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Abstract 
Hospital profiling provides a quantitative comparison of health care providers for their quality of 
care regarding certain clinical outcomes. To implement hospital profiling, the generalized linear 
mixed model (GLMM) is usually used to fit clinical or administrative claims data, adjusting for the 
effects of covariates. For better generalizability, data across multiple hospitals, databases or 
networks are desired. However, due to the privacy regulation and the computation complexity of 
GLMM, a convenient distributed algorithm for hospital profiling is needed. In this paper, we 
develop a novel distributed Penalized Quasi Likelihood algorithm (dPQL) to fit GLMM, when only 
aggregated data, rather than the individual patient data are available across hospitals. The dPQL 
algorithm is based on a newly-developed distributed linear mixed model (DLMM) algorithm. This 
proposed dPQL algorithm is lossless, i.e. it obtains identical results as if the individual patient data 
are pooled from all hospitals. We demonstrate the usage of the dPQL algorithms by ranking 929 
hospitals for COVID-19 mortality or referral to hospice in Asch, et al. 2020. 
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1. Introduction 
Hospital profiling provides a quantitative comparison of health care providers for their quality of 
care regarding certain clinical outcomes. An objective comparison across a heterogeneous 
healthcare system is important for consumers, providers, and policymakers. Such profiling across 
multiple hospitals is usually conducted by analyzing clinical or administrative claims data with 
proper statistical models [1, 2].  For fair comparison, patient-level factors including demographics, 
pre-existing conditions, disease severity and hospital-level factors including hospital volume are 
controlled for. For example, in a recent article of hospital profiling for COVID-19 mortality [2], the 
authors ranked the performance of 929 hospitals after adjusting for the patients’ characteristics 
including age, sex, Elixhauser comorbidities, and insurance type, and hospital’s characteristics 
including number of beds, number of ICU beds, urban/ nonurban setting, geographic region, profit 
status, and academic affiliation.  
  
Recent years have seen the development of statistical methodologies for the purpose of hospital 
profiling. A commonly used model is generalized linear mixed model (GLMM), which assumes 
common fixed-effects of covariates, e.g. patient- and hospital-level factors, and hospital-specific 
random effects, i.e. intercepts on the interested clinical outcome [1, 2, 3]. Based on the estimated 
fixed and random effects, the risk standardized event rates (RSER) can be calculated for each 
site. GLMM estimation, though complicated, could be obtained by methods such as Gaussian-
Hermite approximation of the integrated likelihood, Monte-Carlo based approaches, and 
penalized quasi-likelihood (PQL) approach [4, 5].    

 
As mentioned before, hospital profiling usually relies on analyzing clinical or administrative claims 
data. For example, in Drye, et al. 2012, the investigators studied the in-hospital and 30-Day 
mortality rate of acute myocardial infarction (AMI), heart failure (HF), and pneumonia for more 
than 3000 hospitals using CMS medicare claims data [6]. In Asch, et al. 2020, the authors study 
COVID-19 mortality or discharge to hospice in 929 hospitals using the UnitedHealth Group 
Clinical Discovery Portal [2]. In both of these investigations, the studies were based on an 
integrated database, where patient level data were pooled into a single dataset. A potential 
limitation of the previous investigations, as pointed out by the reviewers of our earlier paper [2], 
is on the generalizability of the findings, because our investigation was based on the database 
from a single insurance company. 

 
Ideally, if datasets from different institutes could be shared, the profiling methods can be applied 
to a more general study population. However, it is often the case that these healthcare data are 
protected by privacy regulations and communicating individual patient data are difficult. To extend 
hospital profiling to cover a wider patient population, privacy-preserving distributed algorithms can 
be used. Specifically, when fitting GLMM, the distributed algorithm is expected to require only 
aggregated data from each hospital (possibly in a few iterations) but obtains close estimates of 
the parameters, and therefore RSERs. There are some existing efforts on developing distributed 
algorithms for fitting GLMM. For example, Zhu, et al. 2020 proposed a distributed algorithm based 
on Expectation–Maximization (EM) algorithm [8]. However, it is well known that the EM algorithm 
usually takes many iterations to converge. As a result, the distributed algorithm also requires 
many rounds of data communication between institutes. 
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In this paper, we aim to fill this important methodological gap by proposing a novel distributed 
algorithm to fit GLMM that is lossless (i.e. it obtains identical results as if the individual patient 
data are pooled from all hospitals), computationally stable, and only requires few rounds of 
communications of aggregated data across institutes. The algorithm is based on the PQL 
approach and a newly developed distributed algorithm for linear mixed model (LMM). This 
proposed distributed PQL algorithm (dPQL) is lossless, computationally stable, and 
communication-efficient (i.e., only requires few rounds of communications). We demonstrate the 
usage of the proposed dPQL algorithms by hospital profiling for COVID-19 mortality or referral to 
hospice [2]. 
 
 
2. Methods 
2.1 Fitting GLMM via penalized quasi-likelihood  
GLMM is an extension of GLM with random effects. We introduce notations of GLMM in the 
context of hospital profiling. Assume there are 𝐾 hospitals with numbers of patients 𝑛#, and the 
total number of patients is  𝑁 = ∑ 𝑛## . For subject j at hospital 𝑖, we denote 𝑦#* the outcome, 𝑥#* 
the 𝑝-dimensional covariates with fixed effects 𝛽, and 𝑢# the random effect (i.e. random intercept), 
	𝑖 = 1, . . . , 𝐾, 𝑗 = 1, . . . , 𝑛#. Conditional on the covariates 𝑋# = (𝑥#6, . . . , 𝑥#78)

:	and random effects 𝑢#, 
𝑦# = (𝑦#6, . . . , 𝑦#78)

:  are assumed to be independent observations with means and variances 
specified by a GLM. Specifically, 

𝐸(𝑦#*|𝑢#) 	= 𝜇#* = ℎ(𝜂#*) = ℎ(𝑥#*:𝛽 + 𝑢#),          (1) 
𝑉𝑎𝑟(𝑦#*|𝑢#) 	= 	𝑣(𝜇#*),            (2)  

where 𝑔 = ℎF6 is the link function that connects the conditional means 𝜇#* to the linear predictor 
𝜂#* , 𝑣(⋅)  is the variance function. The random effects 𝑢#  are assumed to follow a normal 
distribution with mean 0 and variance θ.  

 
Standard estimation of the GLMM parameters (𝛽, 𝜃) is based on maximizing the integrated quasi-
likelihood  

𝐿(𝛽, 𝜃) = {2𝜋𝜃}FN/P ∏ ∫ 𝑒𝑥𝑝[−∑ 𝑑#*(𝑦#*, 𝜇#*)/2
78
*W6 − 𝑢#:𝜃F6𝑢#/2]𝑑𝑢#

Y
FY

N
#W6 ,  

where 
𝑑#*(𝑦, 𝜇) = −2∫ (𝑦 − 𝑢)/𝑣(𝑢)	𝑑𝑢Z

[ . 
Maximization of this objective function is generally complicated [4], as the integrations must be 
performed numerically unless in the case of Gaussian outcome and identity link.  

 
One approach to the integration is to make a Laplace approximation, which eventually leads to 
the PQL algorithm [4]. The PQL algorithm iteratively fit the linear mixed model  

  𝑦#*∗ = 𝑥#*:𝛽 + 𝑢# + 𝜖#*, 𝜖#* ∼ 𝑁(0,𝑤#*F6),          (3) 
with the working outcome 

 𝑦#*∗ = 𝑥#*:𝛽a + 𝑢b# + (𝑦#* − 𝜇̂#*)𝑔′(𝜇̂#*),           (4) 
and the weight 

 𝑤#* = 𝑔′(𝜇̂#*)FP𝑣(𝜇̂#*).             (5) 
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The obtained estimates are denoted as (𝛽a, 𝜃e). See [4, 5] for more details about the derivation.  
 

2.2 The proposed dPQL algorithm 
We develop a dPQL algorithm for GLMM estimation in the case that the individual patient data 
(IPD) are distributed across multiple centers and direct transfer of the IPD is not allowed. The 
dPQL algorithm is based on the distributed linear mixed model (DLMM) algorithm, which fits LMM 
exactly by requiring each site to contribute some aggregated data only once [9]. Specifically, in 
each iteration of the PQL algorithm, the weighted LMM (3) is fitted by the DLMM algorithm, 
requiring each site to contribute aggregated data  

● 𝑝 × 𝑝 matrix 𝑆#h = 𝑋#
:
𝑊#𝑋#,	 

● 𝑝 − 𝑑𝑖𝑚 vector 𝑆#h[ = 𝑋#
:
𝑊#𝑦#∗, and 

● scalars 	𝑠#[ = 𝑦#
∗:𝑊#𝑦#∗, and sample size 	𝑛#. 

See the Appendix for details of the DLMM algorithm. The dPQL algorithm thus reconstructs the 
PQL iterations and obtains identical results as if the IPD are pooled together. 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  
2.3 Distributed calculation for standardized mortality rates 
We demonstrate that the standardized mortality rates of hospitals can also be calculated 
distributively without transferring the IPD, see Figure 1. We provide two approaches for risk 
standardization, the Standardized Mortality Rate (SMR) [1] and the Directly Standardized 
Mortality Rates (d-SMR) [3, 6]. While both approaches measure adjusted mortality rates 
effectively, d-SMR, in contrast to SMR, has an interpretation in an amenable probability scale.  

 
The SMR of hospital 𝑘  is estimated [1] as  

SMR(p) = qrs
t̂s
× 𝑦̄,      (6) 

Where 

The proposed dPQL algorithm 
1. Initialize: the lead site send an initial value of the fixed effects 𝛽(v), and the random effects 𝑢#(v) = 0 to 
the collaborative sites i=1, … , K. 
2. For iteration s=0, 1, ... ,  

2.1 Site i calculates the working outcome 𝑦#∗ = 𝜂#(w) + (𝑦#* − 𝜇#(w))𝑔′(𝜇#(w)), 𝜂#(w) = 𝑋#𝛽(w) + 𝑢#(w) ,        
and the weights 𝑊# = 𝑑𝑖𝑎𝑔{𝑔′(𝜇#(w))FP𝑣(𝜇#(w))}, 
2.2 Site i calculates aggregated data  

- 𝑝 × 𝑝 matrix: 𝑆#h = 𝑋#:𝑊#𝑋#,  
- 𝑝 − dim vector: 𝑆#h[ = 𝑋#:𝑊#𝑦#∗ and 
- scalars: 𝑠#[ = 𝑦#∗

:𝑊#𝑦#∗and sample size 𝑛#, and transfers them to the lead site, 
2.3 The lead site fits weighted DLMM algorithm based on the aggregated data from 2.2, to obtain updated                                                   
𝛽(wx6), 𝑢#(wx6), and send them back to the collaborative sites. 

3. Stop iteration when converged, e.g. ||	𝜂(wx6) − 𝜂(w) || / || 𝜂(w)  || < 1e-6. The final estimates are 	𝛽a =
𝛽(w), 𝑢b# = 	𝑢#(w)and 𝜃e. 
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prz = 𝑛𝑘
−1 ∑ ℎ(𝑥𝑘𝑗

𝑇𝛽r +	𝑢b𝑘)
𝑛𝑘
𝑗=1     (7) 

is the average expected mortality rate for patients at hospital 𝑘, 

𝑒̂z = 𝑛𝑘
−1 ∑ ℎ(𝑥𝑘𝑗

𝑇𝛽r)𝑛𝑘
𝑗=1                (8) 

is the average expected mortality rate for hospital 𝑘  patients had they been treated at the 
“population level,” and 𝑦̄ is the overall observed mortality rate. This SMR measure has been used 
to compare the performance of nonfederal acute care hospitals in the United States for acute 
myocardial infarction (AMI) (n=3,135 hospitals), heart failure (HF) (n=4,209 hospitals), and 
pneumonia (n=4,498 hospitals) from 2004 to 2006 [6].  

 
The d-SMR of hospital 𝑘 is defined as the average mortality rate assuming patients from all the 
hospitals being treated at this hospital [3], i.e.  

SMR|(p) = 𝑁F6 ∑ 𝑛#pr#
(p)N

#W6 ,    (9)  
where 

 pr#(p) = 𝑛#F6 ∑ ℎ(𝑥#*:𝛽a + 	𝑢bp)
78
*W6      (10) 

is the average predicted risk rates of patients at hospital 𝑖 had they been treated at hospital 𝑘. 
When 𝑖 = 𝑘, pr#

(p) = 𝑝̂z, and if 𝑖	 ≠ 	𝑘, pr#(p) is a counterfactual probability. This d-SMR measure 
has been applied to profiling 4,289 hospitals in the United States for AMI using Medicare records 
from 2009 to 2011 [3], and to evaluating the change of COVID-19 mortality in 929 hospitals in the 
early period of the pandemic (January through April 2020) to the later period (May through June 
2020) [2]. 

 
We note that with the proposed dPQL algorithm, both types of standardized mortality rate (SMR 
and d-SMR) measures can be calculated distributively without sharing patient level data. 
Specifically, for the SMR, hospital 𝑘 calculates its own average expected mortality rates 𝑝̂z and 
𝑒̂z using its own patient-level data and the public 𝛽a and 𝑢bp by equations (7-8), and thus SMR(p) 
by (6). For the d-SMR, first, hospital 𝑖 calculates and broadcasts pr#(p) using its own patient-level 
data and the public 𝛽a and 𝑢bp by (10), then each hospital 𝑘 calculates SMR|

(p) by (9). See Figure 1 
for an illustration.  
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Figure 1. Standardized mortality rate of the hospitals can be calculated distributively based on the 
distributed PQL algorithm without transferring patient-level data across hospitals. On the left is the 
Standardized Mortality Rate (SMR), which requires hospital 𝑘  to calculate its own average expected 
mortality rates 𝑝̂z and 𝑒̂z. On the right is the directly Standardized Mortality Rates (d-SMR), which requires 
hospital 𝑖 to calculate and broadcast pr#

(p), the average expected mortality rates of its patients had they 
been treated at hospital 𝑘. See equations (6-10) for computational details. 
 
 
3. US hospital ranking based on the mortality rates for patients admitted with COVID-

19 
Asch et al., 2020 conducted a cohort study assessing 38,517 adults who were admitted with 
COVID-19 to 929 US hospitals from January 1, 2020, to June 30, 2020 using the data from 
UnitedHealth Group clinical discovery portal [2]. The hospital’s standardized rate of 30-day in-
hospital mortality or referral to hospice was calculated, after adjusting for patient-level 
characteristics, including demographic data, comorbidities, community or nursing facility 
admission source, and time since January 1, 2020, hospital-level characteristics, including size, 
the number of intensive care unit beds, academic and profit status, hospital setting, and regional 
characteristics, including COVID-19 case burden; see Figure A1 for a description of the data. 

 
We demonstrate the applicability of the proposed dPQL algorithm by applying it for ranking the 
hospitals with only transferring aggregated data from each hospital. Specifically, we compare the 
predicted mortality rate (via SMR or d-SMR) of the 929 hospitals by either pooled analysis (PQL) 
or the distributed analysis (dPQL) in Figure 2. The estimated fixed and random effects from dPQL 
algorithm and from the PQL are compared in Figure A2 in the Appendix. The dPQL algorithm 
reached convergence with only 5 iterations, and the estimation of fixed effects, best linear 
unbiased predictors (BLUPs), and mortality rates identical to that of the PQL from pooled data. 
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-

 
Figure 2. The estimated mortality rate (Standardized Mortality Rate, (a) and (b), and Directly Standardized 
Mortality Rates, (c) and (d)) of 30-day in-hospital mortality or referral to hospice of the 929 hospitals by 
either pooled analysis (PQL) or the distributed analysis (dPQL). 
  
 
4. Discussion 
We provide a privacy-preserving distributed learning algorithm, i.e. the dPQL algorithm to fit 
GLMM, which can not only obtain the identical results as if applying PQL method to the pooled 
data, but also conduct hospital profiling without sharing individual patient-level data. The proposed 
dPQL algorithm only requires sharing of minimal aggregated data from each site over few rounds 
of communications whilst obtaining identical results as if fitting GLMM to the pooled data using 
PQL. 

 
The results of the PQL estimation are comparable to that of other approaches used to fit the 
GLMM model. For example, in the hospital ranking for COVID-19 mortality rates, the PQL 
estimation is almost identical to that of the Gaussian-Hermite approximation approach used in the 
original paper [2]. Although fitting GLMM by PQL is sometimes criticized for its biased estimation 
when the outcome is binary and clusters are small [4, 5], it is still an appropriate estimation 
approach for hospital profiling purposes, when the sample sizes in hospitals are large enough.  
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Since the PQL algorithm usually achieves convergence in a few iterations, we can consider a 
one-shot version of the dPQL algorithm, i.e. run only one iteration of the dPQL algorithm proposed 
in Section 2.2. This approach will sacrifice some accuracy of the estimation, but obtains very 
appealing communication cost, as each hospital need only to share the aggregated data once. 
Meanwhile, the number of iterations required in the PQL algorithm depends on the choice of initial 
values. While default initial values (i.e. all fixed effects being 0’s) provide satisfactory results, the 
performances can be improved with smart choices of initial values. Such strategy of further 
improving communication efficiency is currently under investigation, and will be reported in the 
future. 
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Appendix 
The distributed linear mixed model (DLMM) algorithm 
In each iteration of the PQL algorithm, it fits the linear mixed model 𝑦#*∗ = 𝑥#*:𝛽 + 𝑢# + 𝜖#*, 𝜖#* ∼
𝑁(0,𝑤#*F6), with working outcome 𝑦#*∗ and known weight 𝑤#* = 𝑔′(𝜇̂#*)FP𝑣(𝜇̂#*). Below we show 
how this weighted linear mixed model can be fitted distributively by the DLMM algorithm. 
 
The parameters in LMM are usually estimated by maximum likelihood (ML) or restricted maximum 
likelihood (REML) estimation [10]. Below we discuss the ML estimation and more details are in 
[9]. Since the random effects  𝑢#~𝑁(0, θ), the log-likelihood of LMM using all the data is  

 𝐿(𝛽, θ) = − 6
P
∑ {𝑙𝑜𝑔|𝛴#| + (𝑌# − 𝑋#𝛽):𝛴#F6(𝑌# − 𝑋#𝛽)}N
#W6 ,      (A1) 

where 𝑋#  and 𝑌# = 𝑦#∗  are the covariate matrix and the working outcome vector of the 𝑖 th site 
respectively, |. | is the matrix determinant and 𝛴# = 𝛴#(θ) = 	θ𝟏78	𝟏78

: +W�
F6, 𝟏78	 is a length 𝑛# 

vector of all 1’s.   
The maximum likelihood estimation can be further simplified by profiling out 𝛽	from (A1). Given θ, 
the estimation of 𝛽	is  
  𝛽�(θ) 	= (∑ 𝑋#:Σ#F6𝑋#N

#W6 )F6(∑ 𝑋#:Σ#F6𝑌#N
#W6 ).          (A2)  

Thus the profile log-likelihood with respect to only θ is 
  𝐿q(θ) = − 6

P
∑ {𝑙𝑜𝑔|Σ#| + (𝑌# − 𝑋#𝛽�(θ)):Σ#F6(𝑌# − 𝑋#𝛽�(θ))}N
#W6 ,            (A3) 

The ML estimate of θ	 can be obtained by maximizing (A3). The estimates of 𝛽	 can be 
subsequently obtained by (A2). We denote these estimates as (𝛽a, 𝛩e) . The variance of the 
estimated fixed effects 𝛽a is thus  

𝑉(𝛽a) = (∑ 𝑋#:Σ#(𝛩e)F6𝑋#N
#W6 )F6.            (A4) 

 
With some linear algebra, we can disentangle the data (𝑌#, 𝑋#) and the parameters θ in |Σ| and 
Σ#F6and thus reconstruct the profile log-likelihood (5) without communicating IPD. Specifically, we 
utilize the Woodbury matrix identity [11] to obtain  

Σ#F6 = 𝑊� −𝑊#𝟏78(𝛩
F6 + 𝜏#)F6𝟏78

: 𝑊#,                    (A5) 
and the matrix determinant lemma [12] to obtain  

 |Σ#| = (1 + 𝜏#θ)/(∏ 𝑤#** ),             (A6) 
where 𝜏# = ∑ 𝑤#** . The DLMM algorithm thus requires the 𝑖�� site to communicate 

● 𝑝 × 𝑝	𝑚𝑎𝑡𝑟𝑖𝑥	𝑆#h = 𝑋#:𝑊#𝑋#, 
● 𝑝 − 𝑑𝑖𝑚	𝑣𝑒𝑐𝑡𝑜𝑟	𝑆#

h[ = 𝑋#:𝑊#𝑌#, 
● 𝑠𝑐𝑎𝑙𝑎𝑟	𝑠#

[ = 𝑌#:𝑊#𝑌#, 𝑎𝑛𝑑	𝑠𝑎𝑚𝑝𝑙𝑒	𝑠𝑖𝑧𝑒	𝑛#, 
for reconstructing the LMM likelihood. Specifically, to reconstruct (A3) with the above given 
aggregated data, we plug in (A5) to get (A2), then plug in (A2, A5, A6) to get (A3).   
 
Finally, the BLUP [10] of the random effects 𝑢# at the 𝑖th site is  

  𝑢r# = 𝛩e𝟏78
: Σ#(𝛩e)F6(𝑌# − 𝑋#𝛽a).            (A7) 

Conditioning on 𝑋#, 𝑢r# has mean zero and variance  
Var(𝑢r#	|	𝑋#) = 𝛩eP𝟏78

: [Σ#(𝛩e)F6 	− {Σ#(𝛩e)F6𝑋#	(∑ 𝑋#:Σ#(𝛩e)F6𝑋#N
#W6 )F6𝑋#:	Σ#(𝛩e)F6}]𝟏78.		        (A8) 
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US Hospital ranking for COVID-19 Mortality Rates  

 
Figure A1. Data processing and summary of the hospital profiling. 
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Figure A2. Comparison of the fixed effects and random effects estimation by the pooled analysis (PQL) 
and distributed analysis (dPQL) for ranking the hospitals regarding the COVID-19 mortality rate. 
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