- 1 Article Summary Line: NCDs and lower income are significantly associated with higher
- 2 chances of infection and hospitalization due to COVID-19
- 3 **Running Title:** Chronic disease and COVID-19 hospitalization
- 4 Keywords: COVID-19; Noncommunicable Diseases; Comorbidities; Survey

5 Title: COVID-19 infection and hospitalization according to the burden of chronic

- 6 noncommunicable diseases in Brazil
- 7 Fabiana R. Ferraz, Wolney L. Conde, Isabela Venancio, Larrisa Lopes and Catarina M.
- 8 Azeredo.
- 9 Affiliations:
- 10 Universidade de São Paulo, São Paulo, São Paulo, Brazil (F. Ferraz, W. Conde, I. Venancio, L.
 11 Lopes)
- 12 Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil (C. Azeredo)

13 Abstract

Chronic diseases, worse socioeconomic conditions and old age can increase infection and 14 hospitalization rate due to Coronavirus disease (COVID-19). We assessed the association between 15 the burden of NCDs and the occurrence of infections and hospitalizations of COVID-19 in Brazil 16 in a large COVID-19 national survey data. We analyzed only data collected between July and 17 November 2020 (n = 1.071.782). The frequencies of positive COVID-19 diagnosis and NCD 18 burden were estimated according to age, sex, socioeconomic strata and skin color categories. We 19 20 estimated hazard ratios and 95% confidence intervals using Cox regression models. There is a nonlinear dose-response inverse association between *per capita* income and the rates of infection and 21

22	hospitalization due to COVID-19. The presence of NCDs was associated with a higher incidence
23	of COVID-19 infection (HR _{INCD} = 1.34; 95% CI: 1.26; 1.43; HR _{2 or more NCD} = 1.54 95% CI: 1.39; 1.71)
24	and incidence of hospitalization (HR _{INCD} = $3.08\ 95\%$ CI: 2.26 ; 4.19 ; HR _{207 more NCD} = $6.81\ 95\%$ CI: 4.88 ;
25	9.49). The difference between the risks of infection or hospitalization of COVID-19 attributable to
26	the burden of NCDs is non-linearly associated with the income.
27	Text
28	Worldwide, over 93 million cases and over 2 million deaths have been reported since the
29	start of the Coronavirus disease (COVID-19) pandemic by the World Health Organization
30	(WHO). Brazil has reported the highest number of new cases, as of 16 March 2021 (1).
31	According to the WHO, 15% of COVID-19 cases are likely to develop into
32	hospitalizations and 5% require treatment in intensive care units (ICU) (2). Factors such as
33	comorbidities, the presence of chronic diseases, worse socioeconomic conditions and old age can
34	increase the risk of hospitalization (3). According to data from the Pesquisa Nacional de Saúde
35	(National Health Survey) (PNS 2019), approximately 52% of Brazilian adults have at least one
36	chronic non-communicable disease (NCD). Respiratory and cardiac diseases, diabetes and
37	hypertension are the comorbidities leading towards the worst prognosis for COVID-19 (4,5).
38	In Brazil, considering the prevalence of NCDs, nationwide estimates for adults at risk of
39	severe COVID-19 range from 34.0% (53 million) to 54.5% (86 million) (6). To date we have no
40	evidence that the presence of comorbidities increases the risk of infection or if there is a gradient
41	between the number of comorbidities and the risk of hospitalizations due to COVID-19 (7).
42	Therefore, the aim of this study was to analyze the association between the burden of NCDs and
43	the occurrence of infections and hospitalizations of COVID-19.

44

45 METHODS

46 Data

47	We used data from PNAD COVID-19 (Portuguese acronym for National Household
48	Sample Survey COVID-19), conducted by the Instituto Brasileiro de Geografia e Estatística
49	(IBGE) and the Brazilian Ministry of Health. PNAD COVID-19 survey followed,
50	through monthly telephone calls, approximately 193,000 households between May and
51	November 2020. The sample was selected from an elaborated registry of probabilistic matching
52	between addresses of households contained in the Brazilian National Household Sample Survey
53	(PNAD 2019) and addresses of six databases with telephone information. The procedures,
54	databases used, questionnaires and sample plan of the research are described in technical
55	documents from IBGE (8). For the present study, we analyzed only data from individuals
56	between 20 and 59 years of age, collected between July and November 2020 (n=2.650.459).
57	PNAD COVID-19 collected information about exams, results of COVID-19, income and
58	sociodemographic characteristics of residents. It was also asked about previous diagnosis of
59	diabetes mellitus, high blood pressure, chronic respiratory diseases (asthma, bronchitis,
60	emphysema and others), heart diseases (infarction, angina, heart failure, arrhythmia), depression
61	and cancer. Three questions related to the tested specimen were also used to diagnose COVID-19
62	infection, without discriminating the test performed (molecular biology, antigen or antibody).
63	The oronasal swab test uses the RT-PCR technique to identify viral RNA, usually up to the 8th
64	day of infection (9,10). In the venous blood test it is possible to detect antigen (current infection)
65	or antibody (current or past infection), and it is usually applied from the 8th day after the
66	beginning of the symptoms . The capillary blood test, also available for diagnosis, allows
67	verification of results after 15 minutes of the exam (11). We used three diagnostic outcomes:

positive diagnosis in oronasal swab, positive diagnosis in venous blood, and positive diagnosis in
capillary blood.

70 Sociodemographic information was also analyzed, such as sex (male and female), age (in years), skin color ("white"/"yellow" and "black"/"brown"/"indigenous"), information on per 71 capita household income (PCI), which was calculated by the monthly average of individual 72 73 incomes divided by the total number of individuals in the household and then divided into fifths of the distribution; schooling, complete or not, which was grouped into the following levels: no 74 75 schooling, elementary school, high school, higher education and post graduation; geographic 76 region and area of residence (urban or rural). Predicted values adjusted for NCD, age, sex, education, income and skin color were created for two probabilistic outcomes, diagnosis and 77 hospitalization by COVID-19. 78 **Statistical Analysis** 79 For the present analysis, we carried out the following preparation: a) selection of 80 81 individuals between 20 and 59 years old; b) we consider any positive result reported in any of the 3 diagnostic tests asked; c) noncommunicable Diseases (NCD) diagnoses were grouped into 0, 1, 82 83 2 or more diseases to represent the NCD burden; d) we selected all cases with complete response 84 for variables under analysis (n = 1,071,782). The frequencies of positive COVID-19 diagnosis and NCD burden were estimated according to 85 86 age, geographic and socioeconomic strata and skin color categories. We calculated hazard ratios 87 (HR) and 95% confidence intervals (CI) for the association between NCD and the risk of

88 infection and hospitalization for COVID-19 using Cox regression models via maximum

89 likelihood to account for repeated measures, as each person could contribute with one or more

90 interviews to the study. Findings at p < 0.05 were considered statistically significant. Initially,

91	we assessed the number of chronic noncommunicable diseases in separate models without
92	including any covariates Secondly, we included a priori selected demographic variables to
93	assess potential confounding: sex, age, race/skin color, education, household income and
94	rural/urban residency. The adjusted prevalence of COVID-19 was predicted according to NCD
95	burden and stratified by per capita household income. We estimated p-trends for the dose-
96	response relationship between NCD and COVID infection and hospitalization.
97	Finally, predicted values from the model were used to estimate COVID-19 latent frequency
98	according to the burden of NCD as grading risk to the infection or ICU use. All analyses were
99	performed using sampling weights in Stata® 15.1.
100	RESULTS
101	The prevalence of COVID-19 was higher among individuals aged 30 to 50 years (58%),

while the prevalence of hospitalizations was higher among individuals aged 40 or over more
(59%). Around 60% of the people in the age group of 40 years or over had NCDs. The
prevalence of 2 or more NCDs among the richest was 1.3 times the prevalence among the
poorest, however, the prevalence of hospitalizations was 1.2 times more frequent in the poorest
group.

The COVID-19 infection rate as a function of the NCD burden was not statistically associated with sex. Table 2 shows the association between NCD burden and outcomes of COVID-19. The presence of NCDs was associated with a higher incidence of COVID-19 infection for 1 NCD (HR = 1.34; 95% CI: 1.26; 1.43) and for 2 or more (HR = 1.54 95% CI: 1.39; 1.71). Also, the presence of NCDs was associated with higher incidence of hospitalization for 1 NCD (HR = 3.08 95% CI: 2.26; 4.19) and for two or more NCDs (HR = 6.81 95% CI: 4.88; 9.49).

The stratification of the association between NCD and COVID-19 according to family income per capita is shown in Figure 1. The risk of infection by COVID-19 according to NCD tends to decrease as per capita income increases. This trend was not linear, since in the richest the risk of infection fluctuates slightly in a positive way. The risk of hospitalization for COVID-19 among NCD patients shows an inverse trend with per capita income, although this association is tenuous.

In Figure 1, we observed that the risk of hospitalization among patients without NCD did not vary according to income strata, even after adjusting for sex, age, education, income and skin color. Among patients with NCDs infected with COVID-19, the chance of hospitalization was higher among the richest than the poorest.

124 **DISCUSSION**

Our results suggest that: a) patients with NCDs are at high risk for infection and 125 hospitalization with the Sars-CoV-2 virus. The risk of hospitalization is approximately twice the 126 127 risk of infection; b) there is a non-linear dose-response type association between the risks of infection and hospitalization due to COVID-19 and per capita income; c) the difference between 128 the risks of infection or hospitalization of COVID-19 due to the burden of NCDs is non-linearly 129 130 associated with the per capita income. Worldwide, approximately one in three adults suffers from multiple chronic diseases 131 132 (12). In Brazil, approximately 52% of the adult population has at least one chronic disease, 133 which is responsible for 72% of the causes of death in the country (6,13). 134 The COVID-19 pandemic highlights the role of NCDs as risk factors for infection,

hospitalization and death. Global data show that 1.7 billion people, 22% of the world population,

have at least one underlying condition that puts them at increased risk for COVID-19 infection

(14). In Brazil, from one third (53 million) to half (86 million) of adults have at least one riskfactor for COVID-19 (7).

139	The association between NCDs, diagnosis and hospitalization for COVID-19, observed in
140	our study, is in line with results from other countries (15–19). A meta-analysis carried out with
141	Chinese data showed that the most prevalent comorbidities among patients with COVID-19 were
142	hypertension (21%), diabetes (10%), cardiovascular disease (8%) and respiratory system disease
143	(2%). The combined OR for presenting a severe case among those with hypertension,
144	respiratory system disease and cardiovascular disease was 2.36 (95% CI: 1.46; 3.83), 2.46 (95%
145	CI: 1.76; 3.44) and 3.42 (95% CI: 1.88; 6.22) respectively (15). Analyzes based on American
146	clinical data indicate that the majority of outpatients with COVID-19 studied were African
147	American (72%), and had at least one comorbidity (94%), including hypertension (64%), chronic
148	kidney disease (39 %) and diabetes (38%). Severe obesity (OR = 2.0 ; 95% CI: 1.4; 3.6) and
149	having chronic kidney disease (OR = 2.0 ; 95% CI: 1.3; 3.3) were the strongest predictors for
150	admission to the intensive care unit (16).
151	Increasing evidence suggests that NCDs are determinants of the prognosis for infectious
152	diseases (20). The gradient between the number of NCDs and the evolution to a bad prognosis of
153	COVID-19, as found in the present study, brings up new challenges. The policy makers need to
154	take into account the management of actions that strengthen equity attention to the social and
155	biologically vulnerable population when elaborating strategies for health care (19).
156	Our results indicate that poorer individuals are more vulnerable to contagion and
157	hospitalization due to COVID-19 in Brazil. Previous population epidemiological data (H1N1 and
158	SARS) demonstrates the impact of social inequality as determinants for higher contagion and
159	severity of these diseases (21–23). Factors such as lower wages, quality of public transport,

unsanitary housing conditions, inefficient health care and difficulty in maintaining social
isolation without significant loss of income corroborate the increased vulnerability of this
population. (24,25). With regard to inequality in access to health and the needs to cope with the
pandemic of COVID-19, there is an increase in the demand for health care and intensive care
beds (ICU) with a range of attention to the population with dependence on public health care
(3,26).

In Brazil, 71.5% of the population exclusively uses public health services, showing a direct relationship with income ranges *per capita* (27). The recommendation of WHO about the adequate ratio of Intensive Care (ICU) beds is 1 to 3 beds for every 10,000 inhabitants. In Brazil, the SUS (portuguese acronym for National Public Health System) has an average of 1.4 beds for every 10,000 inhabitants against 4.9 in private health service (28).

Our findings revealed that among NCDs patients infected with COVID-19, the chance of hospitalization was higher for the richest relative to the poorest. Income determinants seem to be associated with less access to health and intensive treatment of the disease. In our interpretation, poorer individuals, even though they are more vulnerable to the contagion of the disease, are less likely to obtain access to treatment and hospitalization for COVID-19.

As a limitation of the study, the classic limitations of observational studies can be cited, such as: self-report of information and lack of specificity and limited amount of information on clinical diagnoses. Thus, our analyzes were conditioned to the volume and type of information available in the database. As strengths of the study, longitudinal monitoring and the national representativeness of the home-based sample can be pointed out, with a high response rate. In addition, the sample size allows for consistent stratifications throughout the analysis (29).

182	These findings and methods of estimating the impact of vulnerable groups on the
183	progression of the pandemic may be useful for planning and managing prevention and treatment
184	strategies in Brazil. A better management and direction of policies that aim to obey the principle
185	of universality of rights in health care, covering the population in a state of biological and social
186	vulnerability is necessary. It is imperative to protect groups at greatest risk, such as people with
187	chronic diseases and comorbidities in scenarios of broad measures of social isolation,
188	particularly while the capacity for immunization is limited.
189	CONCLUSION
190	The burden of NCDs increases the risk of infection and hospitalization by COVID-19.
191	This is troublesome in a context of increasing social and health inequalities as inBrazil.
192	This situation, associated with the prospects caused by COVID-19, projects a scenario of
193	increased demand for clinical care in the coming years.
194	
195	Author Bio
196	Researcher and member of the Laboratory of Nutritional Assessment of Populations of
197	the University of São Paulo. Currently study epidemiological and nutritional developments in
198	populations.
199	References
200	1. WHO. Weekly epidemiological update - 19 January 2021 [Internet]. 2021 Jan [cited
201	February 18, 2021]. Available in: https://www.who.int/publications/m/item/weekly-
202	epidemiological-update19-january-2021.

203	2.	OMS. Oxygen sources and distribution for COVID-19 treatment centres [Internet]. 2020
204		[cited February 19, 2021]. Avaiable in: https://www.who.int/publications-detail-
205		redirect/oxygen-sources-and-distribution-for-covid-19-treatment-centres
206	3.	Noronha KVM de S, Guedes GR, Turra CM, Andrade MV, Botega L, Nogueira D, et al.
207		Pandemia por COVID-19 no Brasil: análise da demanda e da oferta de leitos hospitalares
208		e equipamentos de ventilação assistida segundo diferentes cenários. Cad Saúde Pública.
209		2020;36:e00115320.
210	4.	Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus
211		Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases
212		From the Chinese Center for Disease Control and Prevention. JAMA. 7 de abril de
213		2020;323(13):1239–42.
214	5.	Malta DC, de Moura L. Probabilidade de morte prematura por doenças crônicas não
215		transmissíveis, Brasil e regiões, projeções para 2025. 2019;13.
216	6.	Instituto Brasileiro de Geografi a e Estatística. Pesquisa Nacional de Saúde 2019:
217		Percepção do estado de saúde, estilos de vida, doenças crônicas e saúde bucal [Internet].
218		Rio de Janeiro, RJ - Brasil; 2019 [citado 18 de fevereiro de 2021]. 113 p.
219	7.	Rezende LFM, Thome B, Schveitzer MC, Souza-Júnior PRB de, Szwarcwald CL. Adults
220		at high-risk of severe coronavirus disease-2019 (Covid-19) in Brazil. Rev Saúde Pública.
221		2020;54:50–50.
222	8.	IBGE. PNAD COVID19 – Plano amostral e ponderação. Rio de Janeiro: IBGE; 2020. 7
223		p.
224	9.	Caliendo A, Hanson K. COVID-19: Diagnosis [Internet]. UpToDate. 2021 [citado 16 de
225		março de 2021]. Disponível em: https://www.uptodate.com/contents/covid-19-diagnosis

226	10. Ministério da Saúde. Sobre a doença [Internet]. 2020 [citado 16 de março de 2021].
227	Disponível em: https://coronavirus.saude.gov.br/sobre-a-doenca
228	11. FDA U.S. Food & Drugs. Coronavirus Testing Basics. Coronavirus Test Basics. maio de
229	2020;3.
230	12. Roth GA, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. Global, regional,
231	and national age-sex-specific mortality for 282 causes of death in 195 countries and
232	territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study
233	2017. The Lancet. 10 de novembro de 2018;392(10159):1736-88.
234	13. Malta DC, Moura L de, Prado RR do, Escalante JC, Schmidt MI, Duncan BB. Chronic
235	non-communicable disease mortality in Brazil and its regions, 2000-2011. Epidemiol E
236	Serviços Saúde. dezembro de 2014;23(4):599-608.
237	14. Clark A, Jit M, Warren-Gash C, Guthrie B, Wang HHX, Mercer SW, et al. Global,
238	regional, and national estimates of the population at increased risk of severe COVID-19
239	due to underlying health conditions in 2020: a modelling study. Lancet Glob Health. 1° de
240	agosto de 2020;8(8):e1003–17.
241	15. Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities and
242	its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis.
243	Int J Infect Dis IJID Off Publ Int Soc Infect Dis. maio de 2020;94:91–5.
244	16. Suleyman G, Fadel RA, Malette KM, Hammond C, Abdulla H, Entz A, et al. Clinical
245	Characteristics and Morbidity Associated With Coronavirus Disease 2019 in a Series of
246	Patients in Metropolitan Detroit. JAMA Netw Open [Internet]. 16 de junho de 2020
247	[citado 22 de março de 2021];3(6). Disponível em:
248	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7298606/

249	17. Xiong S, Liu L, Lin F, Shi J, Han L, Liu H, et al. Clinical characteristics of 116
250	hospitalized patients with COVID-19 in Wuhan, China: a single-centered, retrospective,
251	observational study. BMC Infect Dis [Internet]. 22 de outubro de 2020 [citado 22 de
252	março de 2021];20. Disponível em:
253	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7578439/
254	18. Albashir AAD. The potential impacts of obesity on COVID-19. Clin Med. julho de
255	2020;20(4):e109–13.
256	19. Azarpazhooh MR, Morovatdar N, Avan A, Phan TG, Divani AA, Yassi N, et al. COVID-
257	19 Pandemic and Burden of Non-Communicable Diseases: An Ecological Study on Data
258	of 185 Countries. J Stroke Cerebrovasc Dis. setembro de 2020;29(9):105089.
259	20. Ogoina D, Onyemelukwe GC. The role of infections in the emergence of non-
260	communicable diseases (NCDs): Compelling needs for novel strategies in the developing
261	world. J Infect Public Health. 2009;2(1):14–29.
262	21. Tricco AC, Lillie E, Soobiah C, Perrier L, Straus SE. Impact of H1N1 on Socially
263	Disadvantaged Populations: Systematic Review. PLoS ONE [Internet]. 25 de junho de
264	2012 [citado 23 de março de 2021];7(6). Disponível em:
265	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3382581/
266	22. Cordoba E, Aiello AE. Social Determinants of Influenza Illness and Outbreaks in the
267	United States. N C Med J. outubro de 2016;77(5):341–5.
268	23. Bucchianeri GW. Is SARS a Poor Man's Disease? Socioeconomic Status and Risk
269	Factors for SARS Transmission. Forum Health Econ Policy [Internet]. 22 de julho de
270	2010 [citado 23 de março de 2021];13(2). Disponível em:
271	https://www.degruyter.com/document/doi/10.2202/1558-9544.1209/html

272	24. Carvalho I	. Nassif Pires L	. de Lima Xavier L	. COVID-19 e D	Desigualdade no Brasil.
	= Cui / unito i			$, \circ \circ \cdot \mathbf{n} \cdot$	bigaalaaae no brasin

273 2020.

- 274 25. Michigan Department of Health and Human Services (MDHHS). COVID-19 response
- and mitigation strategies for racial and ethnic populations and marginalized communities
- 276 [Internet]. 2020 [citado 23 de março de 2021]. Disponível em:
- 277 https://www.michigan.gov/documents/mdhhs/OEMH_COVID-
- 278
 19_Response_Mitigation_Strategies_Targeting_Racial_Ethnic_Populations_Marginalize
- 279 d_Communities_FINAL_689586_7.pdf
- 280 26. Daumas RP, Silva GA, Tasca R, Leite I da C, Brasil P, Greco DB, et al. O papel da
- 281 atenção primária na rede de atenção à saúde no Brasil: limites e possibilidades no

enfrentamento da COVID-19. Cad Saúde Pública. 2020;36:e00104120.

- 283 27. Instituto Brasileiro de Geografi a e Estatística. Pesquisa Nacional de Saúde 2019:
- 284 Informações sobre domicílios, acesso e utilização dos serviços de saúde [Internet]. Rio de
- Janeiro, RJ Brasil; 2019 [cited 18 de fevereiro de 2021]. 113 p. Disponível em:
- 286 https://biblioteca.ibge.gov.br/visualizacao/livros/liv101748.pdf
- 287 28. Associação de Medicina Intensiva Brasileira. Dados atualizados sobre leitos de UTI no
 288 Brasil. 2020.
- 289 29. Penna GO, Silva JAÁ, Cerbino Neto J, Temporão JG, Pinto LF. PNAD COVID-19: um
- 290 novo e poderoso instrumento para vigilância em saúde no Brasil. PNAD COVID-19: a
- powerful new tool for public health surveillance in Brazil [Internet]. 2020 [citado 6 de
- abril de 2021]; Disponível em: https://www.arca.fiocruz.br/handle/icict/43323

293

294 Address for correspondence: Fabiana Ribeiro Ferraz, Laboratório de Avaliação Nutricional de

- 295 Populações, Universidade de São Paulo, Av. Dr. Arnaldo, 715 São Paulo, Brasil; email:
- fabianaferraznutri@gmail.com; +55(11)99704-4503
- 297 Table 1. Prevalence of Chronic Noncommunicable Diseases and gross probability of positive
- diagnosis and hospitalization for COVID-19. Brazil PNAD COVID-19, 2020.
- 299
- 300

	Noncommunicable Diseases (%)			COVID-19 (%)	
Characteristics	None	1	2 or more	Confirmed cases	Hospitalization
Brazil	79.2	16.0	4.8	3.2	6.8
Age					
20 - 30	30.9	13.7	4.7	23.8	16.1
30 - 40	29.1	19.8	12.2	30.3	24.9
40 - 50	24.0	30.4	30.4	27.3	30.1
50 - 59	16.0	36.1	52.7	18.6	28.9
Gender					
Male	49.5	41.3	34.1	44.2	46.2
Female	50.5	58.7	65.9	55.8	53.8
Geographic Region					
Ν	13.1	9.7	8.1	20.4	14.3
NE	30.8	28.6	26.4	31.6	26.2
SE	28.6	32.0	33.1	22.1	24.9
S	16.8	18.5	20.7	11.3	16.5
CW	10.7	11.2	11.7	14.6	18.1
Area					
Urban	76.9	78.1	78.6	87.6	82.5
Rural	23.1	21.9	21.4	12.4	17.5

Per capita household income (5º)

1 (poorest)	23.1	19.8	15.1	29.2	20.8
2	22.1	21.5	21.2	22.5	25.0
3	20.9	21.2	21.2	17.8	19.4
4	18.6	20.2	22.8	15.6	17.5
5 (richest)	15.3	17.3	19.7	14.9	17.3
Schooling					
No schooling	2.4	3.4	4.8	1.4	2.9
Elementary school	28.5	36.8	45.0	19.3	29.3
High school	42.6	35.1	31.4	40.9	40.3
Higher education	22.6	19.8	14.8	31.6	23.0
Post graduation	3.9	4.9	4.0	6.8	4.5
Skin color					
White/Yellow	40.7	42.5	44.0	39.4	40.3
Black/Pardo/Indigenous	59.3	57.5	56.0	60.6	59.7
Month					
July	20.0	20.3	21.0	11.9	25.4
August	20.3	19.4	18.8	16.6	21.0
September	20.2	20.1	20.0	20.7	18.5
October	19.7	20.0	20.1	23.7	14.9
November	19.8	20.2	20.1	27.1	20.2

302 Table 2. Cox models of risks of positive diagnosis and hospitalizations due to COVID-19 for

303 Noncommunicable Diseases (NCD). Brazil PNAD COVID-19, 2020.

304

Number of NCD	Individuals with COVID-19 N(%) / Individuals without COVID-19 N(%)	Fully-adjusted HR (95%CI)	Individuals hospitalized due to COVID-19 N(%) / Individuals not hospitalized N(%)	Fully-adjusted HR (95%Cl)	
None	4,163(3.38) / 119,070(96.62)	1	255(0.21) / 122,978(99.79)	1	
1	1,163(4.62) / 23,997(95.38)	1.34(1.26;1.43)	84(0.33) / 25,076(99.67)	3.08(2.26;4.19)	
2 or more	404(5.47) / 6,987(94.53)	1.54(1.39;1.71)	70(0.95) / 7,321(99.05)	6.81(4.88;9.49)	

³⁰¹

	p-trend	-	<0.001	-	<0.001
305					
306	Figure 1. Adjusted prevalence of COVID-19 and hospitalization for COVID-19, according				
307	to the amount of NCDs and fifths of income, in Brazilian adults aged 20 to 59 years. Brazil PNAD				
308	COVID-19 (2020).				
309					

* Adjusted for age, place of residence, income per capita, schooling