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Key Points 
• We identified three novel loci on childhood acute lymphoblastic leukemia near genes 

previously associated with multiple blood cell traits 
• Polygenic risk scores using known and novel risk variants showed similar efficacy in 

Latino and non-Latino white Americans 
 
Abstract 

The risk of childhood acute lymphoblastic leukemia (ALL) differs across ethnic groups and there 
exist gaps in our understanding of the genetic risk of ALL as most studies took place in 
populations of predominantly European ancestries. In an effort to address these limitations, we 
performed a genetic meta-analysis of ALL in 76,317 participants across four ethnic groups, 
including 17,814 non-European individuals and 3,482 total cases. We replicated 15 out of 16 
previously identified loci associated with ALL in our trans-ethnic analysis. We further identified 
five novel associations at genome-wide significance, including three novel loci and two 
secondary associations at previously known loci (17q12 and near CEBPE). The three putatively 
novel loci (rs9376090 near MYB/HBS1L, rs10998283 near TET1, and rs9415680 near 
JMJD1C/NRBF2) were previously shown to be associated with multiple blood cell traits and 
other hematopoietic cancers. Polygenic risk scores constructed from our trans-ethnic meta-
analysis showed similar efficacy in independent Latino (LAT) and non-Latino white (NLW) 
ALL cohorts (AUC ~ 0.67-0.68) and could partly explain the increased risk of ALL in LAT 
compared to NLW. Cross-population analysis also showed high but significantly less than 100% 
genetic correlation between LAT and NLW, suggesting potential differences in the underlying 
genetic architecture between ethnic groups. In summary, our findings enhance the understanding 
of genetic contribution to ALL risk across diverse populations and highlight the importance to 
include multiple ethnic groups in GWAS.   
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Introduction 
 
Acute lymphoblastic leukemia (ALL) is the most common type of childhood cancer worldwide, 
with substantial racial and ethnic differences in incidence and treatment outcome1,2. Previous 
genome-wide association studies (GWAS) have confirmed the genetic basis of ALL 
susceptibility by identifying a number of risk loci for childhood ALL3,4,5(p12),6–8 and estimating 
the heritability to be 21% (ref.9). However, the known risk loci together account for a relatively 
small portion of the total variance in genetic risk of ALL9, suggesting that additional 
susceptibility alleles may be discovered in larger studies. Furthermore, these studies were 
generally performed in cohorts with a predominantly European ancestry. Latino children have 
the highest risk of ALL in the United States, with an incidence rate ~15-40% higher than in non-
Latino whites10–12 and an increased chance of relapse and poorer overall survival13,14. Yet, we 
have a limited understanding of the genetic architecture of ALL in non-European populations 
and the generalizability of findings from existing GWAS to non-European populations (but see 
recent efforts for studying the genetic etiology of childhood ALL in Latinos15–17). While 
environmental or social factors likely underlie some if not the majority of the differences in risk 
between ethnic groups, there may also be a difference in the genetic risk architecture that 
modulates risk across ethnic groups and would argue for the greater inclusion of other ethnic 
groups in genetic studies of ALL. 
 
Given this context, we performed a trans-ethnic GWAS of childhood ALL in a discovery panel 
consisting of 76,317 individuals from an assembled multi-ethnic cohort. We note the complexity 
of discussing race, ethnicity and ancestry in a genetic study. As a convention, we used the 
following terms and abbreviations to refer to each ethnic group in our study: African American 
(AFR), East Asian (EAS), Latino American (LAT), and non-Latino white (NLW). These 
population labels are largely based on self-reported ethnic identity and we confirmed that they 
largely correlate with genetic ancestry as defined by the reference populations in 1000 
Genomes18 (Methods). Our cohort consisted of 3,482 cases and 72,835 controls for an effective 
sample size of 13,292, which is, to our knowledge, the largest trans-ethnic GWAS for ALL to 
date. We identified three novel ALL risk loci and tested the novel findings from our discovery 
panel in two additional independent cohorts. We further compared the efficacy of polygenic risk 
scores (PRS) to stratify individuals based on their risk of ALL in the two largest subgroups of 
our data, LAT and NLW. PRS models are known to be poorly transferred to non-European 
populations19, but multi-ethnic designs may be more effective in identifying alleles with shared 
effects across population without explicit fine-mapping and produce more comparable PRS 
models between populations20,21. Finally, we leveraged our genome-wide summary statistics to 
contrast the genetic architecture of ALL between LAT and NLW populations.  
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Materials and methods 

Study Cohorts 

The California Childhood Cancer Record Linkage Project (CCRLP) includes all children born in 
California during 1982-2009 and diagnosed with ALL at the age of 0-14 years per California 
Cancer Registry records. Children who were born in California during the same period and not 
reported to California Cancer Registry as having any childhood cancer were considered potential 
controls. Detailed information on sample matching, preparation and genotyping has been 
previously described.4 Because ALL is a rare childhood cancer, for the purpose of a genetic 
study we followed previous practice4 and incorporated additional controls using adult individuals 
from the Kaiser Resource for Genetic Epidemiology Research on Aging Cohort (GERA; dbGaP 
accession: phs000788.v1.p2). The GERA cohort was chosen because a very similar genotyping 
platform had been used: Affymetrix Axiom World arrays. For replications we included two 
independent ALL cohorts: (1) individuals of predominantly European ancestry from the 
Children’s Oncology Group (COG; dbGAP accession: phs000638.v1.p1) as cases and from 
Wellcome Trust Case–Control Consortium22 (WTCCC) as controls; and (2) individuals of 
European and Latino ancestry from the California Childhood Leukemia Study (CCLS), a non-
overlapping California case-control study (1995-2008).23 The quality control and imputation for 
both the discovery and replication cohorts were conducted in ethnic strata and generally followed 
previous pipelines of ALL GWAS, but with additional attention paid to incorporate the entire 
GERA cohort and ensuring data quality post-imputation. See Supplemental Methods for details. 
This study was approved by Institutional Review Boards at the California Health and Human 
Services Agency, University of Southern California, Yale University, and the University of 
California San Francisco. 
 

Association Testing  

We used SNPTEST24 (v2.5.2) to test the association between imputed genotype dosage and case-
control status in logistic regression, after adjusting for the top 20 principal components (PCs). 
Sex was not included as a covariate, and we found sex was not correlated with genotype dosage 
of any of the putatively associated SNPs (data not shown). Results from the four ethnic-stratified 
analyses were combined via the fixed-effect meta-analysis with variance weighting using 
METAL25. Only variants passing QC in at least three of the four ethnic groups were meta-
analyzed. A genome-wide threshold of 5 x 10-8 was used for significance in the discovery stage. 
A Bonferroni-corrected significance of 0.00312 (=0.05/16) was used for replication of previously 
reported susceptibility variants3–8,26–28.  Cochran's Q-test for heterogeneity was performed using 
METAL25. To perform conditional analysis in identifying secondary associations within a locus, 
the lead SNP was additionally included in the regression model, again using 5 x 10-8 as threshold 
for significance.  
 

Polygenic Risk Score Analysis 

Polygenic risk scores (PRS) for ALL were constructed using PLINK (v2.0) by summing the 
genotype dosages of risk alleles, each weighted by its effect size from our discovery GWAS 
meta-analysis. PRS were constructed based on: (1) lead SNPs in the 16 known loci (N = 18 
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SNPs, including variants from the two secondary signals in IKZF1 and CDKN2A/B that were 
previously reported; for which we used the corresponding effect sizes from conditional analysis), 
and (2) by additionally including the novel hits (N = 23 SNPs, including the additional 3 novel 
loci and 2 novel conditional associations). Associations between PRS and case-control status for 
ALL were tested in each group adjusting for 20 PCs using R. To evaluate the predictive power of 
PRS, Area Under the receiver operating characteristic Curve (AUC) were calculated using pROC 
package29 in R.  
 

Genetic architecture of ALL within and between populations 

To investigate the genetic architecture of ALL and contrasting this architecture between NLW 
and LAT populations, we estimated the percentage of familial relative risk (FRR) explained by 
associated variants individually or in aggregate, the heritability ascribable to all post-QC imputed 
SNPs with MAF � 0.05, the genetic correlation between NLW and LAT, and the genome-wide 
proportion of causal variants that are population-specific or population-shared. See the 
Supplemental Methods for details. 
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Results 

Trans-ethnic Genetic Associations with ALL 

We performed a trans-ethnic meta-analysis GWAS for childhood ALL. After quality control 
filtering, our dataset consisted of 3,482 cases and 72,835 controls (Supplementary Table S1; 
Methods) in total. In contrast to the previous trans-ethnic analysis4, we included additional 
controls for NLW and added the EAS cohort. Furthermore, we tested the association at 
7,628,894 imputed SNPs, including low frequency (MAF between 1-5%) variants that were not 
previously systematically tested. We aggregated the summary statistics across the four ethnic 
groups in a fixed-effect meta-analysis. The genomic control inflation factor was 1.022 after 
excluding 16 previously known ALL-associated loci (Table 1), suggesting our meta-analysis was 
reasonably robust to any confounding due to population stratification (Figure 1). In total, twelve 
loci reached genome-wide significance (i.e, P < 5.0 X 10-8) in our analysis.  
 
We found that for the 16 previously published risk loci for ALL3–9,17,27,28, all were associated 
with ALL at the nominal level (P < 0.05) or have a SNP nearby with strong association (Table 1). 
Nearly all of the published risk SNPs show consistent direction of effects across ethnic groups 
(13/16 SNPs with heterogeneity P-value > 0.05; P = 0.0384, 0.006, 0, 0.000259 for AFR, EAS, 
LAT, NLW respectively for consistent direction of effect by the sign test, Supplemental Table 
S2). In some cases, the published SNP is not the SNP with the most significant association in our 
dataset, though usually our top SNP in the locus is in strong LD with the reported SNP (Table 1). 
Given the larger sample size and trans-ethnic analysis, the best associated variants in our analysis 
may reflect the more likely causal / shared association across populations. Two loci at C5orf56 
and TLE1 are noted. At the C5orf56 locus on 5q31, the variant previously reported in an 
independent European-ancestry cohort (rs886285) to be associated with a particular subtype of 
ALL (HD-ALL)9 was not nominally associated with ALL overall (P = 0.63) in our dataset. A 
weakly linked SNP (rs11741255; r2 = 0.35 in NLW, 0.19 in LAT) in the same locus 
approximately 20kb away was significantly associated with ALL in our data (P = 1.69x10-4) but 
may reflect a chance association. At the TLE1 locus on 5q21, neither the published variant nor 
our top variant in the locus would be considered significantly associated after Bonferroni 
correction (minimum P = 1.06x10-2 for rs62579826), possibly due to heterogeneity driven by 
EAS in which both the published variant and our top variant are monomorphic30.  
 
More importantly, we discovered three putatively novel susceptibility loci: one at 6q23 and two 
at 10q21 (Figure 1). The strongest association signal in 6q23 is at rs9376090 (P= 8.23 X 10-9, 
OR=1.27) in the intergenic region between MYB and HBS1L (Figure 2A). This association is 
mainly driven by NLW presumably due to its large sample size (Supplementary Table S1). In 
10q21, there were two independent signals that showed genome-wide significance. One locus 
was identified with the lead SNP rs9415680 (P=7.27 X 10-8, OR=1.20), within a broad 
association peak, with apparently long-range LD with SNPs covering NRBF2, JMJD1C, and 
parts of REEP3 (Figure 2B). The second locus in 10q21 was identified 5Mb away, with lead 
SNP rs10998283 (P=3.92x10-8, OR=1.15) in an intronic region in TET1 (Figure 2C). The 
association signals for both loci in 10q21 were largely driven by LAT. We used the convention 
of the nearest genes to refer to these loci for the remainder of the manuscript, acknowledging that 
they may not be the causal genes.  
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To replicate our findings in independent datasets, we tested the associations of the three novel 
variants and their LD proxies (with P < 5 x 10-7;n=141) in independent samples from the 
COG/WTCCC and CCLS cohorts (Methods). For the MYB/HBS1L locus, which was driven by 
NLW in the discovery cohort, we replicated the signal in COG/WTCCC cohort (rs9376090, PCOG 

= 4.87x10-3, PCOG+discovery analysis = 1.23x10-10; Supplementary Table S3), but did not replicate in 
CCLS likely owing to the small sample size of NLW. For the TET1 locus, in which the original 
association was driven by LAT in the discovery, three of the four SNPs with P < 5x10-7 in the 
discovery cohort nominally replicated in CCLS. The lead SNP after meta-analyzing the 
discovery cohort and the replication cohort of CCLS was rs79226025 (PCCLS = 3.04 x10-2, 
PCCLS+discovery = 6.81 x10-9; Supplementary Table S3). For the NRBF2 / JMJD1C locus, we did 
not observe an association in the replication cohorts.  

We also performed conditional analyses adjusting for the lead SNP at each locus and identified a 
secondary signal in four out of the 16 previously known loci (Table 2, Figure 3). In all cases, the 
LD between the secondary hit and the top hit in the locus are low (Table 2). The additional 
second associations in CDKN2A and IZKF1 loci were previously noted9(p1). In CEBPE 
(rs60820638, P=5.38 x10-8) and 17q12 (rs12944882, P=7.71 x10-10), these secondary signals 
represent novel associations. In particular, at the CEBPE locus, previous reports suggest multiple 
correlated variants with functional evidence31,32 . Our analysis is consistent with the two previous 
variants (rs2239635 and rs2239630) being or tagging the same underlying signal, while the new 
association we identified (rs60820638) is an independent association (Supplementary Table S4).  

 
Polygenic Risk Score 
 
To assess the combined effect of all identified risk alleles for ALL, we constructed a PRS model 
in our discovery cohort, using either the 18 SNPs from 16 previously known loci or the 23 
known plus novel SNPs and their associated effect sizes from the trans-ethnic meta-analysis. We 
then computed and tested the PRS for NLW and LAT individuals in the independent CCLS and 
COG/WTCCC cohorts. The scores generated with the known risk loci were significantly 
associated with case-control status in all groups (PCCLS NLW=2.22x10-17, PCCLS LAT=4.78x10-23, 
PCOG/WTCCC =2.99x10-62, Supplementary Table S5). Adding the three novel loci identified in this 
study and the two novel secondary signals further strengthened the evidence of the association in 
COG/WTCCC (P =6.93x10-63) and CCLS LAT (P = 5.75 x10-24), while the evidence of 
association stayed about the same in CCLS NLW (P =2.03 x10-17).  The predictive accuracy as 
measured by AUC are similar between NLW and LAT, at around 67-68%, consistent with the 
hypothesis that trans-ethnic meta-analysis will enable PRS to be more transferrable between 
populations.  
 
We also examined the distribution of PRS in CCRLP individuals (Figure 4). We found that while 
the shape of the PRS distribution is consistent with a normal distribution (Kolmogorov-Smirnov 
P = 0.918 and 0.303 for LAT and NLW, respectively) and appears similar between LAT and 
NLW (standard deviation of 0.728 and 0.735 respectively; F-Test P = 0.633), the scores in LAT 
are shifted to the right compared to the scores in NLW (mean of 5.101 and 4.641 respectively, 
Welch t-test P = 1.3x10-122). The observed pattern was consistent when the scores were stratified 
by case-control status (mean of 5.324 and 4.881 in LAT and NLW cases, respectively, P=3.956 
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x10-58; mean of 4.895 and 4.414 in LAT and NLW controls, respectively, with P= 1.493 x10-78). 
This observation was also replicated in CCLS with mean of 5.119 in LAT and 4.607 in NLW 
(P=4.596 x10-51). Therefore, results from our PRS analyses are consistent with the notion that 
differences in allele frequency of ALL risk loci between populations may complement other non-
genetic factors for ALL risk, and partly explain the increased ALL risk in LAT relative to NLW 
children and LAT. 
 
Genetic architecture of ALL in Latinos and non-Latino whites 
 
We estimated the relative contributions of each variant to ALL risk by computing the familial 
relative risk (Supplementary Table 6). In CCLS, where effect size estimates are expected to be 
less biased by winner’s curse, the known risk variants accounted for 22.7% and 23.2% of 
familial relative risk in LAT and NLW, and the addition of novel variants increased these 
estimates to 24.3% and 24.8%, respectively (Supplemental Table S6). 
 
The heritability of ALL attributable to all common SNPs (MAF � 0.05) was estimated to be 20.3 
± 3.2% in NLW and 4.1 ± 2.0% in LAT using the GCTA-LDMS framework33, and 20.2 ± 4.7%% 
in NLW and 11.1 ± 3.6% in LAT using the phenotype-correlation-genotype-correlation (PCGC) 
regression framework (Supplemental Table S7A). The heritability estimates in NLW are 
consistent in both approaches and with that previous reported9(p1). Because the imputation quality 
using HRC reference panel is expected to be high for variants with MAF between 1-5% in NLW, 
our dataset also provides the opportunity to estimate the frequency-stratified contribution to the 
heritability of ALL in NLW. The inclusion of low frequency variants increased the estimated 
heritability in NLW to 29.8 ± 4.3% using REML (divided ~16.2% due to common variants, 13.5% 
due to low frequency variants; Supplemental Table S7B). Taking advantage of the admixed 
nature of LAT, whereby ancestry segments could capture effects beyond that directly attributable 
to assayed SNPs (such as the estimate from GCTA-LDMS), we also adopted an approach 
described in Zaitlen et al34 to estimate the total narrow-sense heritability for ALL in LAT to be 
37.3 ± 6.9%. Taken together, multiple lines of evidence suggest that increasing sample sizes will 
identify additional low frequency associations to ALL in the future. 
 
Furthermore, we estimated the genetic correlation of ALL between NLW and LAT to be high 
(rG = 0.714 ± standard error 0.130) but significantly different from 1 (P = 0.014, Supplementary 
Table 8). This indicates the genetic architectures of NLW and LAT may be similar as expected 
from correlated effect sizes (Supplementary Figure S1) but not perfectly concordant. We 
complemented this analysis further by estimating the number of population-specific and shared 
causal alleles using the program PESCA35. The PESCA framework defines the set of causal 
variants as all variants tested to have a non-zero effect, even if the effect is indirect and only 
statistical rather than biological in nature. Using this framework, we estimated that 
approximately 32.5% of SNPs inferred to be causal are shared between NLW and LAT (1.71% 
of all common SNPs were inferred to have nonzero effects in both NLW and LAT; 1.69% and 
1.87% were inferred to have population-specific nonzero effects in NLW and LAT, respectively). 
Together, these results suggests that there may be ethnic-specific genetic risk profiles or 
differential interactions with the environment that contributes to differences in disease risk 
between NLW and LAT. However, it should be noted that these analyses adopted the REML 
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framework or used the GCTA-LDMS estimates as hyperparameters, which could be biased in the 
context of LAT population here (see Discussion).  
 
Discussion 
 
By incorporating data across four ethnic groups, we have performed the largest trans-ethnic 
meta-analysis GWAS of childhood ALL to date. We identified three putatively novel 
susceptibility loci and two additional independent risk associations at previously reported loci. 
Our analysis suggests that the known and novel ALL risk alleles together explained about 25% 
of the familial relative risk in both NLW and LAT populations, and that the trans-ethnic PRS we 
constructed, although relatively simple and utilizing only the genome-wide associated variants, 
performed similarly in both NLW and LAT in predicting ALL (AUC ~ 67-68%). 
 
In support of their potential role in ALL etiology, each of the three novel loci harbors genes 
and/or variants with a role in hematopoiesis and leukemogenesis as annotated by HaploReg 
(version 4.1) 36 and GTEx portal37. The associated variants in 6q23 are located between HBS1L 
and MYB, a myeloblastosis oncogene that encodes a critical regulator protein of lymphocyte 
differentiation and hematopoiesis38 . This locus is already well known for associations with 
multiple blood cell measurements, severity of major hemoglobin disorders, and β-thalassemia39,40. 
The associated SNPs in our study fall within HBS1L-MYB intergenic region known to harbor 
multiple variants that reduce transcription factor binding, affect long-range interaction with MYB, 
and impact MYB expression39,41. The lead SNP rs9376090 is in a predicted enhancer region in 
K562 leukemia cells and GM12878 lymphoblastoid cells, and is a known GWAS hit for platelet 
count38 and hemoglobin concentration42,43. Also, it is an eQTL in lymphocytes and whole blood37 
for ALDH8A1, which encodes aldehyde dehydrogenases, a cancer stem cell marker and a 
regulator self-renewal, expansion, and differentiation.  
 
One of the associated loci in 10q21 has a distinct haplotype structure, with 130 highly correlated 
SNPs (r2 > 0.8) associated with ALL (Figure 2B). This haplotype structure is observed in LAT 
and EAS, and the associations are driven by alleles with higher frequency in LAT and EAS than 
NLW or AFR (Supplementary Table S1, Supplementary Figure S2). This 400kb region is rich 
with genetic variants associated with blood cell traits such as platelet count, myeloid white cell 
count, and neutrophil percentage of white cells44,45. It is also associated with IL-10 levels46 which 
was shown to be in deficit in ALL cases47. The signal region is contained within the intron of 
JMJD1C, a histone demethylase that a recent study has found to regulate abnormal metabolic 
processes in AML48. Previous studies have found that it acts as a coactivator for key transcription 
factors to ensure survival of AML cells49 and self-renewal of mouse embryonic stem cells50.   
 
The second locus in 10q21 contains intronic variants in the TET1 gene, which is well known for 
its oncogenicity in several malignancies including AML51. A recent study showed the epigenetic 
regulator TET1 is highly expressed in T-cell ALL and is crucial for human T-ALL cell growth in 
vivo52.  We found the associations at this locus to be slightly stronger for T-ALL than for B-ALL 
in a small subset of individuals with ALL subtype information, though the difference is not 
statistically significant (Supplemental Table S9). Of the four significant variants in this locus, 
SNP rs58627364 lies in the promoter region of TET1 while the remaining three variants did not 
appear to overlap functional elements (Supplementary Figure S3). However, none of these SNPs 
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were observed as eQTL for TET1 in whole blood or lymphoblastoid cells53; future studies may 
want to investigate whether these SNPs affect TET1 expression in hematopoietic stem or 
progenitor cells.  
 
In addition to identifying putative novel ALL risk loci, we capitalized on the large numbers of 
Latinos and non-Latino whites included in our study to explore the genetic architecture of ALL 
in these two populations. In the NLW population, we estimated that ~ 29% of the heritability of 
ALL was attributed to a combination of common and low-frequency (MAF between 1-5%) 
imputed variants using both GCTA-LDMS and PCGC regression (Supplementary Table S7B). 
This estimate is higher than the previous estimate of ~20% (ref. 9), suggesting that there are 
additional low frequency variants associated with ALL that may be discovered in larger scaled 
studies. The picture is less clear among LAT, where the estimated heritability was perhaps 
unrealistically low using GCTA-LDMS (4.1% in univariate analysis; Supplementary Table S7A, 
8). This estimate contrasted strongly against other lines of evidence that showed similar 
estimated effect sizes (r2 = 0.819; Supplementary Figure S1) and familial relative risks explained 
by GWAS loci (Supplementary Table S6) between NLW and LAT. Previous studies have noted 
the downward bias in REML heritability estimate in case-control studies, which is exacerbated 
when the covariates in the model (i.e. PCs and ancestry) are correlated with the disease status54. 
We thus also followed previous suggestions and used the PCGC regression to obtain variance 
component estimates54,55, resulting in a higher heritability estimate (11.1%). Because of the 
underrepresentation of Native American or other non-European haplotypes in HRC panel, a 
priori we did not estimate the heritability including low-frequency imputed variants in LAT. 
When we did attempt to estimate heritability in this setting, we obtained a strongly negative 
REML-based heritability estimates (Supplementary Table S7B), suggesting potential model 
instability or misspecification attributed to the admixed nature of LAT56. Consequently, we also 
recommend caution when interpreting the estimated genetic correlation between LAT and NLW.  
 
Nevertheless, we used bivariate version of the REML analysis to compute genetic correlation of 
ALL between populations, as had been done previously for prostate cancer with individual level 
data57. Our estimated genetic correlation (rG = 0.71) is significantly less than 1, apparently 
suggesting a significant population-specific components of the disease architecture between LAT 
and NLW. This would be consistent with the findings of the ERG locus16,17, a Latino-specific 
association with ALL, and suggest that future ethnic-specific GWAS across different ethnic 
groups for ALL will be insightful. This is also consistent with our observation in the PESCA 
analysis, where we found that only 32.5% of the estimated causal alleles are shared between 
LAT and NLW. These insights should still be treated with caution because the sample size for 
ALL, a rare disease, is still relatively small compared to complex traits examined using PESCA35, 
and because the REML-based heritability estimates for LAT used as hyperparameter by PESCA 
may be biased. Therefore, more focused efforts to investigate the genetic architecture for ALL, 
particularly in admixed populations like the Latinos, is needed. 
 
Future studies aimed to uncover the genetic risk factors for ALL could focus on multiple avenues. 
First, there will be a need to further increase the sample size of the study cohort, which would 
provide additional venues to replicate the putative novel findings here and identify more 
associated alleles at lower frequency. Second, there should be a focus on ethnic-specific GWAS 
for ALL, as ethnic-specific associations could be missed in a trans-ethnic GWAS. An example is 
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the ERG locus, which is not genome-wide significant in our meta-analysis. Finally, while not 
explored extensively in this particular study, there should be a focus on disentangling the 
different subtypes of ALL, and to study other aspects of the disease pathogenesis such as disease 
progression or risk of relapse, though these data are less available and may require more focused 
ascertainment and cohort creation.  
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Table 1. Summary statistics for the reported variants, the top variant in the loci from our meta-
analysis, and the linkage disequilibrium between the two variants in NLW and LAT.  

  Reported SNP Top SNP in this study r2 

Gene Chr Pos rsID (reference) P-value Chr Pos rsID P-value  NLW LAT 

C5orf56 5 131765206 rs886285 (ref 9) 0.63  5 131811182 rs11741255 1.69x10-4  0.35 0.19 

BAK1 6 33546930 rs210143 (ref 9) 4.49x10-8  6 33546837 rs210142 4.27 x10-8   1  1 

IKZF1 7 50470604 rs4132601 (ref 5) 1.13x10-33  7 50477144 rs10230978 3.92 x10-34  0.98 0.97 

8q24 8 130156143 rs4617118 (ref 4) 1.04 x10-12 Same 

CDKN2A 9 21970916 rs3731249 (ref 27) 1.29x10-18  9 21975319 rs36228834 1.90 x10-18  0.99 1 

TLE1 9 83747371 rs76925697 (ref 9) 5.37x10-2  9 83728588 rs62579826 1.06 x10-2  0.81 0.98 

GATA3 10 8104208 rs3824662 (ref 6) 4.24x10-9 Same 

PIP4K2A 10 22852948 rs7088318 (ref 8) 6.50x10-19  10 22853102 rs7075634 2.42 x10-19  0.96 0.97 

BMI1 10 22423302 rs11591377 (ref 28) 8.21x10-10  10 22374489 rs1926697 5.24 x10-10  0.84 0.88 

ARID5B 10 63723577 rs10821936 (ref 7) 4.78x10-67  10 63721176 rs7090445 7.36 x10-70  0.98 0.99 

LHPP 10 126293309 rs35837782 (ref 3) 6.90x10-4 Same 

ELK3 12 96612762 rs4762284 (ref 3) 2.42x10-3  12 96645605 rs78405390 4.68 x10-5  0.13 0.22 

CEBPE 14 23589057 rs2239633 (ref 5) 3.0 x10-14  14 23589349 rs2239630 2.12 x10-21  0.74 0.78 

IKZF3 17 38066240 rs2290400 (ref 4) 2.09 10-6  17 37957235 rs17607816 1.42 x10-7  0.02 0.22 

IGF2BP1 17 47092076 rs10853104 (ref 9) 2.93x10-2  17 47217004 rs6504598 4.87 x10-4  0.02 0.02 

ERG 21 39789606 rs8131436 (ref 17) 6.97x10-5  21 39784752 rs55681902 9.36 x10-6  0.62 0.65 

We focused on the variants within 1Mb of the previously reported susceptibility variants3–8,26–28 
and reported the association results of the published lead SNP as well as the top SNP at each 
locus from our meta-analysis. Note that out of the 16 loci, three (8q24.21, IKZF3, and BMI1) 
were initially identified and five (IKZF1, PIP4K2A, ARID5B, CDKN2A, CEBPE) were 
previously shown to be replicated  using a smaller but largely overlapping subset of this 
dataset4,28. For these loci, our findings here would not necessarily constitute an independent 
replication. Gene names (gene) are given based on the nearest gene unless the variant is in gene 
desert. Chromosome (Chr) and position (Pos) are given in hg19 coordinates. r2 denotes the 
squared correlation of the reported SNP and our top SNP in NLW from discovery cohort; NLW 
and LAT denote the non-Latino white and Latino cohorts, respectively.  
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Table 2. Summary of conditional analysis to identify secondary associations at known loci. 
  

Gene Chr Pos rsID Risk allele OR Pconditional Pdiscovery r2 
 IKZF1  7  50459043  rs78396808  A 1.632 3.46x10-26 2.7x10-16 *0.06 
 CDKN2A/B  9  21993964 rs2811711  T 1.355 7.2x10-10 1.85x10-11 0.01 
 CEBPE  14  23592617 rs60820638  A 1.193 5.38x10-8 0.102 0.16 
 IZKF3  17  37983492 rs12944882  T 1.204 7.71x10-10 2.81x10-7 0.02 

For each of the four significant association after conditional analysis, we show the genomic 
coordinates in hg19, effect size (OR), the P-values with or without conditioning on the lead SNP 
from the discovery meta-analysis in the locus, and the r2 between the lead SNP and secondary 
association.  

Chr., chromosome; Pos;. Position in hg19; OR: Effect size; Pconditional: p-value from the 
conditional analysis; Pdiscovery: p –value from meta-analysis without conditioning on any SNP; r2: 
squared correlation of the conditioned SNP and the most significantly associated SNP from 
conditional analysis. 

*calculated in Latino population as the variant was filtered out for low MAF in NLW cohort. 
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Figure1. Summary result of the trans-ethnic meta-analysis on ALL. 
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marked with dotted lines and labeled with the nearest genes. Significance threshold at genome-wide 
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of inflation of the test statistics in general as the genomic inflation factor is 1.024. 
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Figure2. Novel loci associated with childhood ALL in trans-ethnic meta-analysis. 
LocusZoom plots showing 1 Mb region around the identified loci near (A) MYB/HBS1L on 
chr6, (B) NRBF2/JMJD1C on chr10, and (C) TET1 on chr10 are shown. Diamond symbol 
indicates the lead SNP in each locus. Color of remaining SNPs is based on linkage 
disequilibrium (LD) as measured by r2 with the lead SNP in non-Latino white. All coordinates 
in x-axis are in hg19. 
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Figure 3. Secondary association signal (p < 5x10-8) with ALL found in previously known loci 
through conditional analysis. LocusZoom plot displaying the 1 Mb region found to harbor a second 
novel variant associated with ALL through conditional analysis: (A) IKZF1 (B) CDKN2A (C ) CEBPE 
(D) IKZF3. For each locus, we display the pattern of association before(left) and after(right) 
conditioning on the top associated variant in the locus. In both cases, diamond indicates the lead 
SNP in the conditional analysis. Color of the remaining SNPs is based on linkage disequilibrium (LD) 
with the lead variant in the conditional analysis in non-Latino white. Genomic coordinates on x-axis 
are in hg19. 
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Effect sizes for lead SNPs in known loci

Figure S1. Effect sizes for lead SNPs in each of the 16 known loci. The effect size 
estimates(Beta) from GWAS in only the LAT or NLW subset from our discovery cohort are 
shown. The correlation coefficient (r) is 0.819.  The dashed blue line is y=x. 
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Figure S2. Association signal around NRBF2/JMJD1C locus on chr10 in LAT 
and EAS cohorts.
LocusZoom plots show distinct haplotypes showing association with ALL in (A) LAT 
and (B) EAS cohorts in our study. Diamond symbol indicates the lead SNP in each 
cohort. Color of remaining SNPs is based on linkage disequilibrium (LD) as measured 
by r2 with the lead SNP in the respective cohort. All coordinates in x-axis are in hg19. 
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Figure S3. Functional annotation of the TET1 locus. 
For the immediately nearby location around the top associated SNPs in our meta-
analysis(blue vertical lines), we extracted the functionally annotated genomic/epigenomic 
features from multiple cell types in ENCODE data. Functional data were retrieved from 
UCSC genome browser.
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