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Abstract 

Background: Although genome-wide association studies have identified many genomic regions 
associated with idiopathic pulmonary fibrosis (IPF), the causal genes and functions remain 
largely unknown. Many bulk and single-cell expression data have become available for IPF, and 
there is increasing evidence suggesting a shared genetic basis between IPF and other diseases.  

Methods: By leveraging shared genetic information and transcriptome data, we conducted an 
integrative analysis to identify novel genes for IPF. We first considered observed phenotypes, 
polygenic risk scores, and genetic correlations to investigate associations between IPF and other 
traits in the UK Biobank. We then performed local genetic correlation analysis and cross-tissue 
transcriptome-wide association analysis (TWAS) to identify IPF genes. We further prioritized 
genes using bulk and single-cell gene expression data.  

Findings: We identified 25 traits correlated with IPF on the phenotype level and seven traits 
genetically correlated with IPF. Using local genetic correlation, we identified 12 candidate genes 
across 14 genomic regions, including the POT1 locus (p-value = 4·1E-4), which contained 
variants with protective effects on lung cancer but increasing IPF risk. Using TWAS, we 
identified 36 genes, including 12 novel genes for IPF. Annotation-stratified heritability 
estimation and differential expression analysis of downstream-regulated genes suggested 
regulatory roles of two candidate genes, MAFK and SMAD2, on IPF.  

Interpretation: Our integrative analysis identified new genes for IPF susceptibility and expanded 
the understanding of the complex genetic architecture of IPF.  

Funding: NIHR Leicester Biomedical Research Centre, Three Lakes Partners, the National 
Institutes of Health, the National Science Foundation, U01HL145567, and UH2HL123886. 
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Introduction 
 
Idiopathic pulmonary fibrosis (IPF) is a rare and fatal disease[1]. While recently developed 
therapies mitigate symptoms and slow disease progression, IPF has no cure[2]. In recent years, 
several common and rare genetic variants, implicating genes involved in alveolar stability, 
telomere biology, host defense, and cellular barrier function[3, 4], have been associated with IPF. 
Despite these findings, our understanding of IPF pathogenesis remains elusive. The identification 
and interpretation of genetic risk factors will facilitate the understanding of molecular 
mechanisms involved in the pathogenesis of IPF, which could potentially lead to new treatments. 
However, due to limited sample size, genome-wide association studies (GWAS) have only 
identified tens of risk loci for IPF[4-6], and the biological interpretations behind GWAS signals 
remain largely unknown.  
 
Increasing evidence from large GWAS suggests that most trait-associated loci can influence 
multiple traits. Risk genes such as TERT, DSP, and FAM13A have been consistently identified 
for IPF, chronic obstructive pulmonary disease (COPD), and / or lung cancer[7]. Some 
transcriptomic pathways and metabolite regulations are also shared between COPD and IPF[8, 
9]. These findings suggest that novel IPF genetic risk factors could be identified by leveraging 
shared genetics between traits. Recent developments in multi-trait analysis have led to the 
emergence of new methods that study the shared genetic basis across multiple phenotypes[10-
15]. In particular, genetic correlation[11] and local genetic correlation[14, 15] contribute to a 
better understanding of shared genetic architecture and pathways between traits. Multi-trait 
association analysis[12, 16-18], such as multi-trait association mapping (MTAG)[12], can 
substantially improve GWAS power and facilitate post-GWAS analysis.  
 
Transcriptomic studies provide another resource to identify novel biomarkers and biological 
interpretation for IPF risk loci. Data generated from large consortium efforts such as the 
Genotype-Tissue Expression (GTEx) project, ENCODE[19], and  IMPACT[20] have provided 
comprehensive functional annotations for SNPs. Integrating these data can increase power and 
help biological interpretation of IPF GWAS results and prioritize potential effector genes. For 
example, transcriptome-wide association studies (TWAS)[21] integrating GWAS results and 
expression quantitative trait loci (eQTL) information is a powerful tool to bridge SNPs and 
complex traits through gene expression.  
 
This manuscript aims to identify novel genetic risk factors for IPF through multi-trait modeling 
and TWAS to overcome the limitations in sample size and statistical power (Figure 1). We first 
investigated the relationship between IPF and other traits through phenotype-level correlation, 
polygenic risk score (PRS) correlation, and genetic correlation[22]. We then estimated local 
genetic correlation[15] between IPF and other traits to further identify local regions with shared 
genetic effects and prioritized 12 candidate genes from the identified regions. In addition, we 
performed cross-tissue expression imputation and gene-level association analysis to identify 12 
additional candidate risk genes[23]. To validate our findings, we examined the expression 
patterns of candidate genes in bulk and single-cell expression data[24, 25]. In particular, we 
demonstrated the regulatory role of two transcription factors (TFs), MAFK and SMAD2, through 
heritability enrichment analysis and cell-type-specific differently expressed gene enrichment 
analysis of their target genes.  
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Methods 
 
Phenotypic correlation 
 
We investigated the phenotype-level correlation between IPF and phenotypes in the UK Biobank 
(UKBB)[26]. The definition of IPF cases was a combination of data field 22135 (Doctor 
diagnosed idiopathic pulmonary fibrosis) and data field 41202 (Diagnoses - main ICD10) with 
ICD10 code J84 (Pulmonary fibrosis, unspecified) in UKBB. For the other traits in UKBB, each 
trait corresponds to one data field in UKBB. We used only baseline measurements (UKBB UDI 
codes end with 0.0) and filtered out a) traits with <1000 observations, b) repetitive or highly 
similar traits, c) traits reflected transient features (e.g., recent diet). We applied logistic 
regression and McFadden pseudo-R-square coefficients[27], a measure to evaluate the goodness-
of-fit of logistic models, to obtain phenotype-level correlations (FDR < 0·05). We ultimately 
arrived at a total of 670 phenotypes with estimated phenotype-level correlations.  
 
Polygenic risk score correlation 
 
Besides phenotype-level correlation, we also investigated the relationship between a polygenic 
risk score (PRS) of IPF and the 670 phenotypes in UKBB. We used the R package EB-PRS[28] 
to obtain PRS for individuals from the UKBB based on IPF summary statistics[4]. Following 
standard quality control criteria, we restricted the analysis to autosomal variants with genotype 
missing rate per marker < 0·05, imputation information score above 0·3, Hardy-Weinberg 
Equilibrium p-value > 1e-4, and minor allele frequency (MAF) < 0·01. We further removed 
individuals by considering the following criteria: non-British, relatedness, sex aneuploidy, 
discordant sex, heterozygosity, missingness, and kinship. As a result, 226,736 individuals were 
removed. The 275,896 remaining individuals were used for PRS calculation. Then we calculated 
the correlation between IPF PRS and the 670 UKBB traits. Linear regression, logistic regression, 
and ordinal/multinomial regression were used to calculate the correlation between PRS of IPF 
for continuous traits, binary traits, and categorical traits, respectively. We calculated R-square 
coefficients for continuous traits and McFadden pseudo-R-square[27] for the other traits (FDR < 
0·05).  
 
Genetic correlation 
 
We examined genetic correlation using the IPF GWAS and other phenotypes. GWAS summary 
statistics were from 1) UKBB and 2) non-UKBB. For the UKBB, we obtained GWAS summary 
statistics from the 2nd round results (URLs). We manually removed repeated and similarly 
defined traits, and 350 traits remained for analysis. To better match the phenotypes used in 
previous analyses but not available from UKBB GWAS results, we downloaded summary 
statistics for 31 traits from publicly available GWAS results. All the GWASs were performed on 
samples majorly from European ancestry. Details, including the sample sizes and the resources 
of the GWASs, are summarized in the Supplementary file. To investigate the genetic similarity 
between IPF and other traits, we estimated the genetic correlations based on GWAS summary 
data using the software GNOVA[22].  
 
Local genetic correlation and prioritization of candidate genes 
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To improve the stability of local genetic correlation estimation, we selected 17 traits that had 
absolute values of genetic covariance with IPF greater than 0·02 and FDR < 0·05 from our 
genetic correlation results. Local genetic correlations were calculated using the gene covariance 
analysis software SUPERGNOVA (URLs)[15]. To quantify the degree of local correlation, we 
estimated the proportion of correlated regions with the R package ashr[29]. The inputs were 
estimates of local genetic covariance and their standard errors. The unimodal prior distribution 
was set to be “halfnormal” for all the results of pairs of traits. The method applied a Bayesian 
framework to compute FDR for each genomic region. To estimate the number of correlated 
regions for each pair of traits, we calculated the sum of (1 – FDR) given by ashr for each region. 
To prioritize genes with potential pleiotropic effects on IPF and the other trait on local regions, 
we first clumped the SNPs in the significantly correlated regions using the genome analysis 
software PLINK (URLs). We set the significance threshold for index SNPs as 0·001 and 0·01, 
linkage disequilibrium (LD) threshold for clumping as 0·2, and the physical distance threshold 
for clumping as 250 kb for all regions. After clumping, the variant with the lowest p-value in 
each region was defined as the sentinel variant. Next, the sentinel variants were mapped to the 
gene or the nearest gene.  
 
Transcriptome-wide association study (TWAS) 
 
We used a joint-tissue TWAS method called UTMOST (URLs)[23] to identify IPF-associated 
genes with its pre-trained built-in gene expression imputation model using 44 tissues from 
GTEx[30]. The associations between phenotype and imputed gene expression level across tissues 
were jointly tested to improve the power. Bonferroni correction was used to adjust for multiple 
hypothesis testing. We further applied conditional analysis to prioritize candidate genes located 
within 1 million base pairs.  
 
Multi-trait analysis and partitioned heritability 
 
To further explore TFs from our candidate genes, we applied LDSC (URLs)[31] to investigate 
the annotation-stratified heritability enrichment of each TF on IPF GWAS summary statistics[4]. 
The input SNP annotations were defined by the TF binding sites in various cell types from 
IMPACT [32]. We conditioned the analysis on the 52 baseline annotations in LDSC. The same 
procedure mentioned above was also performed on the IPF GWAS summary statistics adjusted 
by MTAG to boost the power of the original IPF GWAS summary statistics. For MTAG, we 
selected traits that had estimated heritability > 0·2, the absolute value of genetic covariance with 
IPF > 0·02, and FDR < 0·05 from our genetic correlation results. In the end, four traits, including 
whole-body fat mass, body fat percentage, arm fat percentage, and hip circumference, were used 
for pair-wise MTAG with IPF. 
 
Bulk and single-cell expression analysis  
 
For bulk expression data, we obtained curated expression data of IPF and controls from the 
PulmonDB[25] web-based database (URLs). The studies used were GSE21369, GSE26594, 
GSE31934, GSE32537, GSE35145, GSE38958, GSE44723, GSE45686, GSE48149, GSE52463, 
GSE53845, GSE6804, GSE71351, GSE72073. PulmonDB provides the log-ratio between the 
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expression value in test and reference conditions. We extracted the log-ratio for genes annotated 
as “IPF” as the test and “HEALTHY_CONTROL” or “MATCH_TISSUE_CONTROL” as 
reference. To determine DEGs, we conducted a t-test for each candidate gene in each study with 
a significance level of 0·05 after Bonferroni correction. For single-cell expression analysis, 
single-cell expression data for 32 IPF cases and 28 healthy controls were obtained from the IPF 
Cell Atlas[24]. Cell-type-specific DEGs were obtained using the MAST (Model-based Analysis 
of Single-cell Transcriptomics)[33] test implemented in the R package of Seurat (URL)[34]. To 
test the enrichment of TF targets in DEGs for each cell type, we applied the hypergeometric test 
using cell-type-specific DEGs, and TF target gene sets (Supplementary file) predicted from the 
ChIP-Atlas(URLs)[35, 36]. We investigated the proportions of cells expressing candidate genes 
using two-proportions z-test and adjusted p-value with Bonferroni correction.   
 
Role of the funding source 
 
LVW holds a GSK/British Lung Foundation Chair in Respiratory Research. The research was 
partially supported by the NIHR Leicester Biomedical Research Centre; the views expressed are 
those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of 
Health. MHC is supported by R01HL135142, R01 HL137927, R01 HL089856, R01 HL147148. 
NK is supported by R01HL127349, R01HL141852, U01HL145567, UH2HL123886, and a 
generous gift from Three Lakes Partners. The content is solely the responsibility of the authors 
and does not necessarily represent the official views of the NIH. The funding body has no role in 
the design of the study and collection, analysis, and interpretation of data and in writing the 
manuscript. HZ is supported by NIH grant R01 GM134005 and NSF grant DMS 1902903.   
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Results 
 
Analytic strategies 
 
To increase the statistical power of current IPF GWAS and facilitate fine-mapping of identified 
GWAS signals, we first scanned for IPF-related traits through phenotype-level correlations, 
polygenic risk score correlations, and genetic correlations. For genetic correlation, we examined 
global genetic correlation and local genetic correlation to identify genetically correlated traits 
and understand regional pleiotropic effects. For local correlated regions, we localized the signals 
to prioritize candidate genes. Second, we used TWAS to identify genes whose expression is 
genetically correlated with IPF. Furthermore, to validate TWAS and multi-trait analysis results, 
we used the multi-trait GWAS method to increase IPF GWAS power by leveraging the 
pleiotropic effect. We examined the partitioned heritability enrichment of identified transcription 
factors. We also examined the downstream gene expression with IPF single-cell sequencing data. 
Figure 1 shows the overall workflow of this study.  
 
Phenotype-level correlation, PRS correlation, and genetic correlation between IPF and UK 
Biobank traits 
 
While the correlation strength between IPF and other traits was weak in general, 25 traits had 
significant phenotype-level correlations with IPF after Bonferroni correction (Figure 2A; 
Supplementary file). Top correlated phenotypes are related to complex diseases, e.g., Systemic 
Lupus Erythematosus (coef = 4·46, adjusted p-value = 2·27E-15) and Doctor diagnosed 
emphysema (coef = 3·44, adjusted p-value = 5·51E-15), hematological traits, e.g., lymphocyte 
percentage (coef = -8·7E-04, adjusted p-value = 4·39E-05), age and overall health, e.g., number 
of treatments/medications taken (coef = 0·18, adjusted p-value = 3·16E-11) and age at 
recruitment (coef = 0·12, adjusted p-value = 2·20E-07).  
 
We use PRS correlation to understand how the genetic risk of IPF is related to other phenotypes 
(Figure 2B; Supplementary file). We identified two traits with significant correlations. They 
are monocyte percentage (coef = 1·69E-10, adjusted p-value = 4·99E-06) and monocyte count 
(coef = 1·51E-09, adjusted p-value = 0·011). Notably, a significant positive correlation between 
IPF mortality and monocyte percentage was observed in clinical studies, suggesting monocyte 
count/percentage as a potential prognostic marker for IPF [26, 27].  
 
To understand the shared genetic etiology, we identified seven traits having significant genetic 
correlations with IPF after Bonferroni correction (Figure 2C; Supplementary file). Similar to 
phenotype-level correlation, the genetic correlation between IPF and other traits was weak in 
general. Top correlated traits are related to connective tissue diseases, e.g., fibroblastic disorders 
(rho = 0·027, adjusted p-value = 0·00057) and other/unspecified dorsalgia (rho = -0·016, 
adjusted p-value = 0·018), body fat, e.g., Body Mass Index (rho = 0·024, adjusted p-value = 
0·023).  
 
To improve the resolution of genetic correlation, we calculated the local genetic correlation 
between IPF with 17 top genetically correlated traits (Methods; Figure 2C). Among these traits, 
14 showed significant local region correlations across 14 local regions (FDR < 
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0·05; Supplementary file). Similar patterns and signals of GWAS marginal statistics are shown 
in local regions with significant local genetic correlations (Supplementary file). We estimated 
the proportion of correlated regions among whole-genome regions for each trait based on local 
genetic correlation analysis (Figure 2D; Methods). Although the global genetic correlation 
between IPF and lung cancer only ranks middle among the 17 traits in terms of both the 
correlation and significance level (cov = 0·014, adjusted p-value = 0·019), it has the largest 
proportion of correlated regions (26% for squamous cell lung cancer). In contrast, the traits 
showing strong global correlations with IPF, such as fibroblastic disorders and ischemic stroke 
(adjusted p-value= 0·00057 and 0·0042, respectively), only have a moderate proportion of 
correlated regions (14. 1% and 15%, respectively). In addition, we found that similar phenotypes 
were more likely to be correlated with IPF at the same genomic regions (Supplementary file). 
For example, there was significant local genetic correlation at a region (chr8:108,646,968-
110,761,074) between IPF and fibroblastic disorders (cov = 0·0015, adjusted p-value = 2·1E-04) 
and palmar fascial fibromatosis (cov = 0·0014, adjusted p-value = 2·1E-04).  
 
Local genetic correlation and TWAS identified candidate IPF risk factors  
 
Local genetic correlation analysis helped to identify local genomic regions/genes with 
pleiotropic effects. Notably, all of the significantly correlated regions did not harbor any SNPs 
reaching genome-wide significance for IPF. Therefore, genes in these regions are less likely to 
be captured in the post-GWAS analysis. For example, we identified significant local genetic 
correlation in a region (chr4:145,024,452-148,047,972; Supplementary file) for hip 
circumference [28, 29]. However, the most significant p-value for IPF of the SNPs in that region 
is 7·8E-4 (rs2055059). These findings motivated us to further fine-map local pleiotropic effects 
and find candidate pleiotropic genes. Thus, we refined association signals on the local regions 
and identified 12 candidate genes (Table 1; Methods). Many of these genes have been reported 
to be either directly related to IPF or IPF related pathogenic functions like telomere maintenance 
and TGF-β signaling.  
 
TWAS incorporate eQTL information of genes to improve the statistical power and biological 
interpretability of GWAS results. Thirty-seven genes were identified as significant for IPF 
through the UTMOST TWAS test using 44 GTEx tissues after Bonferroni correction, and 36 of 
these genes remained significant after conditional analysis (Supplementary file). Of these 
genes, 24 of them have been reported in IPF GWAS, TWAS, or found to be differentially 
expressed in IPF patients versus healthy individuals [4, 8, 30-35]. Among the 12 newly identified 
genes for IPF, four are in different risk loci from the other 24 genes (Supplementary file). The 
detailed information for these 12 genes can be found in Table 2.  
 
Altogether we have 24 new candidate genes, 12 of them were obtained from local genetic 
correlation, and 12 were obtained using TWAS. Next, we investigated their expression using 
both bulk and single-cell expression data. From bulk expression, six genes CDHR5, LMNTD2, 
SLC25A22, HRAS, SCT, POT1(Figure 3A; Supplementary file) in total were found to be 
differentially expressed in IPF patients verse healthy controls (p-value < 0·05/24). In single-cell 
data, we found HHIP (logFC = -0·41, adjusted p-value = 2·67E-28) and RMST (logFC = -0·41, 
adjusted p-value = 2·67E-28) differentially expressed between IPF and healthy individuals in 
ATII cell type. 17 out of 24 genes have a higher proportion of cells expressing them in IPF 
patients than control individuals (Figure 3B).  
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The regulatory role of candidate TFs in IPF 
 
There are seven TFs among the 24 identified candidate genes, 
including BAHD1, EIF3E, HELZ2, MAFK, SMAD2, ZBTB7C, and ZBTB46. MAFK was 
identified using TWAS, and the rest TFs were identified by local genetic correlation. Their 
regulatory roles in IPF are of particular interest. For these seven TFs, we screened their target 
genes in the genomic annotation data we use. For IMPACT, only MAFK has predicted TFBSs in 
six cell lines. For ChIP-Atlas, MAFK has 13 datasets across eight cell lines, and SMAD2 has 39 
datasets across 12 cell lines. The binding site information of the other TFs is unavailable. 
Therefore, we conducted partitioned heritability analysis for MAFK and enrichment analysis 
for MAFK and SMAD2 target genes.  
 
The partitioned IPF heritability showed moderate enrichment for the TFBSs of MAFK but failed 
to reach a significant level after adjusting multiple tests (Supplementary file). To boost the 
statistical power of partitioned heritability analysis through joint analysis, we applied MTAG [1] 
on GWAS summary statistics of IPF with 17 top genetically correlated traits (Methods, Figure 
2C). The partitioned heritability of MAFK TFBSs after joint analysis had significant enrichment 
on all eight cell types, including the cervix cell, stem cell, liver cell, lung cell from fibroblasts, 
myeloid and B cell from the blood (Figure 4A; Supplementary file). Partitioned heritability of 
MAFK TFBS in lung cells from fibroblasts consistently has the most significant enrichment 
results across the four MTAG-ed GWAS summary data (Supplementary file), indicating that the 
regulatory effect of MAFK is most significant in IPF disease-relevant tissue. Furthermore, to 
ensure the change of the enrichment analysis results were not artifacts due to the effect of the 
auxiliary traits used in MTAG, we conducted the same partitioned heritability analysis for the 
traits used in MTAG alone, i.e., hip circumference and whole-body fat mass, and none showed 
significant enrichment for the TFBSs of MAFK in any cell type (Supplementary file).  
 
We then examined the enrichment of MAFK and SMAD2 target genes within cell-type-specific 
differentially expressed genes (DEGs) between IPF patients and healthy individuals using single-
cell data. For MAFK, all of its targeted gene sets showed significant enrichment in cell-type-
specific DEGs after Bonferroni correction across the eight cell lines (Figure 4B; 
Supplementary file). The top enrichments were mostly among myofibroblast, macrophage, and 
alveolar macrophage for the annotations in the IMR-90 cell line from the lung. For SMAD2, 6 
out of 12 targeted gene sets had significant enrichment in cell-type-specific DEGs after 
Bonferroni correction (Figure 4C; Supplementary file 9). The top enrichments were mostly 
among vascular endothelial capillary B cell, myofibroblast, and alveolar macrophage cell for 
annotations in HUVEC cell line, a cardiovascular cell type obtained from the umbilical cord.  
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Discussion 
 
Although previous literature has discussed the relationship between IPF and other lung 
diseases[7-9, 37], there has not been a comprehensive study of the similarities and differences 
between IPF and other traits. Using the large-scale biobank data and genomic regulatory 
information, we have conducted detailed analyses on the between-trait relationship of IPF from 
different perspectives, including phenotype-level correlation, genetic risk score correlation, and 
genetic correlation, to understand the degree of pleiotropy. We also employed local genetic 
correlation and TWAS to identify candidate IPF risk genes to facilitate future research on disease 
mechanisms and drug development.  
 
First, the between-trait correlation analyses deepened our understanding of the relationship 
between IPF and other phenotypes. In general, the correlations were weak using different 
measurements. We found that many top correlated traits are related to fibrosis, malignant 
neoplasm, and immune diseases, suggesting possible mechanisms of IPF overlapping with those 
phenotypes. For lung-related phenotypes, although asthma, COPD, and decreased lung functions 
have significant phenotype-level correlations with IPF, their genetic correlations are not 
apparent. We did not find any significant correlations with smoking behaviors. In addition, many 
correlated traits are associated with aging, such as overall health conditions, obesity, and 
cardiovascular diseases. Especially, we found significant genetic correlations between IPF and 
many body fat related traits. Different studies have found that obesity is a common comorbidity 
of IPF[38, 39]. Lower body mass index (BMI) and body weight loss seemed to be related to poor 
outcomes [40]. Altogether, the convergence of genetic and phenotype-level results suggested that 
metabolic dysregulation might be a critical contributor to the pathogenesis of IPF[41]. Notably, 
many top correlated phenotypes such as BMI, emphysema, FVC, monocytes, albumin, and 
neutrophilia appeared to be key IPF survival predictors or clinical markers[42]. In the future, it 
will be worthwhile to study other correlated phenotypes identified in this study to understand 
their clinical applications.  
 
We used local genetic correlation analysis to improve the resolution of the pleiotropy between 
complex traits. We provided a novel angle to find risk genes by leveraging the local pleiotropic 
effect. The results may provide insights for studying the pathway and mechanisms shared 
between diseases and suggest possible treatments under comorbidities. For 
example, POT1, ZBTB7C, and SMAD2 were found to be shared between IPF and cancers. 
POT1 was identified in region chr7:124,155,319-125,386,718 for lung cancer. 
ZBTB7C and SMAD2 was identified in region chr18:45,314,528-46,208,355 for malignant 
neoplasm of prostate. IPF and cancer share many common risk factors, and both lung cancer and 
prostate cancer have higher incidence rates among IPF patients[43]. POT1 is involved in 
telomere maintenance[44, 45]. In a recent GWAS in a Japanese population, POT1 was associated 
with lung cancer[46]. Pulmonary fibrosis patients carrying POT1 variants had shorter telomeres, 
which led to a worse outcome of IPF[47-49]. This suggests that POT1 variants might be involved 
in the process of shortened telomeres and lead to worse outcomes in IPF. In a separate study, 
patients with high POT1 expression levels in lung cancer tissues showed an overall better 
survival rate, indicating a protective role of POT1 in lung cancer prognosis[50]. These findings 
showed that telomere length regulation involving POT1 is a shared disease mechanism of IPF 
and lung cancer.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 14, 2021. ; https://doi.org/10.1101/2021.05.11.21257064doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.11.21257064


 11 

ZBTB7C is a TF that can interact with p53. It is also related to cell proliferation through 
glutamine metabolism[51]. Glutamine metabolism was showed to be essential for collagen 
protein synthesis in lung fibroblasts[52]. Glutamine metabolism was also found to differ in 
prostate cancer[53]. These results suggested glutamine metabolism involving ZBTB7C might be a 
shared mechanism between prostate cancer and IPF. SMAD2 plays an important role in TGF-β-
induced apoptosis of prostate epithelial cells and tumor suppression[54, 55]. It is closely related 
to IPF through TGF-β and SMAD signaling to promote extracellular matrix gene expression and 
fibrosis[56, 57]. These findings suggest that SMAD2 variants confer similar susceptibility to IPF 
and lung cancer and might be mediated through the TGF-β signaling. In addition, we found that 
its target genes have significant enrichment in IPF cell-type-specific DEGs. To conclude, further 
work is needed to elucidate the roles of the above genes and mechanisms play in IPF and 
cancers.  
 
Through TWAS, we identified 12 novel genes that were not reported in previous studies. 
Specifically, HRAS, SCT, and SLC25A22 are expressed in a higher proportion in IPF cells. They 
also exhibited positive effects in TWAS in lung tissue. Nevertheless, the directions of their 
expression regulation vary in different studies in bulk expression. Therefore, we did not see any 
concordance between eQTL effects and expression level since the absolute proportions of cells 
expressing these genes are small, and their fold change between IPF patients and control 
individuals was also small. Furthermore, focused studies with a larger sample size could help 
investigate the effect of these genes on IPF. 
 
With the help of IMPACT[32], we investigated the regulatory role of the identified TF, MAFK. 
MAFK expressed significantly in a higher proportion of cells in IPF patients. We found 
significant heritability enrichment on MAFK TFBSs, and significant enrichment 
of MAFK targeted genes in DEGs among most cell types in IPF single-cell data. MAFK can form 
a heterodimer to regulate antioxidant and xenobiotic-metabolizing enzyme genes[58]. Studies 
have identified that MAFK can modulate NF-kB activity[59] and can be induced by transforming 
growth factor-b (TGF-b) to regulate downstream genes[60]. HMOX1, regulated by MAFK, was 
found to play a central role in the defense against oxidative and inflammatory insults in the 
lung[61] ] and related to many pulmonary diseases, including asthma, COPD, and IPF. Another 
downstream gene, GPNMB[62, 63], is related to fibrosis by inducing epithelial-mesenchymal 
transition. These findings suggest that MAFK may participate in the pathogenesis of IPF through 
its relationship with both fibrosis and inflammatory-related processes. We also noticed that some 
well-known IPF genes like MUC5B or TOLLIP were not identified in TWAS. The reason was 
that these genes were not well-imputed because of the models and eQTL data used. Thus they 
did not appear in the results. 
 
Despite the above exciting novel findings, our study has several limitations. First, we manually 
selected traits for correlation analysis in an attempt to avoid spurious results. The selection 
criteria, mixed with a certain degree of subjectivity, might influence the results. Large studies 
that include sufficient samples of other important diseases may not be found in population-based 
samples like UK Biobank. Second, some of the top-ranked phenotypes could be cases of 
misdiagnosis or misclassification or be influenced by their prevalence. For example, Systemic 
Lupus Erythematosus does not usually result in ILD; asbestosis usually results in UIP but is not 
idiopathic. Third, although our results suggest local regions may contain disease risk genes that 
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failed to be identified in GWAS, these regions might be false positives because local genetic 
correlation has lower power and less stable estimation than the global genetic correlation. 
Although we pre-filtered regions with a small number of SNPs to improve the local genetic 
correlation results’ credibility, a better way to prove the relevance of these regions is to replicate 
the results on an independent dataset. However, such a study with little sample overlap and large 
sample size is not available currently. In the future, additional studies are needed to investigate 
whether these candidate genes are genuinely related to IPF.  
 
Taken together, through the investigation of the plethora of datasets, we identified 25 traits with 
significant phenotype-level correlations and seven traits with significant genetic correlation with 
IPF. By integrating GWAS data with pleiotropy information and transcriptome data, we 
discovered 12 genes from local multi-trait results and 12 novel genes from TWAS results. 
Follow-up analyses showed the differential expression and gene expression regulatory function 
among these candidate genes. These findings and their implications will provide new avenues for 
investigating the underlying biology and potential therapeutics in this deadly disease.  
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Figure 1. The integrative analysis workflow for candidate IPF genes identification. Abbreviations used are: 
UKBB (UK Biobank) [26], GTEx (The Genotype-Tissue Expression project) [30], GWAS (genome-wide 
association study), TF (transcription factor). IMPACT is a genomic annotation tool of cell-state-specific 
regulatory elements inferred from the epigenome of bound transcription factors [32]. ChIP-Atlas is a public 
database for ChIP-seq data [35].  
 
 

 
  

IPF GWAS

Multi-trait GWAS

IMPACT/ChIP-Atlas

Candidate genes
(bulk/single cell expression)

Transcriptome-wide
association 

Global genetic correlation
Local genetic correlation

Localization
Clumping

Regulatory enrichment analysis

TFs

UKBB IPF phenotype

GTEx

UKBB phenotypes

UKBB/public GWASs

PRS correlation

Phenotypic correlation

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 14, 2021. ; https://doi.org/10.1101/2021.05.11.21257064doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.11.21257064


 14 

Figure 2. Bar plots of correlations between IPF and UK Biobank phenotypes. The black dashed line 
corresponds to the Bonferroni adjusted p-value = 0·05. Positive and negative correlations are highlighted in 
blue and yellow, respectively. Top 25 UK Biobank traits ranked by the adjusted p-value of the (A) phenotype-
level correlations with IPF. (B) polygenic risk score correlations with IPF. (C) global genetic correlation with 
IPF. (D) Bar plot of the proportions of correlated local regions between IPF and 17 complex traits with 
significant global correlations with IPF and the absolute value of genetic covariance > 0·2.  
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Figure 3. Expression patterns of 24 IPF candidate genes. (A) Boxplot of bulk expression of candidate genes 
across seven studies. Differentially expressed genes labeled with black asterisk sign were obtained using T-
test after Bonferroni correction with adjusted p-value < 0·05. PAK6 and PRR33 are not shown here because 
they were not present in the bulk expression data. (B) Cell proportions of expressing candidate genes in IPF 
patients compared to healthy individuals in single-cell data. Genes with significantly different proportions are 
highlighted in blue (two-proportions z-test with adjusted p-value < 0·05 after Bonferroni correction). The 
grey dashed line represents y = x.  
 

 
 
  

** ** * ***** *

* *

* *

* ** * * *

ZBTB46 ZBTB7C

SCT SLC25A22 SMAD2 STMN3 TNNT3

MAFK PAK6 POT1 RSPO2 RTEL1

GJC1 HELZ2 HHIP HRAS LMNTD2

ANAPC10 ARL17A BMF CDHR5 EIF3E

−4

−2

0

2

−4

−2

0

2

−4

−2

0

2

−4

−2

0

2

−4

−2

0

2

Lo
gF

C 
be

tw
ee

n 
IP

F 
an

d 
co

nt
ro

l

GSE21369
GSE32537

GSE38958
GSE45686

GSE48149
GSE52463

GSE53845

ANAPC10

ARL17A

BMF

CDHR5

EIF3E

GJC1

HELZ2

HHIP

HRAS

LMNTD2

MAFK

POT1

PRR33

RMST

RSPO2

RTEL1

SCT

SLC25A22

SMAD2

STMN3

TNNT3

ZBTB46

ZBTB7C

PAK6
0

10

20

30

40

0 20 40
IPF(%)

Co
nt
ro
l(%

)

BA

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 14, 2021. ; https://doi.org/10.1101/2021.05.11.21257064doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.11.21257064


 16 

Figure 4. Regulatory enrichment analysis of MAFK and SMAD2. The black dashed line corresponds to the 
Bonferroni adjusted p-value = 0·05. (A) Partitioned heritability enrichment analysis using the IPF GWAS 
summary statistics data after MTAG multi-trait analysis. Y-axis represents different annotations of predicted 
TF binding sites of MAFK in six cell types from the IMPACT study. For each annotation, dots represent p-
values of the hypergeometric test result and are colored by traits used for MTAG. (B) Boxplot for enrichment 
analysis of MAFK regulated genes among cell-type-specific DEGs between IPF patients and healthy 
individuals. Y-axis is cell-state-specific annotations of MAFK target genes from ChIP-Atlas. One cell-state-
specific annotation can have multiple sample sources. For each annotation, boxplots represent sample 
hypergeometric test p-values and are colored by cell type. Only annotations and cell-types with at least one 
significant enrichment result are plotted here. (C) Similar boxplot as (b) for SMAD2.  
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Table 1. Novel IPF candidate genes identified in correlated local regions. (LC-ever: lung cancer (ever 
smoking); LC-Adeno: lung cancer (adenocarcinoma); HC: hip circumference; FIBRO: fibroblastic disorders; 
PFF: palmar fascial fibromatosis; PC: malignant neoplasm of prostate; BFP: body fat percentage; WBF: 
whole-body fat mass; BMI: body mass index) 
 

Gene Functions Region 
(hg19) Trait 

Local 
genetic 

cov 

Adjusted  
p-value 

ANAPC10 a subunit of anaphase-promoting complex (APC), 
related to cell cycle[64].  

chr4: 
145,024,452-
148047972 
 

HC -4. 3E-4 0. 048 
HHIP 

encodes a member of the hedgehog (HH)-
interacting protein family. HHIP is implicated in 
vitro models of alveolar epithelial metaplasia [65]. 
It suppressed HH signaling pathway to inhibit 
proliferation and promote differentiation of 
adipocytes[66].  

POT1 encodes a protein relating to telomere 
maintenance.  

chr7: 
124,155,319-
125,386,718 

LC-
Adeno -0. 0010 4. 10E-4 

RSPO2 

a member of the R-spondin family of proteins; 
related to Wnt/β-catenin signaling[67]. It is 
upregulated and can have an antifibrotic role in 
IPF[68, 69].  chr8: 

108,646,968-
110,761,074 

FIBRO 
PFF 

0. 0014 
0. 0013 

2. 00E-4 
2. 00E-4 

EIF3E 

a translation initiation factor related to embryonic 
development and cell proliferation[70]. Decreased 
EIF3E expression might activate TGF-β signaling 
to drive fibrosis[71].  

RMST a long non-coding RNA associated with severe 
obesity[72].  

chr12: 
97,439,589-
99,220,284 

HC -9. 2E-4 0. 026 

BMI -7. 8E-4 0. 032 

ZBTB7C 
a TF related to cell proliferation and DNA damage 
response through physical interact with p53[73].  hr18: 

45,314,528- 
46,208,355 

PC 4E-04 0. 042 

SMAD2 

plays an important role in TGF-β-induced 
apoptosis of prostate epithelial cells and tumor 
suppression[54, 55]; closely related to IPF 
through TGF-β and SMAD signaling[56, 57].  

HELZ2 
a nuclear transcriptional co-activator; related to 
adipocyte differentiation through its interaction 
with THRAP3[74].  

chr20: 
62,119,875-
62,962,870 

BFP 
WBF 

0. 0014 
0. 0011 

0. 026 
0. 039 

STMN3 
a member of the stathmin protein family; related 
to protein domain specific binding and tubulin 
binding[75].  

RTEL1 

related to the stability, protection and elongation 
of telomeres. Loss-of-function variants in RTEL1 
are associated with shortened telomeres in 
pulmonary fibrosis [47-49].  

ZBTB46 a zinc finger TF defining the classical dendritic 
cell lineage[76].  
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Table 2. Novel IPF candidate genes that were identified in the transcriptome-wide association study.  
 

Gene Functions Position(hg19) Adjusted 
p-value 

PAK6 Inhibition of PAK6 led to reduction in cell proliferation, migration 
and invasion of the cigarette smoke treated cells [77].  

chr4:40,509,629-
40,569,688 1. 35E-2 

MAFK 
a TF belonging to the small Maf proteins (sMaf). The Bach1-sMaf 
heterodimer regulates the heme oxygenase-1 (HMOX1) gene [73], 
which was found to be a down-regulated DEG of IPF [74].  

chr7:1,570,350-
1,582,679 2. 00E-2 

HRAS belongs to the Ras oncogene family; HRAS mutations were detected 
in patients having lung cancer with IPF[78].  

chr11:532,242-
537,287 2. 62E-02 

LMNTD2 a protein coding gene.  
chr11:554,850-
560,779 2. 75E-02 

CDHR5 
a novel mucin-like gene that is a member of the cadherin 
superfamily. Associated with many metabolic and some tumor 
growth-associated processes and pathways[79].  

chr11:616,565-
626,078 1. 70E-07 

SCT encodes a member of the glucagon family of peptides.  
chr11:626,313-
627,173 4. 26E-06 

SLC25A22 encodes a mitochondrial glutamate carrier.  
chr11:790,475-
798,316 9. 21E-06 

PRR33 a protein coding gene.  
chr11:1,910,375-
1,912,084 7. 72E-6 

TNNT3 related to skeletal and muscular system development and function 
[80].  

chr11:1,940,792-
1,959,936 2. 56E-6 

BMF belongs to the BCL2 protein family; act as an important mediator of 
cell death signaling pathways [81].  

chr15:40,380,091-
40,401,093 7. 14E-6 

GJC1 a protein component of gap junction; GJC1 hypermethylation was 
seen among a small subset of adenomas [82].  

chr17:42,875,816-
42,908,184 4. 24E-6 

ARL17A 
encodes a protein of the ADP-ribosylation factor family; involves in 
multiple regulatory pathways relevant to human carcinogenesis 
[83].  

chr17:43,697,710-
43,913,194 4. 62E-3 
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URLs 
LDSC (https://github. com/bulik/ldsc) 
UK Biobank GWAS data (http://www. nealelab. is/uk-biobank) 
SUPERGNOVA (https://github. com/qlu-lab/SUPERGNOVA) 
UTMOST (https://github. com/Joker-Jerome/UTMOST/) 
Seurat (https://satijalab. org/seurat/) 
LocusZoom (http://locuszoom. org/) 
PLINK (http://pngu. mgh. harvard. edu/purcell/plink/) 
PulmonDB(http://pulmondb. liigh. unam. mx/) 
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