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ABSTRACT

Random-effect score test has become an important tool for studying the association be-

tween a set of genetic variants and a disease outcome. While a number of random-effect score

test approaches have been proposed in the literature, similar approaches for multinomial lo-

gistic regression have received less attention. In a recent effort to develop random-effect score

test for multinomial logistic regression, we made the observation that such a test is not invari-

ant to the choice of the reference level. This is intriguing because binary logistic regression

is well-known to possess the invariance property with respect to the reference level. Here,

we investigate why the multinomial logistic regression is not invariant to the reference level,

and derive analytic forms to study how the choice of the reference level influences the power.

Then we consider several potential procedures that are invariant to the reference level, and

compare their performance through numerical studies. Our work provides valuable insights

into the properties of multinomial logistic regression with respect to random-effect score test,

and adds a useful tool for studying the genetic heterogeneity of complex diseases.

Keywords: Genetic variants set; invariance property; multinomial logistic regression; random-

effect score test; score statistics; statistical power
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Random-effect based score test has been widely used to investigate the association between

a set of genetic variants and a health outcome/trait (Wu et al., 2011; Maity et al., 2012; Sun et

al., 2013). While various outcomes/traits have been considered for random-effect based score

test, the multinomial outcome has received little attention until recently. Multinomial outcome

analysis has important practical applications, such as the subtype analysis which concerns the

association between genetic variants and multiple subtypes of a disease (Eckel-Passow et al.,

2019). In multinomial analysis, one level is specified as the reference level, and the other levels

are compared to this level to examine the association between the outcome and genotypes. It

is generally anticipated that a statistical test should be invariant to the choice of the reference

level. However, in a recent study, we made the observation that such a test in general is not

invariant to the choice of the reference level (Liu et al., 2021). This is intriguing, because the

logistic regression model - a model often considered as a special case of the multinomial logistic

regression model - has long been observed to possess the invariance property. Moreover, the

lack of invariance property for multinomial logistic regression is highly undesirable in practice,

because practitioners may make potentially contradictory conclusions due to different choices

of reference levels. Here, we elaborate this issue and conduct investigations to understand the

fundamental cause of the problem. We first explain why the considered test is not invariant to

the choice of the reference level, and then derive the analytical form of the power function when

a given level is used as the reference. We next use simulations to compare several potential

ways to deal with the non-invariance issue, and then provide practical guidelines at the end

of the letter.

Consider a multinomial logistic regression model with J levels and n subjects. For j =

1, ..., J and i = 1, ..., n, let Yji = 1 if the ith person belongs to jth level, and Yji = 0 otherwise.

Let Xi be the adjusting covariates with the first element being the intercept and Gi be the

genotypes of p variants. Assume that the Jth level is the reference level, then the model can be

written as log{P (Yji = 1)/P (YJi = 1)} = αT
j Xi + βT

j Gi, for j = 1, . . . , J − 1, where αj and βj

are the regression parameters. Let P (Yji = 1) = µji for j = 1, . . . , J . Note that
∑J

j=1 Yji = 1
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and
∑J

j=1 µji = 1. Then under H0 : β1 = . . . = β(J−1) = 0, the log-likelihood can be written

as

l =
n∑

i=1

log[µY1i
1i µ

Y2i
2i . . . µ

YJi
Ji ]

=
n∑

i=1

[
Y1i log µ1i + . . .+ Y(J−1)i log µ(J−1)i +

(
1−

J−1∑
j=1

Yji

)
log

(
1−

J−1∑
j=1

µji

)]
,

(1)

where µ1i = µJi exp(αT
1Xi), . . . , µ(J−1)i = µJi exp(αT

J−1Xi). Let (α̂1, . . . , α̂(J−1)) be the max-

imal likelihood estimator of (α1, . . . , α(J−1)) under H0. Then, the estimated µji’s are µ̂1i =

exp(α̂T
1 Xi)

1+
PJ−1

j=1 exp(α̂T
j Xi)

, . . . , µ̂(J−1)i =
exp(α̂T

(J−1)
Xi)

1+
PJ−1

j=1 exp(α̂T
j Xi)

, µ̂Ji = 1

1+
PJ−1

j=1 exp(α̂T
j Xi)

. Let G = (G1, . . . , Gn)T,

Yj = (Yj1, . . . , Yjn)T and µ̂j = (µ̂j1, . . . , µ̂jn)T. Then, the half score of the random effects for

βj(j = 1, . . . , J − 1) can be derived as

Sj = GT(Yj − µ̂j).

Let IJ−1 = diag(1, . . . , 1)(J−1)×(J−1), X = (X1, . . . , Xn)T, X = IJ−1 ⊗ X, G = IJ−1 ⊗ G, and

V = GT (F̂ − F̂X(XF̂X)−1XT F̂ )G, where

F̂ =


F̂1,1 . . . F̂1,J−1

...
. . .

...

F̂J−1,1 . . . F̂J−1,J−1

 ,

and

F̂l,t =

diag(−µ̂l1µ̂t1, . . . ,−µ̂lnµ̂tn) if l 6= t,

diag(µ̂l1(1− µ̂l1), . . . , µ̂ln(1− µ̂ln)) if l = t.

Then the score statistic QJ =
∑J−1

j=1 S
T
j Sj ∼

∑
λjχ

2
1, where λj’s are eigenvalues of V . Let the

p-value of this score statistic be PJ .

Suppose that we now wish to consider a different level as the reference level. Not to lose

generality, let us consider the first level as the reference level. The model can be written as

log{P (Yji = 1)/P (Y1i = 1)} = γT
j′Xi + ξT

j′Gi, for j = J, 2, . . . , J − 1 and j′ = 1, 2, . . . , J − 1,

where γj′ and ξj′ are the regression parameters. Then under the null hypothesis that ξ1 =
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. . . = ξ(J−1) = 0, the log-likelihood has a similar form as equation (1) and can be written as

n∑
i=1

[
YJi log µJi + Y2i log µ2i + . . .+ Y(J−1)i log µ(J−1)i +

(
1−

J∑
j=2

Yji

)
log

(
1−

J∑
j=2

µji

)]
,

(2)

where µJi = µ1i exp(γT
1 Xi), . . . , µ(J−1)i = µ1i exp(γT

(J−1)Xi). Since the likelihood in (2) is equal

to that in (1), one can show that the parameter estimators

γ̂1 = −α̂1, γ̂2 = α̂2 − α̂1, . . . , γ̂J−1 = α̂J−1 − α̂1.

Therefore µ̂ji based on equation (2) is the same as that based on equation (1). Then the half

score of the random effects for ξj(j = 1, . . . , J − 1) can be written as

Rj = GT(Yj − µ̂j).

It follows that

R1 = GT (YJ − µ̂J), R2 = S2, . . . , RJ−1 = SJ−1.

Then the score statistic Q1 =
∑J−1

j=1 R
T
j Rj ∼

∑
ψjχ

2
1, where ψj’s are eigenvalues of V ∗, where

V ∗ is the counterpart of V . Let the p-value of this score statistic be P1. In a similar manner,

one can obtain Qj and Pj when jth level is chosen as the reference level.

Recall that S1, . . . , SJ−1 are the scores when Jth level is set as the reference, while

R1, . . . , RJ−1 are the scores when the first level is set as the reference. The above deriva-

tion shows that there is a close relationship between S1, . . . , SJ−1 and R1, . . . , RJ−1. Indeed,

using these results, we can further derive that

R1 = GT(YJ−µ̂J) = GT

[(
1−

J−1∑
j=1

Yj

)
−

(
1−

J−1∑
j=1

µ̂j

)]
= GT

[
−

J−1∑
j=1

(Yj − µ̂j)

]
= −

J−1∑
j=1

Sj.

Let S =


S1

...

SJ−1

 , R =


R1

...

RJ−1

, and A =


−Ip −Ip . . . −Ip

0 Ip . . . 0
...

...
. . .

...

0 0 . . . Ip

 be a (J − 1)p× (J − 1)p

matrix, then it follows that R = AS and the covariance matrix of R, Cov(R) = ACov(S)AT.

Therefore we obtain the key results that RTR = STATAS and V ∗ = AV AT.
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The above results indicate that, when a different level is chosen as the reference level,

the random-effect score statistics (Qj and Qj′) will have different values, and the covariance

matrices for the scores will also differ. Thus, Pj in general is not equal to Pj′ . In other words,

the p-values of the described statistics are not invariant to the choice of the reference level.

Then an interesting question arises, that is, why does the logistic regression model, which is a

special case of the multinomial logistic regression model, indeed have the invariance property?

It turns out that for J = 2, one has A = −Ip and R = AS = −S. Then it follows that

RTR = STS and V ∗ = V . Thus, when J = 2, i.e., in the case of logistic regression, the

p-value remains the same regardless of which level is chosen as the reference level.

Since the p-value varies with the choice of reference level, we investigate how this choice

influences the statistical power. For ease of presentation, let us consider J = 3, i.e., three

levels for the outcome. Using the relationship between R and S, we have

R =

R1

R2

 =

−Ip −Ip

0 Ip

S1

S2

 .

To facilitate presentation, define SJ = GT(YJ−µ̂J), then SJ = R1 = −
∑J−1

j=1 Sj. Subsequently,

we have that

• the score statistic using Y3 as the reference is Q3 = ST
1 S1 + ST

2 S2;

• the score statistic using Y1 as the reference is Q1 = ST
2 S2 + (S1 + S2)

T (S1 + S2) =

ST
2 S2 + ST

3 S3;

• the score statistic using Y2 as the reference is Q2 = ST
1 S1 + (S1 + S2)

T (S1 + S2) =

ST
1 S1 + ST

3 S3.

To study the asymptotical distribution of the test statistic Qj under the alternative hy-

pothesis, let us consider a special case: X = 1n ≡ (1, . . . , 1)T . Then it can be shown that

µ̂1i = Ȳ1 and µ̂2i = Ȳ2. Thus

ST
1 S1 = Y T

1 HGG
THY1,

6
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ST
2 S2 = Y T

2 HGG
THY2,

whereH = I− 1
n
1n1T

n . It is known that asymptoticallyGTHY1 ∼ N(GTHµ1,∆1 = GTHΣ1HG),

where Σ1 = diag(µ1(1− µ1)). It follows that ST
1 S1 asymptotically follows a mixed noncentral

chi-squared distribution:

ST
1 S1 ∼

p∑
r=1

λ1rχ
2
1

(
(u1r∆

−1/2
1 GTHµ1)

2
)
,

where λ1r’s are the eigenvalues of ∆1, (u1r∆
−1/2
1 GTHµ1)

2 is the noncentral parameter, and

u1r’s are the corresponding eigenvectors of ∆1. Similarly, let Σ2 = diag(µ2(1 − µ2)) and

∆2 = GTHΣ2HG, then

ST
2 S2 ∼

p∑
r=1

λ2rχ
2
1

(
(u2r∆

−1/2
2 GTHµ2)

2
)

asymptotically, where λ2r’s are the eigenvalues of ∆2, and u2r’s are the corresponding eigen-

vectors of ∆2. To find the distribution for (ST
1 S1 +ST

2 S2), let µ12 = (GTHµ1, G
THµ2)

T ,Σ12 =

Cov(Y1, Y2) = diag(−µ1µ2), and

∆12 =

GTHΣ1HG GTHΣ12HG

GTHΣ12HG GTHΣ2HG

 .

Then one can derive that GHY1

GHY2

 ∼ N (µ12,∆12)

asymptotically. Therefore, Q3 = (ST
1 S1+S

T
2 S2) ∼

∑2p
r=1 λrχ

2
1

(
(ur∆

−1/2
12 µ12)

2
)

asymptotically,

where λr’s are eigenvalues of ∆12, and ur’s are the corresponding eigenvectors of ∆12. In a

similar manner, we can derive the asymptotical distributions of Q1 and Q2, respectively.

Recall that the power function is Ψj(Qj ≥ cj), where Ψj is the cumulative distribution

function of Qj under H1, and cj is the critical value determined by the distribution of Qj

under H0. It is tempting to directly compare Qj’s power functions using the above derived

asymptotical distributions, but it is challenging to do so. This is because when the reference

level is replaced, the Qj’s asymptotical distributions under both the null and the alternative

7
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hypotheses will change, making it extremely difficult to compare the power across difference

reference levels. On the other hand, when the J subtypes have similar proportions among the n

subjects and there is no adjusting covariate, one can show that the asymptotical distributions

of the Qj’s are approximately equal to each other under the null hypothesis. Then it follows

that the larger the statistic Qj is, the more likely one will reject the H0. Recall that Qj =∑J
l=1 S

T
l Sl − ST

j Sj. This suggests that, to maximize the power, the level with the smallest

ST
j Sj should be chosen as the reference. Our simulation studies confirmed this derivation (see

Supplementary Material). The size of ST
j Sj has practical interpretations. Recall that Sj is the

inner product between (Yj − µ̂j) and G. Thus, ST
j Sj can be roughly seen as the correlation

between Yj and genotype. This suggests the level that has the weakest correlation with the

genotype should be chosen as the reference level, which well matches intuitions.

The above analysis provides theoretical insights into the power of the random effects score

test. However, in practice, it is generally unknown which ST
j Sj is the smallest among the J

levels. This can be seen from the following. Taking S1 as an example, we have

E(S1|G,X) = E(GT (I − 1

n
1n1T

n )Y1|G,X) = GT (I − 1

n
1n1T

n )P (Y1 = 1|G,X),

where P (Y1 = 1|G,X) is a n-length vector with each element being

P (Y1i = 1|G,X) =
exp(Xiα1 +Giβ1)

1 +
∑2

j′=1 exp(Xiαj′ +Giβj′)
.

Clearly, E(S1|G,X) is a quantity related to G,X, α1, α2, β1, β2. Since α1, α2, β1, β2 are un-

known parameters, it is difficult to evaluate the size of E(ST
j Sj|G,X) accordingly. Hence,

practical data analysis will need statistical tests that are invariant to the choice of the refer-

ence level. In the following, we consider three procedures to tackle this issue, and compare

the performance of the three methods through simulation studies.

I. A Bonferroni procedure

We use each of the J levels as the reference level, and based on Qj’s, obtain the correspond-

ing p-values P1, . . . , PJ . Then, use minj=1,...,J{Pj}×J as the final p-value. The multiplication

of J is a Bonferroni correction to ensure that correct type I error is maintained.
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II. A Cauchy procedure

We propose to adapt to a Cauchy procedure (Liu and Xie, 2020) to combine the J p-values,

P1, . . . , PJ . Specifically, let T0 =
∑J

j=1 cj tan{(0.5 − Pj)}, where
∑J

j=1 cj = 1 and cj is the

pre-specified weight to accommodate prior knowledge on jth level. When there is no prior

knowledge on the J levels, all cj = 1/J . Then under the null hypothesis, the p-value of T0

can be approximated by (1/2− (arctanT0)/π) based on the Cauchy distribution.

III. An integrative procedure

Consider a statistic L = (WDS)T (WDS), where W = diag(w1, . . . , wJ) ⊗ Ip, D =

(IJ−1,−1J−1)
T ⊗ Ip, and wj is a pre-specified weight for jth level. When wj’s are all equal, this

statistic reduces to a statistic in Liu et al. (2021). Using the relationship that SJ = −
∑J−1

j=1 Sj,

we can show that L =
∑J

j=1wjS
T
j Sj, which is invariant to the choice of the reference level. Al-

ternatively, L can be written as 1
J−1

∑J
j=1

∑
j′ 6=j wj′S

T
j′Sj′ , where

∑
j′ 6=j wj′S

T
j′Sj′ is a weighted

version of Qj. Thus, L can be seen as an integrative statistic that consists of all the Qj’s. L

asymptotically follows
∑p(J−1)

r=1 λrχ
2
1r, where λr are the eigen values of WDVDTWT, and and

χ2
1r(r = 1, . . . , p(J − 1)) are independent χ2

1 random variables.

We conducted simulation studies to examine the type I errors of these procedures. We

considered three levels for the response variable, and generated an adjusting covariate from

N(0, 1). The regression coefficients for the intercept and the adjusting covariate were set as

γ1 = (0.3, 1.2)T and γ2 = (0.3, 0.9)T. Next we simulated a p-vector of mutations with each

element generated from a Bernoulli(0.05). To examine the type I error, we set ξj = 000 for

j = 1, 2 and considered n ∈ {300, 500, 1000} for p = 10, 15. We evaluated the type I error at

significance level α = 10−3. A total of 106 simulated datasets were generated for each setting.

As shown in Table 1, all considered procedures are able to control the type I error. Next, we

examined the power of these procedures. We considered two scenarios:

(I) 60% of ξjs’s were generated from Uniform(0.3, 1.5), and 40% of ξjs’s were

generated from Uniform(-1.5, -0.3).

(II) 60% of ξjs’s were generated from N(0, 1.42), and 40% of ξjs’s were set to 0.

9
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Table 1: Empirical type I error (×10−3)

Method
p = 10 p = 15

n =300 n =500 n =1000 n =300 n =500 n =1000

Bonf. 0.50 0.61 0.75 0.42 0.64 0.70

Cauchy 0.61 0.74 0.92 0.54 0.75 0.85

Integrative 0.61 0.74 0.85 0.55 0.73 0.82

ξjs’s were fixed over all replicates. Each scenario was replicated 104 times. The power for

scenarios I and II is summarized in Tables 2 and 3. The Bonferroni procedure has the lowest

power, due to its conservativeness in controlling type I error. The integrative procedure

properly accounts for the correlations among the J statistics, and tends to have the best

performance among the considered procedures. Thus, we recommend the integrative procedure

for practical data analysis.

Table 2: Power for scenario I

Method
p = 10 p = 15

n =250 n =300 n =250 n =300

Bonf. 0.45 0.64 0.86 0.96

Cauchy 0.49 0.68 0.89 0.97

Integrative 0.55 0.74 0.90 0.98

Table 3: Power for scenario II

Method
p = 10 p = 15

n =250 n =300 n =250 n =300

Bonf. 0.55 0.76 0.86 0.96

Cauchy 0.60 0.80 0.89 0.97

Integrative 0.66 0.84 0.93 0.98

In summary, we have shown that the random-effect score test for multinomial logistic

regression is not invariant to the choice of the reference level. Our results provide analytical

10
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explanation to this issue, and simulation studies confirmed that the choice of the reference

level influences the statistical power. We considered several procedures that can yield p-values

(or statistics) that are not dependent upon the reference level, and the integrative procedure

appears to have a more favorable performance. Overall, our study provides new insights into

the random-effect score test for multinomial logistic regression, and will aid in the ongoing

study of genetic heterogeneity for complex diseases.
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