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Abstract 40 

 41 

Inflammatory responses rapidly detect pathogen invasion and mount a regulated reaction. 42 

However, dysregulated anti-pathogen immune responses can provoke life-threatening 43 

inflammatory pathologies collectively known as cytokine release syndrome (CRS), 44 

exemplified by key clinical phenotypes unearthed during the SARS-Cov-2 pandemic. The 45 

underlying pathophysiology of CRS remains elusive. We found that FLIP, a protein that 46 

controls caspase-8 death pathways, was highly expressed in myeloid cells of COVID-19 47 

lungs. FLIP controlled CRS by fueling a STAT3-dependent inflammatory program. Indeed, 48 

constitutive expression of a viral FLIP homologue in myeloid cells triggered a STAT3-49 

linked, progressive and fatal inflammatory syndrome in mice, characterized by elevated 50 

cytokine output, lymphopenia, lung injury and multiple organ dysfunctions that mimicked 51 

human CRS. As STAT3-targeting approaches relieved inflammation, immune disorders, 52 

and organ failures in these mice, targeted intervention towards this pathway could 53 

suppress the lethal CRS inflammatory state. 54 

 55 

 56 

 57 

 58 

One sentence summary 59 

 60 

FLIP-expressing myeloid cells are key drivers of CRS through aberrant overexpression of 61 

STAT3 pathway. STAT3-targeting is effective in mitigating CRS like severe COVID-19. 62 

 63 
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Introduction 81 

 82 

Host responses to pathogens are ordered, time-dependent and tissue-compartmentalized, 83 

coordinated by the release of soluble factors, such as growth factors and inflammatory 84 

cytokines, which engage, activate and regulate innate immune cells(1). Since the 85 

magnitude of the immune response is generally consistent with the pathogen load and 86 

restrained to the invasion area, cytokines with short half-life have a limited action at sites 87 

of inflammation and favor the local activation of immune cells. However, persistent 88 

infections or an uncontrolled microbial burden can prompt higher output of cytokines, 89 

which fuel emergency hematopoiesis to mobilize an increased number of leukocytes from 90 

the bone marrow and thus counterbalance the myeloid cell depletion in periphery(2). 91 

Under these circumstances, the increase in cytokines beyond the normal thresholds can 92 

cause a catastrophic cytokine storm known as cytokine release syndrome (CRS), which 93 

eventually leads to multiple organ failures(3). This systemic pathology is not only 94 

associated with disseminated bacterial or viral infections(4, 5) but also induced by cancer 95 

immunotherapy, i.e. chimeric antigen receptor (CAR) T cells infusion or antibody-based 96 

therapy(6-10), stem cell transplantation settings(11), as well as linked to either 97 

autoimmune or genetic disorders(12, 13). Patients with CRS frequently display respiratory 98 

symptoms including tachypnea that progress to acute respiratory distress syndrome 99 

(ARDS)(14), severe kidney injury, hepatobiliary damage, cardiomyopathy and neurological 100 

dysfunctions(3). 101 

 102 

Accumulating evidence suggests a close relationship between CRS and the pandemic of 103 

coronavirus disease 2019 (COVID-19) induced by severe acute respiratory syndrome 104 

coronavirus 2 (SARS-CoV-2)(15-17). Indeed, pathophysiological features of severe COVID-105 

19 patients were often associated with pulmonary involvement that can require invasive 106 

mechanical ventilation in intensive care units (ICU)(18-21). After virus entry, SARS-CoV-2 107 

induces endothelial cell damage, complement activation, thrombin production and 108 

fibrinolysis inhibition that result in pulmonary intravascular coagulation, vascular 109 

microthrombi formation and, ultimately, severe vasculopathy, acute myocardial infarction 110 

and stroke(22, 23). Moreover, several studies have reported SARS-CoV-2 organotropism in 111 

myocardial, renal, neural and gastrointestinal tissues, confirming COVID-19 as a complex 112 

pathology with multiple manifestations(24). These multi-organ damages may be 113 

associated to an either direct viral toxicity or virus-dependent dysregulation of the immune 114 

system(25-30). Thus, activation of innate immune system can be considered the main 115 

hallmark of SARS-CoV-2-associated CRS, as recently reviewed(31). Indeed, myeloid cells 116 

are actively involved in the establishment of acute lymphopenia, microvascular 117 

dysfunctions and organ failure, all key features of COVID-19-associated CRS(27, 32-34). 118 

To date, however, a molecular understanding of the SARS-CoV-2-dependent myeloid cell 119 

reprogramming remains elusive. 120 
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We previously identified the anti-apoptotic cellular and viral FLICE (FADD-like IL-1β-122 

converting enzyme)-like inhibitory proteins (hereafter c-FLIP and v-FLIP respectively) as a 123 

factor that “reprogrammed” monocytes(35). FLIP isoforms are conventionally described to 124 

control cell survival and proliferation as caspase-8 inhibitor and/or NF-κB activator(36-40). 125 

However, FLIPs regulate different biological processes based on their protein structure 126 

(e.g. the presence of death effector domains in tandem)(41) or cellular localization (e.g. 127 

trafficking between the nucleus and cytoplasm)(42, 43). The up-regulation of FLIP 128 

proteins in monocytes promoted the acquisition of unconventional phenotype 129 

characterized by the concurrent expression of immunosuppressive (e.g. programmed 130 

death-ligand 1 (PD-L1), IL-10) and pro-inflammatory (e.g. interleukin (IL)-1β, IL-6, tumor 131 

necrosis factor (TNF)-α) features, which partially depend on the nuclear translocation of 132 

the complex FLIP/nuclear factor kappa B p50 (NF-κB p50) protein(35). In transgenic 133 

ROSA26.vFLIP;LyzM-CRE mice, where Kaposi’s sarcoma virus vFLIP expression is enforced 134 

in myeloid cells, a severe and lethal inflammatory pathology developed, resembling Kaposi 135 

sarcoma-associated herpesvirus inflammatory cytokine syndrome(35). 136 

 137 

We suspected FLIP- and pSTAT3-expressing myeloid cells were linked to COVID-19-138 

associated CRS since their accumulation was shared by both human (h)ACE2-expressing 139 

transgenic mice and patients infected by SARS-CoV-2. Moreover, monocytes isolated from 140 

COVID-19 patients showed high myeloid expression of c-FLIP and pSTAT3 that correlated 141 

with their immunosuppressive properties. We established that vFLIP transgenic mice 142 

mirror both the immune dysfunctions and the bronchoalveolar immune landscape of 143 

patients affected by severe COVID-19. We used this unique model to assess both systemic 144 

and myeloid-targeted STAT3 interference approaches to resolve uncontrolled inflammation 145 

and acute disease manifestations. 146 

 147 

Results 148 

 149 

SARS-CoV-2 infection induced c-FLIP overexpression in both COVID-19 patients and virus-150 

infected, HFH4-hACE2 transgenic mice. 151 

Viruses have evolved a myriad of ways to escape host apoptotic process and thereby 152 

preserve infected cells from early death, which eliminates the replicative niche(44). 153 

Several viruses including hepatitis C virus(45), hepatitis B virus(46), human T cell leukemia 154 

virus-1(47), human immunodeficiency virus 1(48), Epstein Barr Virus(49) and influenza A 155 

virus(50) induce the anti-apoptotic protein c-FLIP, which blocks caspase-mediated cell 156 

death(40). Poxviruses and herpesviruses encode proteins with high homology to c-FLIP, 157 

such as the Kaposi’s herpesvirus K13/vFLIP and the herpesvirus saimiri orf71, which 158 

harbor DED domains responsible for blocking procaspase cleavage, preventing apoptosis 159 

and favoring viral latency(36). Thus, FLIP expression is linked to viral replication by 160 

suppressing host cell death. 161 

 162 
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To examine c-FLIP alterations in COVID-19, we analyzed lung autopsy samples from 163 

patients infected by SARS-CoV-2 (COVID-19; n=23) or affected by bacterial pneumonia 164 

(BP; n= 4) or other diseases (NRD; n = 4) (Supplementary information, Table S1a). In the 165 

latter group, the respiratory tract was not altered by severe inflammation and showed a 166 

tissue structure almost devoid of pathological aspects (Fig. 1a, first line). By contrast, the 167 

histopathological features of the lungs from COVID-19 patients were showed 168 

heterogeneous inflammation and tissue damage (Supplementary information, Fig. 169 

S1a)(22, 51). When we evaluated the number of CD68+ myeloid cells, which encompass 170 

alveolar macrophages, monocytes/interstitial macrophages and histiocytes(52, 53), for the 171 

expression of FLIP, COVID-19 samples displayed a variable number of FLIP-expressing 172 

CD68+ cells (Fig. 1a, second line) suggesting an accumulation of FLIP+ myeloid cells 173 

during COVID-19 progression.  Previously, we found enforced FLIP expression 174 

reprogramming myeloid cells into immune regulatory elements through the aberrant 175 

activation of several molecular pathways, including STAT3-dependent signaling(35). Since 176 

STAT3 hyperactivation was advanced as the orchestrator of most commonly COVID-19-177 

associated features, such as rapid coagulopathy, thrombosis, tissue fibrosis, production of 178 

inflammatory cytokines and chemokines, as well as T cell lymphopenia, we next evaluated 179 

the expression of pSTAT3 in the selected pathological lung fields. We detected a weak 180 

pSTAT3 expression in NRD samples, while a limited pSTAT3 pattern was restricted to 181 

stromal cells in bacterial pneumonia sections. However, consistent and diffuse expression 182 

of pSTAT3 was shared in COVID-19 samples by numerous cell types; among them, several 183 

CD68+FLIP+ alveolar macrophages (Fig. 1a, third and fourth lines), histiocytic cells (Fig. 184 

1a, fifth and sixth lines) and monocytes/interstitial macrophages (Supplementary 185 

information, Fig. S1b). Interestingly, CD68+FLIP+pSTAT3+ cells were present in 56.5% 186 

(13/23) of analyzed cases and their presence significantly correlated with a shorter time to 187 

fatal evolution, expressed as number of hospitalization days (i.e. absence of 188 

CD68+FLIP+pSTAT3+ cells (n=10) 25 ± 14.4 days vs. presence of CD68+FLIP+pSTAT3+ 189 

cells (n=13) 18 ± 9.3 days; p=0.0223) (Supplementary information, Table S1b). 190 

 191 

We assessed c-FLIP and pSTAT3 expression in fresh circulating monocytes isolated from 192 

SARS-CoV-2 infected individuals (Supplementary information, Table S1c). 193 

Immunofluorescence analysis revealed an increased expression of c-FLIP in monocytes 194 

isolated from COVID-19 patients compared to heathy donors (HDs) (Fig. 1b), together 195 

with a linear correlation between c-FLIP-expression in monocytes and their 196 

immunosuppressive properties (Fig. 1c). PD-L1 was enhanced in c-FLIP-expressing CD14+ 197 

cells (Supplementary information, Fig. S1c), in agreement with our previous findings in 198 

pancreatic ductal adenocarcinoma (PDAC) patients(35), hinting to common mechanisms of 199 

innate immunity modulation in COVID-19 and cancer.  200 

 201 

We next sought to determine whether c-FLIP-expressing monocytes exhibited concomitant 202 

activation of STAT3. We identified a significant direct correlation between pSTAT3 and c-203 
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FLIP expression in circulating CD14+ cells isolated from COVID-19 patients (Fig. 1d), 204 

hinting to the aberrant activation of FLIP/STAT3 axis in myeloid cells not only at 205 

pulmonary site but also in periphery. The STAT3 pathway in myeloid cells is relevant for 206 

acquiring immunosuppressive functions(54-56) and for driving production of cytokines 207 

during immune disorders(57), two conditions jointly cooperating to establish a severe 208 

lymphopenia, one the signs of clinical severity in COVID-19 patients. Monocytes isolated 209 

from COVID-19 patients secreted a greater amount of cytokines, on a per-cell basis, which 210 

correlated with the pSTAT3 expression (Fig. 1e and Supplementary information, Fig. S1e), 211 

consistent with published data about the monocyte contribution to the cytokine storm(58, 212 

59).  213 

 214 

To establish a direct link between FLIP and pSTAT3 dysregulation following SARS-Cov-2 215 

infection, we analyzed the lung of mice transgenic for hACE2 (HFH4-hACE2 mice) that 216 

were intranasally infected with either SARS-CoV-2 or mock virus, as previously 217 

described(60). Examination of lung tissues 7 days after virus challenge demonstrated that 218 

SARS-CoV-2 infection induced severe pneumonia characterized by increased CD11b+ 219 

myeloid cell accumulation in perivascular and alveolar locations (Fig. 1f). Of note, lung-220 

infiltrating myeloid cells in SARS-CoV-2-infected mice expressed higher p-STAT3 levels 221 

than the control group (Fig. 1f). Moreover, we found an increased expression of p-STAT3 222 

in c-FLIP-expressing cells, which morphologically resemble myeloid cells, in the lung of 223 

SARS-CoV-2-infected mice (Fig. 1f).  224 

 225 

Collectively, these data establish that myeloid subsets are converted into FLIP- and 226 

pSTAT3-expressing elements characterized by pro-inflammatory and immunosuppressive 227 

features in COVID-19.   228 

 229 

vFLIP overexpression in myeloid cell lineage induced pulmonary and systemic pathological 230 

features of CRS, including the fatal outcome. 231 

Since transgenic mice expressing v-FLIP in myeloid cells die prematurely within four weeks 232 

of life due to systemic immune disorders(35), we engrafted sub-lethally ablated, 233 

immunocompetent mouse recipients with bone marrow (BM) isolated from either 234 

ROSA26.vFLIP;LyzM-CRE (CD45.2) or wild type mice (CD45.1) mixed together at different 235 

ratios. All engrafted mice developed weight loss (Supplementary information, Fig. S2a-b), 236 

systemic lymphopenia and extensive accumulation of myeloid cells in the spleen, where a 237 

subversion of splenic architecture was marked (Supplementary information, Fig. S2c), as 238 

well as in several organs leading to the development of multi-organ injuries and areas of 239 

fibrosis (Supplementary information, Fig. S2d), including the lung. For subsequent 240 

analyses in this study we employed BM chimeras (hereafter defined vFLIP mice), 241 

generated by transplantation of a 1:1 ratio of vFLIP+ and WT BM cells. 242 

 243 
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Since lung inflammation is the principal cause of life-threatening respiratory syndrome in 244 

CRS, including severe forms of COVID-19(20), we assessed the lung histopathology in 245 

vFLIP mice. Lungs of vFLIP mice showed diffuse interstitial myeloid infiltrate and alveolar 246 

damage, characterized by areas of fibrosis, lung consolidation, multinucleated cell clusters 247 

and tissue regions with peribronchial and perivascular infiltrate with associated 248 

intravascular thrombi. Severe cases also showed infarctions and extensive fibrosis (Fig. 2a-249 

b, Supplementary information, Fig. S3a). Consistent with COVID-19 CRS, we detected 250 

pSTAT3 in myeloid cells localized in vFLIP lung tissues compared to normal mice (Fig. 2c). 251 

Considering the role of an aberrant immune response in the pathogenesis of COVID-19 by 252 

promoting alveolar inflammation and hyper-coagulation state in lung vessels(26, 61), we 253 

evaluated the presence of the endothelial dysfunction marker p-selectin in the pulmonary 254 

environment of vFLIP mice. P-selectin is normally stored in Weibel-Palade bodies of 255 

endothelial cells.  After tissue injury, it is exposed in the vascular lumen where it mediates 256 

the adhesion and activation of platelets and leukocytes(62). In vFLIP mice, p-selectin was 257 

strongly expressed on the luminal surface of inflamed vessels of large and small caliber, 258 

whereas it was not detectable in the lungs of WT mice (Fig. 2d). 259 

 260 

Among effector mechanisms of neutrophils during inflammatory processes, neutrophil-261 

derived extracellular traps (NETs) have been linked with the pathology of lung damage in 262 

COVID-19(61). In line with this evidence, NETs, identified as extracellular DNA staining 263 

colocalizing with neutrophil elastase (NE) and citrullinated histone H3 (H3Cit) by confocal 264 

microscopy(63), were not found in lung of WT mice but present in parenchima and alveoli 265 

of v-FLIP mice (Fig. 2e). Since several stimuli trigger neutrophil activation and NETosis, 266 

including inflammatory cytokines and chemokines(64, 65), we evaluated whether myeloid 267 

cells could be a source of these soluble factors. By intracellular staining, we enumerated 268 

TNF-α- and IL-6-producing mononuclear (CD45.2+Ly6C+ cells) and polymorphonuclear 269 

(CD45.2+Ly6G+ cells) cells isolated from the lung of vFLIP mice. We could not isolate 270 

sufficient number of myeloid cells from WT mouse lungs. Inflammatory cytokine 271 

production was higher in monocytes than in neutrophils (Fig. 2f). Notably, a marked 272 

accumulation of myeloid cells was identified also in the spleen of vFLIP mice (Fig. 2g), in 273 

which high percentages of pSTAT3+ and inflammatory cytokine-producing monocytes were 274 

detected (Fig. 2h-i). We speculated that these cells might establish an unfavorable 275 

environment for T cells and, indeed, effector and helper T cells were heavily contracted 276 

while T regulatory lymphocytes (Tregs) significantly expanded in the spleen of vFLIP mice 277 

(Supplementary information, Fig. S3b-c), unveiling a pronounced systemic lymphopenia 278 

that mirrors COVID-19-associated CRS.  279 

 280 

To gain broad insight into the immune landscape of CRS in vFLIP mice, we performed a 281 

single cell RNA sequencing (scRNA-seq) on lung-infiltrating cells. After preprocessing, 282 

integration and cell annotation (see Methods), a total of 31,274 mouse cell transcriptomes 283 

were obtained across WT and vFLIP mice. All the cells were visualized through t-284 
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distributed stochastic neighbor embedding (t-SNE) assessing the cell proportions across 285 

the different mouse samples to have a global overview of the cell composition 286 

(Supplementary information, Fig. S4a-b). When we compared the percentage of each cell 287 

type across WT and vFLIP conditions (Fig. 3a), vFLIP mice showed a higher proportion of 288 

neutrophils (~65%) compared to WT mice (~23%) and a marked decrease in T (~5% 289 

vFLIP; ~17% WT) and B lymphocytes (~3% vFLIP; ~21% WT), confirming the 290 

aforementioned histopatological data about pulmonary infiltration of neutrophils (Fig. 2c). 291 

Conversely, monocytes (~9% vFLIP; ~12% WT) and macrophages (~13% vFLIP; ~16% 292 

WT) were comparable between the two groups. 293 

 294 

To picture a global overview about biological pathways activated in vFLIP mice, we 295 

performed gene set enrichment analysis (GSEA) comparing vFLIP and WT cells. We 296 

noticed a significant up-regulation in inflammatory responses, TNF- signaling via NF-κB 297 

and JAK-STAT3 signaling pathway that were among the top enriched gene sets (Fig. 3b).  298 

Notably, these processes were related to the over-expression of several pro-inflammatory 299 

mediators such as Il1b, Ccrl2, Il1a and Tnf (Fig. 3c). All these data are in line with results 300 

about pSTAT3 overexpression and TNF- hyper-production in vFLIP mice (Fig. 2f), as well 301 

as previous data about FLIP controlling NF-κB(35, 66). To link our results from vFLIP mice 302 

with Sars-Cov-2 infection, we matched GSEA results obtained from vFLIP mice with GSEA 303 

analysis of bulk RNA-Seq data of lung from hACE2 transgenic mouse infected with Sars-304 

Cov-2(67). Comparing vFLIP up-regulated pathways with those enriched following 305 

infection of hACE2 mice (day 7 post infection vs day 0, Fig. 3d), we found that SARS-CoV-306 

2-induced inflammatory pathways were shared with vFLIP mice. Interestingly, these data 307 

are in line with transcriptomic analysis using additional animal models of SARS-CoV-2 308 

infection(68).  309 

 310 

Together, these results support the concept that CRS syndrome in vFLIP mouse model 311 

may mimic COVID-19 immunopathology.  312 

 313 

vFLIP mice and COVID-19 patients display similar inflammatory myeloid cell landscapes in 314 

pulmonary environment. 315 

To compare the pulmonary immune landscape of vFLIP mice and COVID-19 patients, we 316 

quantified the similarity between mouse lung-infiltrating leukocytes and 19,996 immune 317 

cells isolated from bronchoalveolar lavage fluids (BAL) of severe COVID-19 patients (n=7; 318 

WHO ordinal score 7) who were admitted to Intensive Care Units (ICU) of Verona 319 

Hospital(32). A procedure similar to mouse cell integration and annotation was performed 320 

in order to assess cell composition in human BAL samples (Supplementary information, 321 

Fig. S4c-d). In both mouse and human datasets, neutrophils and monocyte/macrophage 322 

populations were separated and re-integrated prior to clustering, in order to have a better 323 

resolution in subset identification and comparison. 324 

 325 
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Following clustering, mouse neutrophils comprised 4 subsets characterized by canonical 326 

neutrophil markers including S100-family genes and Adam8 (cluster 0), inflammatory 327 

chemokines Ccl3 and Ccl4 (cluster 1), high expression of Camp and Ngp genes (cluster 2) 328 

and interferon response genes Isg15/Isg20 (cluster 3) (Fig. 4a and Supplementary 329 

information, Table S2). Similarly, in COVID-19 BAL, we outlined 5 different clusters 330 

expressing marker genes similar to mouse neutrophil subsets. In particular, we observed 331 

clusters expressing canonical neutrophil markers such as S100A8/S100A9 genes (cluster 332 

a), CCL3/CCL4 chemokines as well as CTSB and CSTB genes (cluster b), interferon-333 

response genes IFIT1, IFIT2 and ISG15/ISG20 (cluster c) and other 2 clusters expressing 334 

ribosomal (cluster d) and heat shock protein (HSPs) genes (cluster e) (Fig. 4b and 335 

Supplementary information, Table S2). 336 

We used reference-based classification (see Methods section) to map mouse subsets into 337 

human subsets. The results confirmed a conserved structure among neutrophil clusters 338 

between the two species and pathologies (Fig. 4c). In fact, about 89% of the human 339 

cluster c was annotated as cluster 3 of mouse, about 81% of cluster d was annotated as 340 

cluster 1 and, finally, clusters a, b and e were mainly annotated as cluster 1 of mouse (60-341 

65%). Conversely, cluster 2 appeared to be a mouse-specific neutrophil subset with no 342 

relevant correspondence in human subsets. These results recapitulate published reports 343 

(69), in which 3 conserved modules between mouse and human were characterized by the 344 

expression of Ccl3/CCL3, Cstb/CSTB (cluster 1 in vFLIP), type I interferon response genes 345 

such as Ifit1/IFIT1, Irf7/IRF7 and Rsad2/RSAD2 (cluster 3 in vFLIP), and neutrophils 346 

expressing canonical markers S100a8-a9/S100A8-A9 (cluster 0 in vFLIP).  347 

 348 

Even though mouse clusters 1 and 3 were not the most abundant neutrophil subsets (Fig. 349 

4a) in vFLIP mice, they were the most dysregulated in terms of cell proportion compared 350 

to WT. Indeed, Cluster 1 displayed more than 2-fold increase (~27% vFLIP; ~11% WT) 351 

while cluster 3 about 3-fold decrease in vFLIP compared to WT (~3% vFLIP; ~1% WT). 352 

Furthermore, GSEA analysis at the cluster level revealed several leading genes involved in 353 

neutrophil inflammatory response in cluster 1 (Supplementary information, Table S2), such 354 

as Il1b, Ifitm1, Clec5A and Ccrl2, which were up-regulated in vFLIP compared to WT mice 355 

(Fig. 4d and Supplementary information, Table S2).  356 

 357 

We detected 7 clusters in mouse mononuclear phagocyte compartment 358 

(monocytes/macrophages) (Fig. 4e). Among macrophages we could identify alveolar 359 

macrophages expressing Mrc1, Krt79 and Krt19 genes (cluster 0), macrophages 360 

expressing either inflammatory cytokines such as Cxcl3, Cxcl1 and Il1a (cluster 4) or 361 

proliferation markers Mki67 and Top2a (cluster 5), and a cluster expressing high levels of 362 

ribosomal genes (Cluster 6). In addition, we obtained a cluster composed by both 363 

macrophages (~64%) and monocytes (~36%) characterized by the expression of C1qa 364 

and C1qb (cluster 1). Finally, among monocytes we detected classical monocytes 365 

expressing Ccr2 and Ly6c2 (cluster 3) and non-classical monocytes expressing Ly6c2, Ace 366 
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and Cd300e (cluster 2), reproducing the immune landscape previously described in tumor-367 

bearing mice(69). In monocytes/macrophages compartment from BAL patients, we 368 

observed 5 clusters (Fig. 4f): a macrophage cluster expressing proliferation markers 369 

MKI67 and TOP2A (cluster d); a cluster characterized mainly by macrophages expressing 370 

C1QA, C1QB and MRC1 (cluster a); a cluster expressing monocyte markers FCN1 and 371 

VCAN (cluster b); two small clusters expressing ribosomial (cluster c) and heat shock 372 

protein (HSPs) genes (cluster e). Probably due to the intrinsic complexity(69) and the low 373 

number of cells in the mononuclear phagocyte compartment(32), we were not able to 374 

distinguish classical from non-classical monocytes as well as to identify different 375 

macrophage subsets in BAL samples. Therefore, unlike neutrophils, we could not 376 

reconstruct an effective map between mouse and human monocyte/macrophage subsets. 377 

However, we observed the expression of similar top marker genes between subset 5 and 378 

d, which identified proliferating macrophages (Supplementary information, Table S2); 379 

furthermore, the expression of several macrophage lineage genes such C1QA, C1QB and 380 

MRC1 was shared between the two species. Conversely, inflammatory genes such as IL1B, 381 

CXCL1 and CXCL3 were mainly expressed by monocytes in BALs, unlike mouse dataset in 382 

which they were expressed at high levels both in monocyte and macrophages 383 

(Supplementary information, Table S2). Through gene set variation analysis (GSVA), we 384 

confirmed that inflammatory response and related pathways TNF- signaling via NF-κB 385 

and JAK-STAT3 signaling were active in several clusters of mouse monocytes and 386 

macrophages while in BALs were specifically localized in monocytes (Fig. 4g). Despite 387 

several mouse subsets presented an up-regulation of inflammatory genes in vFLIP 388 

compared to WT mice (Fig. 4h, top panels) as well as high GSVA scores on inflammatory-389 

related pathways (Fig. 4g), GSEA analysis at the cluster level unveiled significant up-390 

regulation of inflammatory response, TNF- signaling via NF-κB and JAK-STAT3 pathways 391 

specifically in cluster 4 (Supplementary information, Table S2), which was also the most 392 

dysregulated in terms of cell proportion (~19% vFLIP; ~8% WT) (Fig. 4e). Notably, the 393 

up-regulation of JAK-STAT3 signaling pathway, in vFLIP cluster 4 compared to WT, was 394 

paralleled by the expression of several genes in the pathway such as Jak2, Csf1, Il10rb 395 

and Cd38 (Fig. 4h, bottom panels). 396 

 397 

In summary, a conserved landscape of myeloid cells enriched for transcriptional signatures 398 

associated with the inflammatory response was detailed in the lung environment of both 399 

vFLIP mice and severe COVID-19 patients, in line with the concept that FLIP-expressing 400 

myeloid cells drive lung pathology. 401 

 402 

STAT3 targeting restrains immunopathology in vFLIP mice. 403 

To investigate whether targeting STAT3 could be sufficient to dampen the uncontrolled 404 

immune dysregulation in vFLIP mice, we evaluated therapeutic approaches involving either 405 

pharmacological or RNA interference of STAT3. Initially, we tested in vivo the efficacy of 406 

two STAT3 inhibitors: silibinin, a STAT3 inhibitor that blocks the Y705 phosphorylation-407 
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related and STAT3 dimerization(70), or baricitinib, a clinically-approved inhibitor of JAK1 408 

and JAK2 able to interfere with STAT3 signaling activation(71). Four weeks after the 409 

establishment of BM chimerism in recipients (T0), mice were treated every two days by 410 

intraperitoneal injection. Weight loss was significantly decreased in mice that had received 411 

the drug treatments (Supplementary information, Fig. S5a). Furthermore, STAT3 targeting 412 

reduced the plasma concentration of several pro-inflammatory cytokines (Fig. 5a), which 413 

are produced at abnormal levels in untreated vFLIP mice and are also a feature of COVID-414 

19(3). Immunohistochemistry of spleen demonstrated a reduction in systemic 415 

lymphopenia of treated vFLIP mice, with some differences, since baricitinib furthered a 416 

raise in both T and B cells while silibinin affected only T lymphocyte frequency (Fig. 5b). 417 

By analyzing eight different parameters (e.g. interstitial enlargement, vascular congestion, 418 

perivascular neutrophils, presence of thrombi, presence of infarction, fibroplasia, foam cell 419 

clusters and perivascular infiltrate; Supplementary information, Fig. S5b), we confirmed a 420 

reduction in the pathological score of inflammatory pneumonia in treated mice (Fig. 5c 421 

and Supplementary information, Fig. S5c).  422 

 423 

To explore further the molecular underpinnings of the inflammatory shutdown, we 424 

evaluated the lung-infiltrating leukocyte profile of treated and untreated vFLIP mice by 425 

scRNA-seq. After projecting the cells into a 2-dimensional space using t-SNE, we evaluated 426 

the effect of pharmacological treatments on the proportions of the main cellular subsets. 427 

Both treatments reduced the neutrophil proportion (~82% UT; ~76% silibinin; ~66% 428 

baricitinib), with a compensatory increase in other cells, such as lymphocytes, indicating a 429 

trend towards rebalancing the lung-infiltrating leukocyte frequency (Fig. 5d). Considering 430 

neutrophil subgroups, we observed a slight reduction in the major neutrophil subset 431 

(cluster 0: ~89% UT; ~87% silibinin; ~86% baricitinib) in treated mice and an expansion 432 

in neutrophils expressing interferon-response genes (cluster 3: ~2% UT; ~4% silibinin: 433 

~5% baricitinib) (Supplementary information, Fig. S5d). Therefore, STAT3-targeting 434 

approaches can alter neutrophil composition favoring the accrual of elements with type I 435 

interferon response-associated genes. As for the monocytes/macrophages in treated mice, 436 

we observed a decrease in both classical monocytes (clusters 3: ~32% UT; ~23% 437 

silibinin; ~25% baricitinib) and macrophages expressing inflammatory cytokines (cluster 438 

4: ~12% UT; ~8% silibinin; ~8% baricitinib); at the same time, we evinced the increase 439 

in clusters 1 (~25% UT; ~27% silibinin; ~41% baricitinib) and cluster 2 (non-classical 440 

monocytes: ~10% UT; ~20% silibinin; ~14% baricitinib) (Supplementary information, Fig. 441 

S5d).  442 

 443 

Finally, GSEA analysis confirmed an up-regulation of interferon alpha/gamma pathways in 444 

both STAT3-based treatments compared to controls and, simultaneously, the down-445 

regulation of gene signatures associated to inflammatory response, JAK-STAT3-dependent 446 

signaling pathways and TNF- signaling via NF-κB (Fig. 5e). Consistent with this effect, 447 

several inflammatory genes, such as Il1b, Clec5a, Ccrl2 and Ifitm1 were down-regulated 448 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.04.21256298doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.04.21256298


12 

 

while Ifitm3, Stat1 and Isg15 genes, which are associated to interferon response 449 

pathways, were up-regulated in baricitinib-treated vFLIP mice (Fig. 5f). Thus, STAT3 450 

inhibitors might mitigate the inflammatory pathology, both locally and systemically, by 451 

affecting the aberrant FLIPs-STAT3 feedforward loop while keeping the antiviral response 452 

active.  453 

 454 

To confirm the immunomodulatory capacity of STAT3 inhibitors, we tested the ability of 455 

these two compounds to control the immunosuppressive functions of c-FLIP-expressing 456 

monocytes isolated from COVID-19 patients. T cell proliferation was significantly preserved 457 

after co-culture with monocytes pre-treated with the two drugs, as compared to untreated 458 

controls (Supplementary information, Fig. S5e). These results indicate that STAT3-459 

targeting may prevent T cell dysregulations by limiting immunosuppressive features of 460 

SARS-CoV-2-educated myeloid cells, endorsing the clinical results about baricitinib efficacy 461 

in altering immunoregulatory properties of myeloid cells in COVID-19 patients(59). 462 

 463 

To provide complementary evidence that a direct STAT3-silencing in myeloid cells could 464 

control the evolution of immunopathological disorders in vFLIP mice, we exploited the in 465 

vivo delivery of 4PD nanoparticles loaded with STAT3-specific short hairpin RNAs 466 

(shSTAT3) on their surface. The ability of 4PDs to recognize and target preferentially 467 

mononuclear phagocytes and mediate an effective in vivo delivery of shSTAT3 was 468 

previously proven in cancer mouse models(72). Therefore, vFLIP mice were treated by a 469 

total of nine administrations, every two days, of 4PDs loaded with either a scrambled RNA 470 

sequence (shCTRL, as negative control) or shSTAT3. Similar to STAT3 pharmacological 471 

treatment, the genetically-based STAT3 silencing in myeloid compartment controlled the 472 

weight loss, limiting CRS-associated cachexia (Supplementary information, Fig. S6a). 473 

Moreover, STAT3-silencing affected the severity of inflammatory pneumonia, as 474 

highlighted by the decrease in lung pathological score (Fig. 6a and Supplementary 475 

information, Fig. S6b) and allowed a complete contraction of neutrophilia in pulmonary 476 

tissues (Fig. 6b and Supplementary information, Fig. S6c). Notably, shSTAT3 treated mice 477 

showed also a reduction in systemic lymphopenia, with an increased frequency of both T 478 

and B lymphocytes and a concomitant myeloid cell reduction in the spleen (Fig. 6c) and in 479 

peripheral blood (Fig. 6d). Finally, the 4PD-mediated, STAT3-specific shRNA delivery 480 

normalized the plasma concentration of several pro-inflammatory cytokines (Fig. 6e). 481 

 482 

Taken together, these data indicate that STAT3-targeting, especially in myeloid cells, is 483 

effective in tempering CRS-associated immunopathological disorders triggered by the 484 

accumulation of FLIP-expressing cells. 485 

 486 

Discussion 487 

 488 
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To date, the pathology of CRS is incompletely understood and no single definition is widely 489 

accepted by the scientific community. Our data establish FLIP-expressing myeloid cells as 490 

a pivotal driver of CRS. Indeed, the vFLIP chimera mice show acute systemic inflammatory 491 

symptoms (Fig. 2 and Supplementary information, Fig. S2-3), elevated cytokine levels 492 

(Fig. 5a), weight loss (Supplementary information, Fig. S5a), lymphopenia (Supplementary 493 

information, Fig. S2c), lung injury (Fig. 2a) endothelial cell activation (Fig. 2d) and 494 

multiple organ dysfunctions (Supplementary information, Fig. S2d). The impact of vFLIP 495 

activation on building up inflammatory diseases is confirmed also by evidence about the 496 

role of this anti-apoptotic protein in inflammatory bowel disease(73), multicentric 497 

Castleman disease in mice(74), as well as on reprogramming myeloid cells into 498 

immunosuppressive elements in cancer(35).  499 

 500 

A significant gap remains between pre‐clinical testing and clinical trials to treat efficiently 501 

CRS, as well as to identify key molecular mechanisms that control the pathogenic process. 502 

In the last decades, mouse models of sepsis, such as LPS-induced inflammation, or the 503 

development of humanized mice based on the engraftment of human PBMCs into 504 

immunodeficient mice, which mimic CAR T-cell therapy-induced cytokine storm, have been 505 

primarily developed to replicate clinical stages and outcomes of CRS, as platforms for 506 

screening potential therapies(6, 75). However, no suitable and appropriate experimental in 507 

vivo models have been developed to identify alterations in molecular and cellular 508 

processes that might highlight the triggers of CRS. Our study based on a tissue-specific 509 

transgenic, conditional knock-in mouse model offer a novel tool for defining the 510 

mechanisms that fuel inflammation and CRS-associated immune dysfunctions.  511 

 512 

In line with our results, recent studies underlined that c-FLIP expression was enhanced in 513 

several SARS-CoV-2 infected cell lines, where the expression of FLIP suppressors, such as 514 

the forkhead transcriptional factor FoxO3A(76), was abrogated(30, 77). Since the 515 

interaction of c-FLIP to FADD and/or caspase-8 or -10 and TRAIL receptor 5 prevents 516 

death-inducing signaling complex formation and subsequent activation of the caspase 517 

cascade(78), it is plausible that SARS-CoV-2 virus exploits FLIP-mediated cell death delay 518 

for its own replication. Our analysis of both SARS-CoV-2-infected hACE2 transgenic mice 519 

and autopsy samples from lung in COVID-19 patients demonstrated, for the first time, the 520 

in vivo overexpression of FLIP in myeloid cells in severe COVID-19 (Fig. 1). However, 521 

compared to the traditionally ascribed FLIP intervention on cell-survival, our findings 522 

rather point to the additional function of modulating myeloid cells to determine CRS 523 

progression (Fig. 1d-e; Fig. 2i).  524 

 525 

Monocytes from both COVID-19 patients (Fig. 1c) and vFLIP transgenic mice(35) display 526 

immunosuppressive properties and are a source of pro-inflammatory cytokines (Fig. 1e 527 

and Supplementary information, Fig. S1d). We found that immunoregulatory functions of 528 

monocytes isolated from COVID-19 patients correlated with the expression of PD-L1 529 
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(Supplementary information, Fig. S1c), suggesting a possible contribution of immune 530 

checkpoint engagement on T cell blockade during COVID-19 evolution. These data are in 531 

line with our previous findings showing that FLIP-expressing monocytes isolated from 532 

PDAC patients had high levels of surface PD-L1(35) and confirm previous reports 533 

indicating that immunosuppressive myeloid cells in COVID-19 patients did exhibit 534 

increased CD274 mRNA levels(32, 34). In agreement with Schulte-Schrepping’s report in 535 

which STAT3 was suspected as transcriptional factor of immunosuppressive monocytes in 536 

COVID-19, we demonstrated that immunosuppression by monocytes isolated from COVID-537 

19 patients can be indeed reverted by STAT3 inhibitors (Supplementary information, Fig. 538 

S5e). Furthermore, we unveiled a concomitant expression of FLIP and activated STAT3 539 

signaling in myeloid cells of SARS-CoV-2 infected hosts (Fig. 1a and Fig. 1f), as well as in 540 

vFLIP transgenic mouse model (Fig. 2c). Further investigations should mechanistically 541 

address the unconventional properties of c-FLIP as transcription factor, either by itself or 542 

cofactor of transcriptional machinery capable of activating STAT3 signaling pathway in 543 

myeloid cells under pathological conditions, which to date are only partially demonstrated 544 

in immortalized cell lines(43, 79). 545 

 546 

Since the in vitro enforced expression of FLIP in myeloid cells promotes the 547 

overexpression of several pro-inflammatory cytokines (i.e. IL-6, IL-7, IL-10, CSF3 and 548 

TNF-α) by a “steered” NF-κB activation, which also results in enhanced STAT3-signalling 549 

activation(35), we argue that a pervasive inflammatory loop is established by FLIP through 550 

the joint action of NF-κB and STAT3 during CRS evolution. Indeed, a synergy between NF-551 

κB and STAT3 molecules based on pro-inflammatory cytokines (i.e. IL-6), which act as 552 

inflammation amplifier, was reported in several multiple inflammatory and autoimmune 553 

diseases(80) and postulated also in COVID-19(81). In agreement with this paradigm, a 554 

recent analysis of multi-organ proteomic landscape of COVID-19 autopsies confirmed both 555 

NF-κB and STAT3 as transcription factors largely upregulated in multiple organs (82), 556 

implying a widespread and pervasive activations of the two pathways.  557 

 558 

Our in vivo findings show that STAT3-targeting provides a significant disease control in 559 

mice with CRS, unexpectedly highlighting how blocking a single member of the NF-560 

κB/STAT3 loop is sufficient to halt pathological inflammation. Data presented here are in 561 

line with recent clinical results about baricitinib efficacy in controlling SARS-CoV-2-562 

mediated immune dysregulation(59, 68, 83, 84) and with the decision of U.S. Food and 563 

Drug Administration to approve baricitinib in combination with remdesivir for the 564 

treatment of severe COVID-19 patients. More important, we demonstrated that Jak1/Jak2 565 

inhibitor did not affect negatively genes associated with type I IFN antiviral responses but, 566 

on the contrary, pharmacological treatment was associated with a relative increase in 567 

interferon-stimulated genes (Fig. 5e-f), likely by re-programming the myeloid composition 568 

in the lung environment (Fig. 5d and Supplementary information, Fig. S5c). This signaling 569 

switch might be due to the activity of STAT1 occupying space on STAT3-activating 570 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.04.21256298doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.04.21256298


15 

 

receptors, as suggested by the conversion of IL-6R signaling to a dominant STAT1 571 

activation in STAT3-deficient cells(85, 86). Finally, the striking results on the normalization 572 

of the immune landscape, organ pathology and cachexia following shSTAT3-based 573 

treatment (Fig. 6 and Supplementary information, Fig. S6) clearly finger at STAT3 as the 574 

main target in FLIP expressing myeloid cells and define it as the most deleterious cause of 575 

immune and tissue damage during CRS.   576 

 577 

Despite the caveats linked to species-specific profiles, our findings revealed some 578 

conserved genetic features of lung-infiltrating myeloid cells between vFLIP mice and 579 

COVID-19 patients. Indeed, neutrophil subsets characterized by the expression of S100-580 

family genes, type I interferon response genes (ISG15/ISG20) and chemokines 581 

(Ccl3/CCL3), as well as macrophages expressing proliferation-associated gene signatures 582 

(Mki67, Top2a) showed similarities among species. The shared leukocyte subsets showed 583 

a higher expression of inflammatory response-associated genes and were more prone to 584 

STAT3 therapy. 585 

  586 

In summary, in this study we demonstrated the pivotal role of FLIP-expressing myeloid 587 

cells to stimulate directly a lethal inflammatory status, by fueling an aberrant STAT3-588 

dependent signaling pathway. Moreover, we substantiated the therapeutic effectiveness of 589 

STAT3 on-target strategy to mitigate uncontrolled inflammation and acute disease, which 590 

serve as a foundation for the development of more accurate and evidence-based therapies 591 

to control CRS disorders, as well as severe clinical aspects of the ongoing COVID-19 592 

pandemic crisis. 593 

 594 

 595 

Materials and Methods 596 

Study design for patients 597 

This study was designed to explore the impact of FLIP/STAT3 axis in promoting 598 

immunological alteration in COVID-19 patients. All 48 patients with COVID-19 and 4 599 

healthy donors in this study were admitted, within the period from March 12th to April 600 

20th 2020 to the University Hospital of Verona or Hospital of Pescara. At sampling, the 601 

stage of disease was categorized as mild (patients not requiring non- invasive/mechanical 602 

ventilation and/or admission to ICU) or severe (patients requiring admission to ICU and/or 603 

non-invasive/mechanical ventilation).  604 

For immunohistochemistry analysis of lung autopsy, this study includes a group of 4 non-605 

respiratory disease (NDR) patients, 4 bacterial pneumonia (BD) patients and 23 COVID-19 606 

patients. The clinical features are recapitulated in Supplementary information, Table S1a-607 

b.  608 
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For molecular data (i.e. single cell transcriptomic analysis), phenotypic analysis (myeloid 609 

characterization in terms of expression of immune suppression hallmarks) and functional 610 

data (myeloid immune suppressive assay), this study includes a group of 14 severe 611 

COVID-19 patients admitted to ICU, 11 mild SARS-CoV-2 patients and 4 HDs. The clinical 612 

features of the 3 groups of subjects are recapitulated in Supplementary information, Table 613 

S1c.  614 

All the patients (and/or initially their families) provided written informed consent before 615 

sampling and for the use of their clinical and biological data. This study was approved by 616 

the local ethical committee (protocol 17963; principal investigator, Vincenzo Bronte; 617 

ClinicalTrials.gov identifier NCT04438629). All clinical investigations were conducted 618 

according to Declaration of Helsinki principles, and informed consent was obtained from all 619 

study participants. 620 

Study design for mice 621 

This study was designed to define vFLIP+p-STAT3+ myeloid cells as a main driver for CRS 622 

progression as well as to test STAT3-targeting approach as a possible strategy to 623 

ameliorate CRS-undergoing hosts.  All genetically transgenic mice and their respective 624 

controls were gender and age-matched (typically 3–10 weeks) and both males and 625 

females were used in this study. Mice were assigned randomly to experimental groups. 626 

Germ free C57BL/6 mice were originally purchased from Charles River Laboratories Inc., 627 

CD45.1+ congenic mice (B6.SJL-PtrcaPepcb/BoyJ) and LySM-CRE mice (B6.129P2-628 

Lyz2tm1(cre)Ifo/J) were purchased from Jackson Laboratories; Rosa26.vFLIP mice were a gift 629 

from Dr. Ethel Cesarman (Weill Cornell Medicine, NY, USA).  630 

To generate the vFLIP-chimera mouse model (hereafter named vFLIP mice), C57BL/6 631 

female of 8 weeks of age received 9 Gy total body irradiation (TBI) using 137Cs-source 632 

irradiator. Six hours after pre-conditioning, irradiated recipient mice were intravenously 633 

injected with 5x106 bone marrow cells obtained from CD45.1 WT and ROSAvFLIP Tg 634 

(CD45.2) donor mice at different ratio. Bone marrow cells over-expressing FLIP protein 635 

from Kaposi’s sarcoma virus (v-FLIP) in myeloid compartment were collected from 636 

ROSA26.vFLIP Tg knock-in mice. These mice were obtained by crossing ROSA26.vFLIP 637 

knock-in mice with mice expressing Cre recombinase under control of the endogenous 638 

Lyz2 promoter. For the therapeutic studies, 50% WT-50% vFLIP ratio was used to 639 

generate the vFLIP-chimera mice. Four weeks post bone-marrow transplantation, 640 

peripheral blood of recipient mice was analyzed for the presence of donor-derived cells. 641 

The in vivo effect of drugs treatment was investigated in the vFLIP-chimera mouse model, 642 

four weeks after the bone marrow cells transplantation. Chimera mice that displayed at 643 

least 20% of donor-derived cells were randomized before beginning treatment. Chimera 644 

mice were treated using 8 intraperitoneal administrations of Baricitinib (10 mg/kg; Cayman 645 

chemicals) or Silibinin (100mg/kg; Sigma-Aldrich) every two days, for a total of 9 646 
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treatments. shRNA treatments were performed three times a week by injecting shRNA 647 

(anti-STAT3 or scramble) loaded onto 4PD intravenously as previously described(72), for a 648 

total of 9 treatments. shRNA STAT3 sequence: 5’-649 

UAAUACGACUCACUAUAAGGAGGGUGUCAGAUCACAUGGGCUUUCAAGAGAUCUCAACGGACC650 

AUGCUACUGCCUU-3’; shRNA scramble STAT3 sequence: 5’-651 

UAAUACGACUCACUAUAAGGGCAGUAGCAUGGUCCGUUGAGAUUCAAGAGAUCUCAACGGACC652 

AUGCUACUGCCUU-3’ (Boston Open Labs). Immunohistochemistry (IHC) and flow 653 

cytometry analysis were performed at the end of the experiment (2 weeks after the first 654 

treatment). Chimera mice were euthanized when the weight loss reached the 20% of 655 

body-weight as an animal protocol-defined endpoint.  656 

All mice were maintained under specific pathogen-free conditions in the animal facility of 657 

the University of Verona. Food and water were provided ad libitum. Animal experiments 658 

were performed according to national (protocol number C46F4.26 approved by the 659 

Ministerial Decree Number 993/2020-PR of July 24, 2020 (PI: Stefano Ugel) and protocol 660 

number C46F4.8 approved by the Ministerial Decree Number 207/2018-PR of February 21, 661 

2018) and European laws and regulations. All animal experiments were approved by 662 

Verona University Ethical Committee and conducted according to the guidelines of 663 

Federation of European Laboratory Animal Science Association (FELASA). All animal 664 

experiments were in accordance with the Amsterdam Protocol on animal protection and 665 

welfare: mice were monitored daily and euthanized when displaying excessive discomfort. 666 

Statistical analysis 667 

All data are reported as mean ± standard error (SE) of the mean. Statistical analyses were 668 

performed using Graph Pad Prism (version 8.0.2). Student t test (parametric groups) and 669 

Wilcoxon–Mann–Whitney test (nonparametric groups) were used to determine statistical 670 

significance of differences between two treatment groups. Values were considered 671 

significant at P ≤ 0.05. 672 

 673 

 674 
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Fig. 1. c-FLIP and pSTAT3 expression in SARS-CoV-2-infected hosts. 962 

(A) Representative H&E-stained microscopy images of lung tissue of non-respiratory 963 

disease (NDR), bacterial pneumonia (BD) and COVID-19 patients (upper panel). Scale bar, 964 

200 μm. Representative immunofluorescence (IF) staining of alveolar macrophages 965 

(second, third and fourth lines) and histiocytic cells (fifth and sixth lines). Cells were 966 

stained for CD68 (green), c-FLIP (red), pSTAT3 (white) and nuclei (blue). Scale bar, 20 967 

μm. (B) Quantification and representative IF staining of c-FLIP in monocytes purified from 968 

healthy donors (HD, n=4) or COVID-19 patients (n=5). Cells were stained for nuclei (blue) 969 

and c-FLIP (red). Scale bar, 10 μm. (C) Correlation between percentage of suppression 970 

and c-FLIP expression of circulating monocytes isolated from COVID-19 patients (n=16). 971 

(D) Correlation between pSTAT3 and c-FLIP expression in circulating CD14+ cells isolated 972 

from COVID-19 patients (n=10). (E) Correlation between the release of IL-6 or TNF-α 973 

cytokines and pSTAT3 expression in circulating CD14+ cells from HD (red, n=4) and 974 

COVID-19 patients (black, n=13). (F) Representative hematoxylin and eosin (H&E)-975 

stained microscopy images of lung tissue of HFH4-hACE2 transgenic mice SARS-CoV-2-976 

infected or mock-infected mice. Scale bar, 200 μm. pSTAT3, c-FLIP and CD11b expression 977 

levels were detected by indirect immunofluorescence (IFA) staining. Scale bar, 100 μm. 978 

Correlation analysis was performed by Spearman’s rank correlation (C, D, E). 979 
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Fig. 2. Local and systemic pSTAT3-dependent inflammation in vFLIP mice. 981 

(A) Representative H&E-stained microscopy images of lung of WT (upper panel) or vFLIP 982 

chimera mice. Scale bar, 200 μm. (B) Representative IF staining of lung-infiltrating 983 

neutrophils and macrophages in WT or vFLIP mice. Cells were stained for DAPI (blue), 984 

neutrophil elastase (NE) (red, middle panel) and F4/80 (green, bottom panel). Scale bar, 985 

200 μm. (C) Representative IF staining of lung-infiltrating neutrophils and macrophages in 986 

WT or vFLIP mice. Scale bar, 20 μm. Cells were stained for DAPI (blue), NE (red, middle 987 

panel) or F4/80 (green, bottom panel) and pSTAT3 Tyr705 (grey). (D) CD62P presence in 988 

lung of WT (upper panel) or vFLIP mice by H&E staining. Scale bar, 100 μm. (E) 989 

Representative confocal analysis of NET in WT (left panel; 50 μm) or vFLIP mice (200 990 

μm). Cells were stained for DAPI (white), NE (red) and H3cit (blue). (F) Dot plots of IL-6 991 

and TNF-α in lung-infiltrating mononuclear (CD45.2+Ly6C+ cells) and polymorphonuclear 992 

(CD45.2+Ly6G+ cells) cells isolated from vFLIP mice (n=17). (G) Representative IF 993 

staining of spleen-infiltrating neutrophils (NE+ cells) and monocytes/macrophages (F4/80+ 994 

cells) in WT or vFLIP mice. Cells were stained for DAPI (blue), NE (red, middle panel) and 995 

F4/80 (green, bottom panel). Scale bar, 200 μm. (H) Representative IF staining of spleen-996 

infiltrating neutrophils and macrophages in WT or vFLIP mice. Cells were stained for DAPI 997 

(blue), NE (red, middle panel) or F4/80 (green, bottom panel) and pSTAT3 Tyr705 (grey). 998 

(I) Dot plots of IL-6 and TNF-α in myeloid cells in spleen of WT (n=8) or vFLIP mice 999 

(n=9). Data are reported as mean ± S.E.M. *p ≤ 0.05, **p ≤ 0.01 and ***p ≤ 0.001 by 1000 

Mann–Whitney test. 1001 
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Fig. 3. Lung immune landscape in vFLIP mice affected by cytokine release 1003 

syndrome. 1004 

(A) tSNE representation of scRNA-seq from 2 WT and 2 vFLIP mice samples (WT: 9,174; 1005 

vFLIP: 9,847) colored according to cell type. Stacked bar plots representing cell type 1006 

proportions across WT and vFLIP conditions. (B) Bar plot representing the up-regulated 1007 

(NES > 0, adjusted p-value < 0.05) hallmark gene sets in the analysis of vFLIP vs WT cells 1008 

obtained through GSEA analysis. (C) Violin plots showing the expression of key genes that 1009 

drive the up-regulation of inflammatory response, TNF-α signaling via NF-κB and JAK-1010 

STAT3 signaling pathway in the lung of vFLIP mice. The asterisks denote statistically 1011 

significant up-regulation in the comparison between vFLIP and WT conditions (*p < 0.05, 1012 

**p < 0.01, ***p < 0.001). (D) Bar plot representing the up-regulated (NES > 0, 1013 

adjusted p-value < 0.05) hallmark gene sets in bulk RNA-seq data obtained through GSEA 1014 

analysis of ACE2-transgenic mice infected with Sars-CoV-2 (Winkler et al., 2020) 1015 

comparing day 7 post infection (dpi) with mock-infected (0 dpi). Red bars refer to the 1016 

gene sets enriched in both vFLIP and ACE2-transgenic mice.  1017 

 1018 

 1019 

 1020 

1021 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.04.21256298doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.04.21256298


30 

 

 1022 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.04.21256298doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.04.21256298


31 

 

Fig. 4. Unbiased comparison between lung-infiltrating cells of vFLIP mice and 1023 

BAL-derived immune cells obtained from COVID-19 patients. 1024 

(A) tSNE representation and stacked bar plot showing cluster analysis of neutrophils 1025 

coming from scRNA-seq analysis of lung tissue of mice (n=7) and (B) COVID-19 patients 1026 

BALs (n=7). Neutrophils of mouse (17,099) and human (15,366) are visualized through 1027 

tSNE projection and colored according to cluster analysis. (C) Reference-based 1028 

classification of BAL neutrophil clusters using average expression of mice neutrophil 1029 

clusters (see Methods). (D) Violin plots showing the expression of key inflammatory and 1030 

interferon response genes among mouse neutrophil clusters. The asterisks denote 1031 

statistically significant up-regulation in the comparison between vFLIP and WT conditions 1032 

(*p < 0.05, **p < 0.01, ***p < 0.001). (E) Subset analysis of monocytes/macrophages 1033 

of mouse (n = 7) and (F) COVID-19 BALs (n = 7). Monocytes/macrophages of mouse 1034 

(6,115) and human (3,445) are visualized through tSNE projection and colored according 1035 

to cluster analysis. (G) GSVA scores for inflammatory response, JAK-STAT3 signaling and 1036 

TNF-α signaling via NF-κB pathway across mouse (left) and BAL (right) 1037 

monocytes/macrophage clusters. (H) Violin plots showing the expression level of key 1038 

inflammatory response and JAK-STAT3 signaling pathway genes across mouse 1039 

monocytes/macrophages subsets. The asterisks denote statistically significant up-1040 

regulation in the comparison between vFLIP and WT conditions (*p < 0.05, **p < 0.01, 1041 

***p < 0.001). 1042 
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Fig. 5. STAT3 pharmacological targeting reduces lung damage and immune 1044 

dysfunctions in vFLIP mice.  1045 

(A) Analysis of cytokines levels in serum of vFLIP mice before treatment (T0) or at the 1046 

end of treatment (untreated, n=9; silibinin, n=9; baricitinib, n=9). (B) Lymphocytes and 1047 

macrophages quantification in spleens of untreated (n=14), silibinin (n=8) and baricitinib 1048 

(n=16) vFLIP mice by H&E staining. Scale bar, 200 μm. (C) Pathological score of lungs of 1049 

untreated (n=14), silibinin (n=8) and baricitinib (n=16) vFLIP mice by H&E staining. Scale 1050 

bar, 200 μm. (D) tSNE representation of scRNA-seq from untreated (4,662) mice and 1051 

treated with silibinin (3,414) and baricitinib (4,177) colored according to cell type. Stacked 1052 

bar plots representing cell type proportions across conditions. (E) Bar plot representing 1053 

the up- and down-regulated (adjusted p-value < 0.05) hallmark gene sets obtained in the 1054 

bulk-like analysis of treated compared to untreated vFLIP chimera cells obtained through 1055 

GSEA analysis. (F) Violin plots showing the expression of genes involved in inflammatory 1056 

response, JAK-STAT3 signaling pathway and interferon response in the lung of vFLIP 1057 

chimera mice (*p < 0.05, **p < 0.01, ***p < 0.001). Data are reported as mean ± 1058 

S.E.M. *p ≤ 0.05, **p ≤ 0.01 and ***p ≤ 0.001 by Student’s t-test, Mann–Whitney test. 1059 
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Fig. 6. In vivo STAT3-silencing approach mitigates the evolution of 1063 

immunopathological disorders in vFLIP mice. 1064 

(A) Pathological score of lungs of vFLIP mice (untreated, n=6; sh-scramble, n=5; sh-1065 

STAT3, n=5) by H&E staining. Scale bar, 200 μm. (B) Flow cytometry analysis of CD45+ 1066 

leukocytes isolated from lungs of vFLIP mice (untreated, n=6; sh-scramble, n=5; sh-1067 

STAT3, n=5) or WT mice (n=5). (C) Lymphocytes and macrophages quantification in 1068 

spleens of vFLIP mice (untreated, n=6; sh-scramble, n=5; sh-STAT3, n=5) by H&E 1069 

staining. Scale bar, 400 μm. (D) Flow cytometry analysis in peripheral blood in vFLIP mice 1070 

(untreated, n=6; sh-scramble, n=5; sh-STAT3, n=5) or WT mice (n=5). e Analysis of 1071 

cytokines levels in serum of WT (n=5), sh-scramble (n=5) or sh-STAT3 (n=5) vFLIP mice. 1072 

Data are reported as mean ± S.E.M. *p ≤ 0.05, **p ≤ 0.01 and ***p ≤ 0.001 by Mann–1073 

Whitney test. 1074 
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