. women and men
while error bars indicate ± standard de-
viations from the mean of five predictors.
The most impactful biomarkers are very
well-known but we highlight cystatin C
as surprisingly frequent among the mod-
erately strong coefficients. Correspond-
ing plots for all condition predictors are
shown in the Supplementary Informa-
tion.

appears at fourth place, which to our knowledge is not often used in this context. Cystatin
C also is the fifth most influential biomarker in the diabetes type 2 predictor for both sexes,
while these predictors are dominated by the standard biomarker glycated haemoglobin.
In fact, cystatin C is among the more important biomarkers for most of our predictors.
Coefficients for all conditions are listed in the Supplementary Information.

We investigated the presence of non-linear effects for (risk score | biomarkers) by
extending the input features with all possible quadratic interactions among the seven most
influential biomarkers for each condition. We saw no effect on the performance in either
direction and conclude that the effects of the biomarkers on all the listed conditions appear
to be linear to very good approximation.

3.2.2. Predicting case status from PGS of biomarkers

The concatenated predictors (risk score | biomarkers | SNPs) suffer a significant
drop in performance, as can be seen in Figure 7. The imprecise predictors (biomarker
| SNPs) introduce a lot of noise and, exacerbated further by the uncertainty in the (risk
score | biomarkers) predictors, the concatenation does in general not lead to meaningful
predictions. A notable exception are the diabetes predictors. The combination of reasonably
correlated PGS for the most important biomarkers and the exceptionally high AUCs for
these predictors lead to an average AUC of ∼ .63 for the type 2 diabetes (risk score |
biomarkers | SNPs) predictor. This is comparable to what we have achieved in the past
by training SNP-based LASSO directly on type 2 diabetes status[11]. Furthermore, the
two different types of predictors (risk score | biomarkers | SNPs) and (risk score | SNPs)
capture somewhat complementary information, as shown in Figure 8. The sum of the two
types of risk scores reaches an AUC of ∼ .67. It is unclear why the use of biomarkers as an
intermediate step adds additional information relative to training directly with SNPs as
features and case status as the phenotype. We leave this as an interesting topic for future
research.

The sibling evaluation of the disease risk predictors, described in section 2.2, is re-
ported in Figure 9. The fraction of sibling pairs with one case and one control called

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 5, 2021. ; https://doi.org/10.1101/2021.04.01.21254711doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.01.21254711
http://creativecommons.org/licenses/by/4.0/


12 of 20

CA
D

ca
nc

er

di
ab

et
es

 1

di
ab

et
es

 2

hy
pe

rt
en

si
on

ki
dn

ey
 

liv
er

 

ob
es

ity

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675 women
men
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drop significantly as compared
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Figure 8. Risk scores predicted
from SNPs (risk score | SNPs)
and from PGS of biomarkers
(risk score | biomarkers | SNPs)
do not always agree, here exem-
plified by type 2 diabetes data
for men. Both predictors predict
case status directly from SNPs
alone. Their outputs correlate ∼
0.37 with a linear regression coef-
ficient of∼ 0.39. In the noise, they
capture some complementary in-
formation: the sum of the risk
scores achieves an AUC of ∼ 0.67
while the SNP and PGS based
predictors individually achieve
AUCs of ∼ 0.63 and ∼ 0.65, re-
spectively.

correctly ranged from pure chance for cancer and liver problems, while reaching ∼ 0.9 for
diabetes type 1 and 2, using the (risk score | biomarkers) predictors. The accuracy dropped
significantly for the (risk score | biomarkers | SNPs) predictors, as expected; no predictor of
this type reached a correctly called fraction above 0.6.
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Figure 9. The fractions of sibling pairs with precisely one case and one control called correctly are
generally high for (risk score | biomarkers) but not much better than chance when predicting
from genotypes using (risk score | biomarkers | SNPs). The pairs were considered correctly called
if the PRS was higher for the affected sibling, without any restriction on the size of the separation.
Number of included sibling pairs differed for the two types of predictors and are listed at the top. The
error bars indicate ± the standard deviation for five different predictors for (risk score | biomarkers)
and for 5× 5 concatenation combinations of predictors in the (risk score | biomarkers | SNPs).

3.3. Comparison with ASCVD Risk Estimator

To illustrate the performance of the (risk score | biomarkers) predictor for ASCVD
and to compare it with the ASCVD Risk Estimator, we used the risk percentage output as
described in section 2.3. The ASCVD Risk Estimator was built using American cohorts of
separately European and African ancestry. Due to the similarities with the UKB population,
we deemed it could be applied somewhat fairly to the entire UKB, whereas we used the
withheld evaluation set of ∼ 40k of European ancestry for the (risk score | biomarkers)
predictor. The result is shown in Figure 10, in which the predicted risks were binned and
the actual disease prevalence within each bin was calculated, labeled "Actual risk". Both
predictors give very accurate risk estimates, with increasing uncertainty for individuals
with high predicted risk. However, although they do assign correct risk estimates for bins
taken as a whole, they do not always agree on who is at low versus high risk. The scatter
plot in Figure 10 shows their individual distributions and occasional disagreements. Their
partially complementary predictions are further highlighted in the risk heat map in Figure
10 and utilized below in a combined predictor.
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Figure 10. The ASCVD (risk score | biomarkers)
and the ASCVD Risk Estimator both make accu-
rate risk predictions but with partially complemen-
tary information. Left: Predicted risk by (risk score |
biomarkers), the ASCVD Risk Estimator and a (risk
score | SNPs) predictor were binned and compared
to the actual disease prevalence within each bin. The
gray 1:1 line indicates perfect prediction. Shaded re-
gions are 95% confidence intervals obtained from 100
fold bootstrap estimates of the prevalence in each bin.
The ASCVD Risk Estimator was applied to 340k UKB
samples while the others were applied to an eval-
uation set of 28k samples, all of European ancestry.
Upper right shows a scatter plot and distributions of
the risk predicted by (risk score | biomarkers) versus
the risk predicted by the ASCVD Risk Estimator for
the 28k Europeans in the evaluation set. The (risk
score | biomarkers) distribution has a longer tail of
high predicted risk, providing the tighter confidence
interval in this region. The left plot y-axis is the actual
prevalence within the horizontal and vertical cross-
sections, as illustrated with the shaded bands corre-
sponding to the hollow squares to the left. Notably,
both predictors perform well despite the differences
in assigned stratification. The hexagons are an over-
lay of the lower right heat map of actual risk within
each bin (numbers are bin sizes). Both high risk edges
have varying actual prevalence but with a very strong
enrichment when the two predictors agree.
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Figure 12. The risk prediction using both 45 biomarkers and all the ASCVD Risk Estimator input improves perfor-
mance as compared to Figure 10, in particular for high risk individuals, and is very good all the way up to risk levels
of 80%. The figure compares two predictors: a combined ASCVD predictor using all 45 biomarkers plus all the input
fields (age, sex, etc.) used by the ASCVD Risk Estimator, using UKB data only, and a predictor using the same input plus
the ASCVD Risk Estimator output, labeled UKB + ASCVD R.E. The latter does not perform notably better, although the
ASCVD Risk Estimator output “risk_10y” corresponds to the fourth strongest coefficient. Both perform better than both the
(risk score | biomarkers) and ASCVD Risk Estimator individually, confirming their complementary nature shown in the heat
map, Figure 10. The shaded areas in the left panel again indicate 95% confidence intervals obtained by 100 fold bootstrap
calculations of the actual prevalence in each risk bin. Figures with all coefficients can be found in the Supplementary
Information.

3.3.1. Combination of predictor from biomarkers and the ASCVD Risk Estimator

Since the ASCVD Risk Estimator and the (risk score | biomarkers) predictor use
different input and give complementary predictions, we combined them into a a very
reliable risk predictor, superseding both the former. The risk estimates are compared with
actual disease prevalence in Figure 12 for two versions of the combined predictor: (1)
a linear regression on the biomarkers and all of the input going into the ASCVD Risk
Estimator, and (2) a similar regression but also including the output of the ASCVD Risk
Estimator. Their top coefficients are listed in the same figure.

4. Discussion

UK Biobank data include about 500k individuals, for each of whom the following are
recorded: SNP genotype, biomarker (blood, urine) test results, and case status for most
common disease conditions. We have explored the pattern of correlations between these
three distinct data types using machine learning.

We have shown that SNPs can be used to predict quantitative values of biomarkers
by training new polygenic scores (PGS) for biomarker prediction. We note that the day
to day fluctuation of these biomarker levels suppresses the quality of prediction. A more
stable phenotype (e.g., average value of biomarker measured on multiple occasions) would
probably be even better predicted from SNPs alone.

As is typical for current genomic predictors, we find predictive power falls off sig-
nificantly with genetic distance from the (European) training population. This highlights
the importance of increasing ancestry diversity in genetic data collection. As genetic
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predictors begin to find clinical applications, lack of diversity can exacerbate healthcare
inequalities[48,80] (a larger list of associated ethical issues is highlighted in [44]).

We showed that biomarkers can be used as input to predict common disease risk.
Some of these (risk score | biomarkers) predictors (e.g., ASCVD, diabetes) are very strong
and may even surpass risk predictors in widespread clinical use. The combined predictor
trained using both biomarkers and ASCVD Risk Estimator inputs clearly outperforms the
latter in our comparison, at least for individuals at very high risk. It should be emphasized
here that we did not perform the careful evidence review nor the statistical analysis that
underlie the ASCVD Risk Estimator [23] and our comparison did not take into account the
time of diagnosis. As such, our ASCVD predictor presented here is merely a comparative
example and is not intended for clinical use in its current form. Yet, this naive approach
performs remarkably well, utilizing the large statistical power of the UKB.

In the case of liver and kidney disease, we are not aware of other quantitative risk
predictors that can be evaluated from biomarkers alone. Our results suggest that further
research in this direction is warranted.

We note that (risk score | biomarkers) prediction quality does not exhibit the pattern of
fall-off with genetic distance as previously found with genomic predictors3. For example,
CAD and ASCVD predictors work well in all major ancestry groups despite using a
European training sample. Further investigation is needed.

We studied concatenated predictor functions, which map SNPs to biomarkers to
risk. In general, there were significant declines in performance. The magnitudes of these
declines were perhaps expected for correlation chains of generic, high dimensional, vectors
with similar pairwise correlations. Of the (risk score | biomarkers | SNPs) predictors, only
the type 2 diabetes predictor performs well: AUC of ∼ .63. This is in fact comparable
to what we have achieved in the past by training SNP-based LASSO directly on type 2
diabetes status. Furthermore, the two different types of predictors (risk score | biomarkers
| SNPs) and (risk score | SNPs) capture somewhat complementary information, as shown
in Figure 8. The sum of the two types of risk scores reaches an AUC of ∼ .67. It is unclear
why the use of biomarkers as an intermediate step adds additional information relative to
training directly with SNPs as features and case status as the phenotype. We leave this as
an interesting topic for future research.
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