1	Respiratory cryptosporidiosis in Malawian children with diarrheal disease
2	
3	Pui-Ying Iroh Tam, ^{1,2,3a} Mphatso Chisala, ¹ Wongani Nyangulu, ^{1b} Herbert Thole, ¹ James
4	Nyirenda ¹
5	
6	¹ Paediatrics and Child Health Research Group, Malawi-Liverpool Wellcome Trust Clinical
7	Research Programme, Blantyre, Malawi
8	² Department of Paediatrics, University of Malawi College of Medicine, Blantyre, Malawi
9	³ Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United
10	Kingdom
11	^a Corresponding author: Pui-Ying Iroh Tam, <u>irohtam@mlw.mw</u>
12	^b Current affiliation: University of Malawi College of Medicine, Blantyre, Malawi
13	
14	Running title: Respiratory cryptosporidium in diarrhea
15	
16	Keywords: cryptosporidiosis, respiratory tract, gastrointestinal, children, longitudinal
17	
18	
19	
20	
21	
22	
23	
24	
25	

26 Abstract

27 Background: Respiratory cryptosporidiosis has been documented in children with diarrhea. 28 We sought to describe the dynamics of respiratory involvement in children hospitalized with 29 gastrointestinal (GI) diarrheal disease. 30 31 Methods: We conducted a prospective, observational longitudinal study of Malawian children 32 2-24 months hospitalized with diarrhea. Nasopharyngeal (NP) swabs, induced sputum and 33 stool specimens were collected. Participants that were positive by cryptosporidium PCR in 34 any of the three compartments were followed up with fortnightly visits up to 8 weeks post-35 enrollment. 36 37 Results: Of the 162 children recruited, participants had mild-moderate malnutrition, 36 (22%) 38 were PCR-positive for cryptosporidium at enrollment (34 stool, 11 sputum, and 4 NP) and 27 39 completed the majority of follow-up visits (75%). Cryptosporidium was detected in all 40 compartments over the 4 post-enrollment visits, most commonly in stool (94% at enrollment 41 with mean cycle thresholds (Ct) of 28.8±4.3 to 44% at 8 weeks with Ct 29.9±4.1), followed 42 by sputum (31% at enrollment with mean Ct 31.1 \pm 4.4 to 20% at 8 weeks with Ct 35.7 \pm 2.6), 43 then NP (11% with mean Ct 33.5 ± 1.0 to 8% with Ct 36.6 ± 0.7). Participants with 44 cryptosporidium detection in both the respiratory and GI tract over the study period reported 45 respiratory and GI symptoms in 81% and 62% of study visits, respectively, compared to 68% 46 and 27%, respectively, for those with only GI detection, and had longer GI shedding 47 (17.5±6.6 v. 15.9±2.9 days).

- 49 Conclusion: Cryptosporidium was detected in both respiratory and GI tracts throughout the 8
- 50 weeks post-enrollment. The development of therapeutics for cryptosporidium in children
- 51 should target the respiratory as well as GI tract.
- 52 (255)
- 53
- 54

55

56 Author summary

- 57 We conducted a prospective, observational longitudinal study of Malawian children 2-24
- 58 months hospitalized with diarrhea. Nasopharyngeal (NP) swabs, induced sputum and stool
- 59 specimens were collected. Participants that were positive by cryptosporidium PCR in any of
- 60 the three compartments were followed up with fortnightly visits up to 8 weeks post-
- 61 enrollment. Cryptosporidium was detected by PCR in 21%, 7% and 3% in stool, sputum and
- 62 nasopharynx of children hospitalized with diarrhea. Of those positive at enrollment, detection
- 63 was noted in 44%, 20%, and 8%, respectively, by 8 weeks post-enrollment.
- 64 (87)
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73

74 Introduction

75	Cryptosporidiosis is a cause of diarrhea [1-3], excess mortality [4, 5], stunting [1, 6], and is
76	associated with malnutrition [6, 7]. The Global Enteric Multicenter Study (GEMS) identified
77	cryptosporidium as second most common cause of diarrhea among infants (0-11 months) in
78	all four African countries studied (The Gambia, Mali, Mozambique, Kenya) regardless of
79	HIV prevalence, and among the top five causes for older children (12-23 months) [4].
80	Respiratory cryptosporidiosis has been documented in up to a third of children presenting
81	with diarrhea [8]; furthermore, respiratory detection without intestinal involvement has been
82	reported [9, 10], raising the possibility of primary respiratory infection with cryptosporidium,
83	either by inhalation or by contact with fomites [11].
84	
85	Studies have identified cryptosporidium in sputum but have not looked at whether respiratory
86	involvement is a transient phenomenon or a reservoir for gastrointestinal (GI) disease. This
87	has implications for therapeutic development. Our primary objective was to evaluate whether
88	respiratory involvement of cryptosporidium is a transient phenomenon in diarrheal disease,
89	and to assess for respiratory and GI cryptosporidiosis concurrently and longitudinally in
90	children hospitalized with diarrheal disease.
91	
92	Methods
93	Study design, setting, and participants. We conducted a prospective, observational-
94	longitudinal study of Malawian children hospitalized with diarrhea [12]. Children aged 2-24
95	months and presenting with primary GI symptoms to Queen Elizabeth Central Hospital in
96	Blantyre, Malawi, were screened. Eligible patients were those with at least three or more
97	loose stools within the past 24 hours. Those with dysentery, or visible blood in loose stools,
98	were excluded.

99

100	Clinical procedures. Once written consent was obtained, a detailed history and physical exam
101	was conducted and all then enrolled subjects had a NP swab, induced sputum, and stool
102	sample collected. For induced sputum collection, subjects were given a nebulized 3% sodium
103	chloride mist to inhale for 5-15 minutes. For infants, suctioning of the oropharynx was done
104	after nebulization to collect the specimen. To ensure safety of the subject, induced sputum
105	was only collected if there were no contraindications (based on PERCH criteria for induced
106	sputum collection) [13]: severe hypoxia <92% on supplemental oxygen; inability to protect
107	airways; severe bronchospasm at admission (defined as continued hypoxia <92% after
108	appropriate bronchodilator therapy, with other markers of respiratory distress); seizure within
109	the past 24 hours; or deemed inappropriate by the clinician for another reason (e.g. midface
110	trauma, inhalational injury, pulmonary effusion, congestive heart failure, congenital heart
111	disease, etc). If the above symptoms/conditions resolved within 48 hours, induced sputum
112	collection was reconsidered at that point.
113	
114	HIV rapid testing was conducted on infants and, if positive, infants were referred to the
115	pediatric HIV clinic for further care. Any relevant lab investigations (including full blood
116	count, urea and electrolytes, liver function tests, malaria parasite screen, blood and/or CSF
117	culture, TB GeneXpert and AFB testing) performed as part of routine care were recorded.
118	
119	All participating children had enrollment NP, sputum and stool specimens evaluated for

120 cryptosporidium by PCR. Sputum quality was evaluated by microscopy (good quality: ≤ 10

- squamous epithelial cells/high powered field). Only subjects who were cryptosporidium
- 122 PCR-positive on any one of NP/sputum/stool were followed up in the post-enrollment phase

123 up to 8 weeks post-enrollment, with a follow-up visit every two weeks for evaluation of

symptoms, physical assessment, as well as NP/sputum/stool sampling.

125

126	Laboratory procedures.	DNA w	was extracted in	stool using	QIAamp	Fast Stool Mini Kit
-----	------------------------	-------	------------------	-------------	--------	---------------------

- 127 (Qiagen, Hilden, Germany) and for respiratory tract using the QIAamp DNA mini kit
- 128 (Qiagen) for cryptosporidium, and UCP Mini kit (Qiagen) for respiratory co-pathogens.
- 129 Cryptosporidium detection of specimens at enrollment were measured using quantitative
- 130 polymerase chain reaction (qPCR), with appropriate positive and negative controls and a
- 131 positive result being a cycle threshold (Ct) <35. In subsequent follow-up samples in stool,

132 cryptosporidium was detected using qPCR in a TaqMan Array Card (Thermo Fisher,

133 Waltham, MA) using a custom design developed at the Houpt Laboratory (Charlottesville,

134 VA) [14] and tested for 28 enteropathogens. In sputum, for multiplex PCR we used the

135 respiratory pathogens 33 kit (Fast Track Diagnostics, Luxembourg, Luxembourg).

136

137 *Statistical analysis.* Frequencies and proportions of observed levels were reported for binary

and categorical variables, with exact binomial 95% confidence intervals given where

appropriate. Comparisons were performed using the Fisher's exact test for binary and

140 categorical variables, t-test (two groups) or ANOVA (three or more groups) for

141 approximately normally distributed variables and Wilcoxon rank sum (2 groups) or Kruskal-

142 Wallis (3 or more groups) tests for variables with severely nonparametric distributions.

143 Statistical analysis was performed using Stata software, version 16, and statistical

significance was set at 0.05.

145

146 *Ethical approval.* The study was approved by the University of Malawi College of Medicine

147 Research Ethics Committee (P.07/18/2438) and the Liverpool School of Tropical Medicine

148 Research Ethics Committee (18-066). Written consent was obtained from parents or

149 guardians prior to enrollment.

150

151	Results
152	From 1 March 2019 to 3 April 2020, 162 children were recruited into the study. Two children
153	did not submit specimens. Of the remaining 160 children, 36 (23%) were positive in any one
154	of the three samples collected (34 stool (21%), 11 sputum (7%), and 4 NP (3%)) and were
155	entered into follow-up. The study was discontinued early due to COVID-19, by which time
156	27 children had completed at least three of the four follow-up visits (75%).
157	
158	Among the 162 children who were hospitalized with diarrhea, the mean age was 11.6±5.0
159	months, and 59% were male (Table 1). Mean height-for-age, weight-for-age, and weight-for-
160	height z scores were -1.41±1.5, -1.02±1.2, and -0.08±1.6, respectively. Nine percent of
161	mothers were HIV-infected, and one-third of those children tested positive by HIV rapid test
162	(3% of total). The participants had a mean of 4.5 ± 1.4 persons in a household, and the
163	majority of children had access to a pit toilet/latrine (95%), piped drinking water (78%), and
164	harbored a residential animal in the compound (66%). Among the 36 children who were
165	cryptosporidium PCR-positive, the mean age was 12±5.0 months, 63% were male and two
166	(6%) were positive by HIV rapid test. No significant differences in characteristics between
167	children who were cryptosporidium-positive versus -negative were noted (Supplementary
168	Table 1).
169	

170 Table 1. Characteristics of children hospitalized with diarrhea at enrollment

Characteristic	Children with	Cryptosporidium-	Cryptosporidium-	P value
	diarrhea (n=162)	positive (n=36)	negative (n=124)	

Demographics								
Age, ^a months, mean (SD)	11.6 (5.0)	12 (5.0)	11.6 (5.1)	0.897				
2-11 months	90 (56%)	21 (60%)	65 (53%)	0.565				
12-24 months	72 (44%)	14 (40%)	58 (47%)					
Male sex	95 (59%)	22 (63%)	72 (59%)	0.649				
Highest level of maternal educat	ion							
Did not complete any	62 (38%)	14 (40%)	46 (37%)	0.829				
schooling								
Completed primary school	74 (46%)	15 (43%)	57 (46%)					
Completed secondary school	18 (11%)	5 (14%)	13 (11%)					
and above								
Mother is employed (%)	72 (44%)	19 (54%)	52 (42%)	0.208				
Father is employed (%)	150 (93%)	33 (94%)	114 (92%)	0.742				
Number of household members	4.5 (1.4)	4.1 (1.2)	4.6 (1.4)	0.061				
(SD)								
Children <5 years (SD)	1.2 (0.5)	1.2 (0.4)	1.2 (0.6)	0.107				
Other household members with	46 (28%)	13 (37%)	33 (27%)	0.236				
respiratory symptoms								
Other household members with	13 (8%)	4 (11%)	9 (7%)	0.487				
GI symptoms								
Residential animals in the	107 (66%)	21 (20%)	84 (68%)	0.359				
compound (%)								
Facility for disposing feces in								
households (%)								
Pit toilet/latrine	154 (95%)	34 (97%)	116 (94%)	0.686				

Pour/flush toilet	8 (5%)	1 (2%)	7 (60%)	
Child health indicators				
Mother HIV status (%)				
Positive	15 (9%)	8 (23%)	17 (14%)	0.391
Unknown	55 (34%)	10 (29%)	44 (36%)	
Child HIV rapid test (%)				
Positive	5 (3%)	2 (6%)	3 (2%)	0.158
Unknown/not done	120 (74%)	22 (63%)	95 (77%)	
Breastfeeding status (%)				
No breastfeeding	22 (14%)	5 (14%)	17 (14%)	1.000
Partial breastfeeding	134 (83%)	29 (82%)	101 (82%)	
Exclusive breastfeeding	6 (4%)	1 (3%)	5 (4%)	
Used antibiotics in 7 days	99 (61%)	20 (57%)	75 (61%)	0.699
before admission (%)				
Given intravenous fluids in 7	63 (61%)	15 (43%)	47 (38%)	0.696
days before admission (%)				
Referred to a health facility for	136 (84%)	32 (91%)	101 (82%)	0.292
a diarrhea episode in the past 7				
days (%)				
Z score (SD)				
Height-for-age	-1.45 (1.5)	-1.41 (1.5)	-1.46 (1.5)	0.807
Weight-for-age	-1.0 (1.3)	-1.02 (1.2)	-1.02 (1.3)	0.997
Weight-for-height	-0.08 (1.6)	-0.1 (1.6)	-0.12 (1.6)	0.952
MUAC, cm (SD)	13.7 (1.4)	13.8 (1.3)	13.7 (1.4)	0.692
Bipedal edema (%)	5 (3%)	1 (3%)	4 (3%)	1.000

Enrollment vitals and symptoms							
Temperature, °C (SD)	36.7 (0.7)	36.7 (0.6)	36.8 (0.7)	0.422			
Respiratory rate, breaths/min	36 (6.1)	36.1 (8.5)	36 (5.4)	0.902			
(SD)							
Oxygen saturations, % (SD)	98.6 (1.4)	98.6 (1.4)	98.7 (1.4)	0.719			
GI symptoms (%)							
Vomiting	70 (43%)	16 (46%)	52 (42%)	0.847			
Abdominal pain/ tenderness	65 (40%)	11 (31%)	51 (42%)	0.330			
Poor feeding	66 (40%)	14 (40%)	50 (40%)	0.945			
Dehydration	90 (56%)	20 (57%)	68 (55%)	0.845			
Respiratory symptoms (%)							
Cough	98 (61%)	24 (69%)	72 (59%)	0.283			
Runny nose	58 (36%)	16 (46%)	40 (33%)	0.150			
Difficulty in breathing	3 (2%)	1 (3%)	2 (2%)	0.531			
Wheezing	14 (9%)	4 (11%)	9 (7%)	0.487			
Chest indrawings/retractions	2 (1%)	0	2 (2%)	1.000			
Crackles	17 (11%)	6 (17%)	10 (8%)	0.125			
Cryptosporidium-PCR positive							
Stool (%)	34 (21%)	34 (94%)	0	< 0.001			
Induced sputum (%)	11 (7%)	11 (31%)	0	< 0.001			
NP (%)	4 (2%)	4 (11%)	0	< 0.001			
Sputum quality (%)							
Good (≤10 sq epis/hpf)	131/160 (82%)	29 (81%)	100 (82%)	0.013			
Poor (>10 sq epis/hpf)	15/160 (9%)	1 (3%)	14 (12%)				
Unreadable ^c	14/160 (9%)	6 (17%)	8 (7%)				

Outcomes			
Mortality, inpatient (%)	NA	0	NA
Mortality, post-discharge (%)	NA	1 (3%)	NA
GI, gastrointestinal; HPF, high p	owered fiel	ld; MUAC, mid-upper a	rm circumference; NA,
not applicable; SD, standard dev	viation		
^a Values are mean (SD).			
Induced sputum quality at enroll	ment was g	good in 81%, poor in 9%	and unreadable in 10%,
with similar proportions of good	quality spu	itum among cryptospori	dium-positive and -
negative participants (81% and 8	32%, respec	ctively). Over the 8-weel	k period, cryptosporidiun
was detected in both respiratory	and GI trac	ets (Table 2): most comm	nonly in stool (94% at
enrollment to 44% at 8 weeks), f	followed by	y sputum (31% at enrollr	nent to 20% at 8 weeks),
then NP (11% to 8%). Lowest C	t counts we	ere generally noted in the	e stool (mean Ct 28.8±4.3
at enrollment to 29.9±4.1 at 8 we	eeks), follo	wed by sputum (mean C	t 31.1 \pm 4.4 at enrollment
to 35.7±2.6 at 8 weeks), and NP	((mean Ct	33.5±1.0 to 36.6±0.7); F	Figure 1). We detected
cryptosporidium in respiratory b	ut not GI tr	act in 7 study visits, incl	luding 2 at enrollment
(stool Ct were above the 35 cuto	ff and there	efore considered negativ	e). Detection in the
respiratory tract did not always c	correlate wi	th symptoms (Figures 2.	A-O). For individual
participants in whom cryptospor	idium was	detected at enrollment, c	letection was noted most
consistently in the GI tract throu	ghout the 8	weeks. Respiratory co-j	pathogens were detected
in 87/104 (84%) visits over the f	ollow-up p	eriod.	

192 **Table 2.** Longitudinal detection of cryptosporidium in stool and respiratory tract and

193 associated symptoms

Characteristics		Study period				
	Enrollment	2 weeks ^a	4 weeks ^b	6 weeks ^c	8 weeks ^d	
	(n=36)	(n=27)	(n=24)	(n=26)	(n=25)	
Cryptosporidium detection	n					
Detection in NP	4 (11%)	5 (19%)	2 (8%)	1 (4%)	2 (8%)	
NP Ct values ^e (SD)	33.5 (1.0)	33.7 (2.0)	35.6 (0.6)	35.7	36.6 (0.7)	
Detection in sputum	11 (31%)	10 (37%)	10 (42%)	8 (31%)	5 (20%)	
Sputum Ct values (SD)	31.1 (4.4)	29.9(3.6)	33.0 (2.6)	34.3 (2.9)	35.7 (2.6)	
Detection in GI tract	34 (94%)	22 (81%)	16 (67%)	11 (42%)	11 (44%)	
Stool Ct values (SD)	28.8 (4.3)	26.0 (4.5)	30.3 (2.8)	31.3 (3.5)	29.9 (4.1)	
Detection in respiratory	2 (6%)	0	1 (4%)	2 (8%)	2 (8%)	
tract only						
Detection in GI tract only	26 (72%)	13 (48%)	6 (25%)	3 (12%)	6 (24%)	
Detection in respiratory	9 (25%)	9 (33%)	9 (26%)	6 (23%)	3 (12%)	
and GI tract						
Presentation						
Referral to health facility	36 (100%)	10 (37%)	6 (25%)	5 (19%)	7 (28%)	
for an illness in the past 7						
days						
Diarrhea in the past 7 days	36 (100%)	0	2 (8%)	4 (15%)	3 (12%)	
Respiratory symptoms in	26 (72%)	9/10 (90%)	4/6 (67%)	2/5(40%)	5/7 (71%)	
the past 7 days ^f						
Cough	24 (69%)	5/10 (50%)	2/6 (33%)	2/5 (40%)	5/7 (71%)	

Runny nose	16 (46%)	7/10 (70%)	4/6 (67%)	1/5 (20%)	3/7 (43%)		
Difficulty in breathing	1 (3%)	0	0	0	0		
Wheezing	4 (11%)	3/10 (30%)	1/6 (17%)	1/5 (20%)	0		
Chest indrawings/	0	0	0	0	0		
retractions							
Crackles	6 (17%)	5/10 (50%)	1/6 (17%)	1/5 (20%)	0/7		
Vomiting	16 (46%)	0/10	0/6	1/5 (20%)	0/7		
Abdominal pain/	11 (31%)	1/10 (10%)	1/6 (17%)	1/5 (20%)	0/7		
tenderness							
Poor feeding	14 (40%)	0	0	0	0		
Other household members	13 (37%)	1/6 (17%)	3/5 (60%)	0	0		
with respiratory symptoms							
Other household members	4 (11%)	0	3 (13%)	1 (4%)	2 (8%)		
with GI symptoms							
Vital signs							
Respiratory rate,	36 (6.1)	34.7 (3.4)	32.8 (3.2)	34.4 (5.7)	32.3 (3.7)		
breaths/min (SD)							
Oxygen saturations, %	98.6 (1.4)	99.1 (1.2)	98.5 (1.1)	99.4 (0.8)	98.8 (1.4)		
(SD)							
Outcome							
Mortality	1 ^g (3%)	0	0	0	0		
Ct, cycle threshold; GI, gastrointestinal; NP, nasopharynx; SD, standard deviation							

^aOne child withdrew after enrollment, five did not enter follow-up due to early stopping of

196 study, and three were lost to follow-up.

^bThree children missed week 4 visit.

- ^cOne child missed week 6 visit.
- ^dTwo children did not complete week 8 visit due to early stopping of study.
- 200 ^eValues are mean (SD).
- ^fIn follow-up study visits, symptoms were recorded only if these led to health facility referral.
- ^gPatient died after discharge before the week 2 visit.
- 203

204

205 Respiratory symptoms were noted in 72% of cryptosporidium-positive participants at

enrollment, the most common symptom being cough (69%), but also included runny nose

207 (46%), crackles (17%) and wheeze (11%). For those entered into the 8-week follow-up

208 period, participants with cryptosporidium positivity in the respiratory tract had respiratory

209 symptoms in 23/43 (53%) of visits.

210

211 Among participants with cryptosporidium detection in both the respiratory and GI tract at

enrollment (Table 3A) compared to those with cryptosporidium detection in the GI tract only,

a larger proportion reported respiratory symptoms (90% v. 65%), and GI shedding of

cryptosporidium was longer (14.3 ± 2.1 v. 14.1 ± 0.7 days), but these were not statistically

- significant. Among participants whom cryptosporidium was detected in both the respiratory
- and GI tract over the 8-week study period compared to GI tract only (Table 3B), a larger
- 217 proportion reported respiratory (81% v. 68%) and GI symptoms (62% v. 27%) per study visit,
- and GI shedding of cryptosporidium was longer (17.5±6.6 v. 15.9±2.9 days), but again these

219 were not statistically significant.

221 Table 3. Characteristics and associated symptoms in participants with cryptosporidium

- detection in GI tract only v. GI and respiratory tract A) at enrollment; B) throughout study
- 223 period

Characteristic	At enrollment			Throughout study period		
	GI	GI and	Р	GI	GI and	Р
	detection	respiratory	value	detection	respiratory	value
	only	detection		only	detection	
	(n=26)	(n=10)		(n=16)	(n=11)	
Age, ^a months (SD)	11.3 (5.3)	13 (4.0)	0.370	12.2 (2.3)	12.0 (6.7)	0.922
Male sex	17 (65%)	6 (60%)	0.7664	9 (56%)	8 (72%)	0.448
Z score (SD)						
Height-for-age	-1.4 (2.4)	-1.3 (1.1)	0.896	-1.6 (2.5)	-1.4 (1.9)	0.837
Weight-for-age	-1.1 (1.4)	-0.6 (1.2)	0.319	-1.1 (1.2)	-0.8 (1.2)	0.474
Weight-for-	-0.2 (1.6)	0.0 (1.7)	0.708	-0.1 (1.7)	0.0 (1.6)	0.945
height						
Number of	4.2 (1.4)	4.3 (1.5)	0.771	4.4 (1.5)	4.1 (0.9)	0.504
household members						
(SD)						
Household	1.3 (0.7)	1.1 (0.3)	0.449	1.1 (0.1)	1.2 (0.1)	0.696
children <5 years						
Pit latrine	25 (96%)	10 (100%)	0.529	16 (100%)	10 (90%)	0.407
Piped water for	4 (15%)	1 (10%)	0.916	2 (13%)	3 (27%)	0.370
drinking						
Piped water for	18 (69%)	6 (60%)	0.448	13 (81%)	4 (45%)	0.124
utensils						

	Treated water (%)	13 (50%)	2 (20%)	0.142	6 (37%)	5 (45%)	0.710	
	Residential animals	14 (54%)	7 (70%)	0.467	11 (69%)	7 (63%)	1.000	
	in the compound							
	Respiratory	17 (65%)	9 (90%)	0.223	11 (68%)	9 (81%)	0.385	
	symptoms							
	Enrollment oxygen	98.5 (1.4)	98.8 (1.2)	0.561	98.5%	98.3% (1.7)	0.653	
	sats, % (SD)				(1.1)			
	GI symptoms	23 (89%)	8 (80%)	0.603	3 (27%)	10 (62%)	0.120	
	Duration of GI	14.1 (0.7)	14.3 (2.1)	0.819	15.9 (2.9)	17.5 (6.6)	0.445	
	shedding, ^b days							
	(SD)							
224	GI, gastrointestinal; S	SD, standard d	leviation					
225	^a Values are mean (SD).							
226	^b N changes to 27 who followed up through study period.							
227								
228								
229	Discussion							
230	This is the first longitudinal study to evaluate the respiratory cryptosporidiosis in pediatric							
231	diarrheal disease. In a	children hospi	talized with diar	rheal diseas	e, cryptospori	dium was		
232	detected most frequen	ntly in stool, f	ollowed by sput	um and NP.	The most cor	nmon respiratory		
233	symptom was cough. Longitudinally, we detected cryptosporidium in both respiratory and GI							
234	tracts through 8 week	ts post-enrolln	nent, usually at l	owest Ct co	ounts in stool,	followed by		
235	sputum and then NP.	Longer GI sh	edding of crypto	sporidium v	was noted amo	ong those where		
236	we detected cryptosp	oridium in bo	th the respiratory	and GI tra	cts, compared	to GI detection		
237	only, although findings did not reach statistical significance.							

238

239	Our cryptosporidium detection rate is far higher than has been reported in diarrhea studies in
240	sub-Saharan Africa, with rates of positivity ranging from 9% in Kenya to 14.7% in
241	Mozambique [4, 8]. Subclinical cryptosporidium infection was noted to be high (6%) in
242	Tanzania [15]. A previous study done at QECH found cryptosporidium to be the third most
243	common cause of diarrhea with a prevalence in stool of 28% among cases [16]. In our study,
244	the positivity rate was 21%, and this would be 12% if we used the GEMS diarrheagenic
245	cutoffs [17]. This thus supports the high prevalence of cryptosporidium infection among
246	young children hospitalized with diarrheal illness in sub-Saharan Africa.
247	
248	Few studies, however, have evaluated the prevalence of respiratory cryptosporidiosis in
249	pediatric diarrheal disease. A study in Uganda detected cryptosporidium in 35.4% of induced
250	sputum samples from children presenting with diarrhea who were cryptosporidium-positive
251	in the stool [8]. In our study, cough was noted in almost two-thirds of children presenting
252	with diarrhea, and the frequency of respiratory signs and symptoms tended to be higher, but
253	were not significantly different between those with cryptosporidium-positive and -negative
254	stool samples. In addition to sampling the lower respiratory tract with induced sputum, we
255	also collected NP specimens throughout the follow-up period, and documented detection
256	throughout the 8-week period, although in fewer numbers, more intermittently, and at higher
257	Ct counts compared to sputum. Respiratory symptoms were more common among those
258	cryptosporidium-positive in respiratory and GI tract compared to positive in GI tract alone,
259	although again these findings were not statistically significant. In contrast to the Mor study,
260	which only collected sputum samples from children with cough, unexplained tachypnea or
261	hypoxia, we collected respiratory specimens in all participants at enrollment and noted that
262	participants with cryptosporidium positivity in the respiratory tract had respiratory symptoms

263	in just over half of visits. These data support that almost half the participants with respiratory
264	cryptosporidium detection are asymptomatic, and is a lower, rather than upper, respiratory
265	tract pathogen or colonizer [18-21].
266	
267	The continued detection of cryptosporidium in both GI and respiratory tract over 8 weeks
268	may reflect the young age of this population. A study in Bangladesh noted that children ≤ 2
269	years positive for cryptosporidium shed it for a mean of 4.1 weeks, which was significantly
270	longer than those >2 years (mean 1.7 weeks) [22]. However, that was a household
271	transmission study and did not evaluate children hospitalized with diarrhea. For respiratory
272	pathogens, prolonged detection of respiratory viruses has been noted in a community
273	surveillance study in Utah, with significantly longer detection noted in children <5 years
274	(mean 1.9 weeks) compared to other age groups (mean 1.6-1.7 weeks) [23]. To our
275	knowledge, prolonged detection in the respiratory tract has not before been described for a
276	protozoan parasite, which was not associated with higher prevalence of respiratory
277	symptoms.
278	
279	Prevalence of cryptosporidiosis is higher in cases of persistent v. acute diarrhea (15% v. 6.1%
280	in a study in Guinea Bissau [5]). Persistent diarrhea has been described for cryptosporidiosis
281	with duration of up to 5 months among severely immunocompromised infants [24]. In the
282	Etiology, Risk Factors and Interactions of Enteric Infections and Malnutrition and the
283	Consequences for Child Health and Development Program (MAL-ED) study,
284	cryptosporidiosis was the fifth highest attributable pathogen in all pediatric diarrhea in the
285	community setting, and had increased frequency among those with prolonged and severe
286	diarrhea [3]. Among our participants, GI symptoms resolved within 2 weeks of
287	hospitalization for all participants, but cryptosporidium was detected in stool for eight

288	participants throughout the 8-week period. Shedding duration for cryptosporidiosis among
289	children hospitalized with diarrhea in sub-Saharan Africa has not been described previously
290	using molecular techniques, although in Malawian HIV-infected adults we documented
291	consistent shedding for up to 8 weeks [25]. Nutritional status may also account for the
292	prolonged detection of up to 8 weeks that we documented in our study population. Even
293	though the mean weight-for-height z score was within normal, the mean height-for-age and
294	weight-for-age z scores of recruited participants both met WHO criteria for stunting and
295	wasting, and 41%, 22%, and 10% had height-for-age, weight-for-age, and weight-for-height z
296	scores <-2, respectively, indicating mild-moderate malnutrition in this population. Reduced
297	nutritional status could impact host immunity and predisposition to colonization/infection
298	[26-28].

299

300 Cryptosporidiosis has been associated with excess mortality in children who had the infection 301 in infancy, and this excess mortality persists into the second year of life [4, 5]. In our study 302 we had one death, which occurred in a 7 month-old breastfeeding, HIV unknown male. This 303 child had anthropometric parameters consistent with severe acute malnutrition (mid-upper 304 arm circumference 11 cm, height-for-age z score -1.85, weight-for-age z score -3.01, weight-305 for-height z score -2.47, no nutritional edema) at time of enrollment, and an enrollment 306 cryptosporidium Ct of 23 in the stool but negative in sputum and NP. At time of enrollment 307 he was afebrile with normal vitals and had mild dehydration, diarrhea associated with 308 abdominal tenderness and vomiting, as well as runny nose, cough and wheeze, but no 309 shortness of breath. Death occurred two weeks after hospitalization after the child developed 310 a cough and fever and was treated at an outpatient health facility.

311

312	This study has several limitations. The sample size was small, and the study population was
313	drawn from a single hospital, and therefore findings may not be generalizable to other
314	settings. Secondly, we did not evaluate for respiratory co-pathogens in our enrollment
315	specimens, thereby limiting our ability ascribe symptoms to a single pathogen, although we
316	did document co-pathogen detection in 84% during the follow-up period. Thirdly, we did not
317	genotype cryptosporidium to ascertain whether re-infections occurred. However, these
318	limitations are balanced out by the longitudinal observational design, which allowed us to
319	document for the first time the dynamics of respiratory cryptosporidium among children
320	hospitalized with diarrheal disease.
321	
322	Conclusion
323	In summary, in this study we demonstrated that over 20% of young children hospitalized with
324	diarrheal disease in our setting are positive for cryptosporidium, and they can shed
325	cryptosporidium in the stool for up to 2 months. Concurrent respiratory cryptosporidiosis can
326	be detected in a substantial proportion of young children, and detection continues over a
327	prolonged period, with detection more prominent in the lower rather than upper respiratory
328	tract. This has implications for the development of therapeutics for cryptosporidiosis, which
329	is limited currently to nitazoxanide, and which is poorly efficacious in malnourished children
330	[29, 30]. Since malnourished children are in greatest need for cryptosporidium therapeutics,
331	scientists have been actively trying to find new, more effective drugs to treat
332	cryptosporidiosis in this population. Because safety is of paramount concern in this age
333	group, those developing drugs have debated whether a drug that only resides in the GI tract
334	would be adequate for treating cryptosporidiosis in malnourished children, compared to one
335	with broader systemic distribution [31]. Our findings suggest that the respiratory tract is a
336	significant reservoir for cryptosporidium infection, and that to cure children, may require a

- drug that distributes to the lungs as well as the GI tract. Thus, future research on therapeutic
- development should focus on drugs that target not only the GI but also the respiratory tract.

- 341 (2,628 words)

- 361 <u>≡</u>

362 <u>Acknowledgements</u>

363	We thank the patients and parents for participating in this study; research clinical and
364	laboratory staff for conducting the study; David Moore and Tanja Adams with training the
365	CryptoResp clinical and laboratory teams; Eric Houpt and Darwin Operario with providing
366	TAC cards and technical assistance; Neema Toto for interim study support; Thokozani
367	Ganiza for assistance with data management; and Wes Van Voorhis for reviewing drafts,
368	providing feedback, and supporting us throughout the whole project.
369	
370	Funding
371	The work was supported by the Bill & Melinda Gates Foundation (OPP1191165).
372	
373	Author contributions
374	Conceived and designed the study: PI; Performed the study: MC, WN, HT, JN; Analyzed the
375	data: MC, JN; Supervised the study and wrote first draft of the manuscript: PI; Reviewed,
376	provided critical feedback, and approved the final draft: all authors.
377	
378	Potential conflicts of interest
379	PI has received grants from BMGF outside of the submitted work. All other authors report no
380	potential conflicts. All authors have submitted the ICMJE Form for Disclosure of Potential
381	Conflicts of Interest.
382	
383	
384	
385	
386	

387 <u>References</u>

388	1.	Berkman DS, Lescano AG, Gilman RH, Lopez SL, Black MM. Effects of stunting,
389		diarrhoeal disease, and parasitic infection during infancy on cognition in late
390		childhood: a follow-up study. Lancet 2002; 359(9306): 564-71.
391	2.	Lima AA, Moore SR, Barboza MS, Jr., et al. Persistent diarrhea signals a critical
392		period of increased diarrhea burdens and nutritional shortfalls: a prospective cohort
393		study among children in northeastern Brazil. J Infect Dis 2000; 181(5): 1643-51.
394	3.	Platts-Mills JA, Babji S, Bodhidatta L, et al. Pathogen-specific burdens of community
395		diarrhoea in developing countries: a multisite birth cohort study (MAL-ED). Lancet
396		Glob Health 2015 ; 3(9): e564-75.
397	4.	Kotloff KL, Nataro JP, Blackwelder WC, et al. Burden and aetiology of diarrhoeal
398		disease in infants and young children in developing countries (the Global Enteric
399		Multicenter Study, GEMS): a prospective, case-control study. Lancet 2013;
400		382(9888): 209-22.
401	5.	Molbak K, Hojlyng N, Gottschau A, et al. Cryptosporidiosis in infancy and childhood
402		mortality in Guinea Bissau, west Africa. BMJ 1993; 307(6901): 417-20.
403	6.	Korpe PS, Haque R, Gilchrist C, et al. Natural History of Cryptosporidiosis in a
404		Longitudinal Study of Slum-Dwelling Bangladeshi Children: Association with Severe
405		Malnutrition. PLoS Negl Trop Dis 2016; 10(5): e0004564.
406	7.	Costa LB, JohnBull EA, Reeves JT, et al. Cryptosporidium-malnutrition interactions:
407		mucosal disruption, cytokines, and TLR signaling in a weaned murine model. J
408		Parasitol 2011 ; 97(6): 1113-20.
409	8.	Mor SM, Tumwine JK, Ndeezi G, et al. Respiratory cryptosporidiosis in HIV-
410		seronegative children in Uganda: potential for respiratory transmission. Clin Infect
411		Dis 2010 ; 50(10): 1366-72.

412	9.	Hojlyng N, Jensen BN. Respiratory cryptosporidiosis in HIV-positive patients. Land	cet
-----	----	--	-----

- **1988**; 1(8585): 590-1.
- 414 10. Mercado R, Buck GA, Manque PA, Ozaki LS. Cryptosporidium hominis infection of
 415 the human respiratory tract. Emerg Infect Dis 2007; 13(3): 462-4.
- 416 11. Sponseller JK, Griffiths JK, Tzipori S. The evolution of respiratory Cryptosporidiosis:
- 417 evidence for transmission by inhalation. Clin Microbiol Rev **2014**; 27(3): 575-86.
- 418 12. Nyangulu W, Van Voorhis W, Iroh Tam PY. Evaluating respiratory cryptosporidiosis
- 419 in pediatric diarrheal disease: protocol for a prospective, observational study in
- 420 Malawi. BMC Infect Dis **2019**; 19(1): 728.
- 421 13. Grant LR, Hammitt LL, Murdoch DR, O'Brien KL, Scott JA. Procedures for
- 422 collection of induced sputum specimens from children. Clin Infect Dis 2012; 54 Suppl
 423 2: \$140-5.
- 424 14. Liu J, Kabir F, Manneh J, et al. Development and assessment of molecular diagnostic
- 425 tests for 15 enteropathogens causing childhood diarrhoea: a multicentre study. Lancet
 426 Infect Dis 2014; 14(8): 716-24.
- 427 15. Korpe PS, Valencia C, Haque R, et al. Epidemiology and Risk Factors for
- 428 Cryptosporidiosis in Children From 8 Low-income Sites: Results From the MAL-ED
 429 Study. Clin Infect Dis 2018; 67(11): 1660-9.
- 430 16. Iturriza-Gomara M, Jere KC, Hungerford D, et al. Etiology of Diarrhea Among
- 431 Hospitalized Children in Blantyre, Malawi, Following Rotavirus Vaccine
- 432 Introduction: A Case-Control Study. J Infect Dis **2019**; 220(2): 213-8.
- Liu J, Platts-Mills JA, Juma J, et al. Use of quantitative molecular diagnostic methods
 to identify causes of diarrhoea in children: a reanalysis of the GEMS case-control
- 435 study. Lancet **2016**; 388(10051): 1291-301.

436	18.	Clavel A, Arnal AC, Sanchez EC, et al. Respiratory cryptosporidiosis: case series and
437		review of the literature. Infection 1996 ; 24(5): 341-6.
438	19.	Dupont C, Bougnoux ME, Turner L, Rouveix E, Dorra M. Microbiological findings
439		about pulmonary cryptosporidiosis in two AIDS patients. J Clin Microbiol 1996;
440		34(1): 227-9.
441	20.	Lopez-Velez R, Tarazona R, Garcia Camacho A, et al. Intestinal and extraintestinal
442		cryptosporidiosis in AIDS patients. Eur J Clin Microbiol Infect Dis 1995; 14(8): 677-
443		81.
444	21.	Poirot JL, Deluol AM, Antoine M, et al. Broncho-pulmonary cryptosporidiosis in four
445		HIV-infected patients. J Eukaryot Microbiol 1996; 43(5): 78S-9S.
446	22.	Korpe PS, Gilchrist C, Burkey C, et al. Case-Control Study of Cryptosporidium
447		Transmission in Bangladeshi Households. Clin Infect Dis 2019; 68(7): 1073-9.
448	23.	Byington CL, Ampofo K, Stockmann C, et al. Community Surveillance of
449		Respiratory Viruses Among Families in the Utah Better Identification of Germs-
450		Longitudinal Viral Epidemiology (BIG-LoVE) Study. Clin Infect Dis 2015; 61(8):
451		1217-24.
452	24.	Kocoshis SA, Cibull ML, Davis TE, Hinton JT, Seip M, Banwell JG. Intestinal and
453		pulmonary cryptosporidiosis in an infant with severe combined immune deficiency. J
454		Pediatr Gastroenterol Nutr 1984; 3(1): 149-57.
455	25.	Iroh Tam PY, Arnold SLM, Barrett LK, et al. Clofazimine for treatment of
456		cryptosporidiosis in HIV-infected adults (CRYPTOFAZ): an experimental medicine,
457		randomized, double-blind, placebo-controlled phase 2a trial. Clin Infect Dis 2020.
458	26.	Bourke CD, Jones KDJ, Prendergast AJ. Current Understanding of Innate Immune
459		Cell Dysfunction in Childhood Undernutrition. Front Immunol 2019; 10: 1728.

460	27.	Gwela A, Mupere E, Berkley JA, Lancioni C. Undernutrition, Host Immunity and
461		Vulnerability to Infection Among Young Children. Pediatr Infect Dis J 2019; 38(8):
462		е175-е7.
463	28.	Ibrahim MK, Zambruni M, Melby CL, Melby PC. Impact of Childhood Malnutrition
464		on Host Defense and Infection. Clin Microbiol Rev 2017; 30(4): 919-71.
465	29.	Checkley W, White AC, Jr., Jaganath D, et al. A review of the global burden, novel
466		diagnostics, therapeutics, and vaccine targets for cryptosporidium. Lancet Infect Dis
467		2015 ; 15(1): 85-94.
468	30.	Striepen B. Parasitic infections: Time to tackle cryptosporidiosis. Nature 2013;
469		503(7475): 189-91.
470	31.	Huston CD, Spangenberg T, Burrows J, Willis P, Wells TN, van Voorhis W. A
471		Proposed Target Product Profile and Developmental Cascade for New
472		Cryptosporidiosis Treatments. PLoS Negl Trop Dis 2015; 9(10): e0003987.
473		
474		
475		
476		
477		
478		
479		
480		
481		
482		
483		
484		

485	Table 1. Characteristics of the study population at enrollment
486	Table 2. Longitudinal detection of cryptosporidium in GI and respiratory tract and associated
487	symptoms
488	Table 3. Characteristics and associated symptoms in participants with cryptosporidium
489	detection in GI tract only v. GI and respiratory tract A) at enrollment; B) throughout study
490	period
491	
492	Supplementary Table 1. Full characteristics of study population at enrollment
493	
494	
495	Figure legend
496	Figure 1. Comparison of cryptosporidium detection in GI and respiratory tracts (mean cycle
497	threshold with 95% confidence intervals) over 8 weeks in children hospitalized with diarrheal
498	disease
499	Figure 2. Patient-level dynamics of cryptosporidium detection in GI and respiratory tracts
500	over 8 weeks in a: A) 10 month-old; B) 14 month-old; C) 9 month-old; D) 12 month-old; E)
501	14 month-old; F) 7 month-old; G) 7 month-old; H) 11 month-old; I) 14 month-old; J) 11
502	month-old; K) 17 month-old; L) 10 month-old; M) 13 month-old; N) 20 month-old; and O)
503	15 month-old.
504	
505	
506	
507	
508	
509	

