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Abstract 26 

Background 27 

The worldwide pandemic caused by SARS-CoV-2 has claimed millions of lives and has had a profound 28 

effect on global life. Understanding the pathogenicity of the virus and the body’s response to infection 29 

is crucial in improving patient management, prognosis, and therapeutic strategies. To address this, we 30 

performed functional transcriptomic profiling to better understand the generic and specific effects of 31 

SARS-CoV-2 infection. 32 

 33 

Methods 34 

Whole blood RNA sequencing was used to profile a well characterised cohort of patients hospitalised 35 

with COVID-19, during the first wave of the pandemic prior to the availability of approved COVID-19 36 

treatments and who went on to survive or die of COVID-19, and patients hospitalised with influenza 37 

virus infection between 2017 and 2019. Clinical parameters between patient groups were compared, 38 

and several bioinformatic tools were used to assess differences in transcript abundances and cellular 39 

composition.  40 

 41 

Results 42 

The analyses revealed contrasting innate and adaptive immune programmes, with transcripts and cell 43 

subsets associated with the innate immune response elevated in patients with influenza, and those 44 

involved in the adaptive immune response elevated in patients with COVID-19. Topological analysis 45 

identified additional gene signatures that differentiated patients with COVID-19 from patients with 46 

influenza, including insulin resistance, mitochondrial oxidative stress and interferon signalling. An 47 

efficient adaptive immune response was furthermore associated with patient survival, while an 48 

inflammatory response predicted death in patients with COVID-19. A potential prognostic signature 49 
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was found based on a selection of transcript abundances, associated with circulating 50 

immunoglobulins, nucleosome assembly, cytokine production and T cell activation, in the blood 51 

transcriptome of COVID-19 patients, upon admission to hospital, which can be used to stratify patients 52 

likely to survive or die.  53 

 54 

Conclusions 55 

The results identified distinct immunological signatures between SARS-CoV-2 and influenza, 56 

prognostic of disease progression and indicative of different targeted therapies. The altered transcript 57 

abundances associated with COVID-19 survivors can be used to predict more severe outcomes in 58 

patients with COVID-19. 59 

 60 
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Introduction 71 

The global pandemic caused by novel coronavirus SARS-CoV-2 emerged at the end of 2019 (1). By May 72 

1st, 2021, more than 150 million people had been infected, leading to over 3 million deaths worldwide 73 

(2).  74 

 75 

Previous studies investigating the differences between patients with COVID-19 or influenza on 76 

admission to hospital have found that both patient groups present with similar levels of systemic 77 

inflammation markers like C-reactive protein (CRP), white blood cell count (WBC), neutrophil count 78 

and neutrophil/lymphocyte (N/L) ratio (3). After admission patients hospitalised with COVID-19 were 79 

found to have a higher risk of developing respiratory distress, pulmonary embolism, septic shock and 80 

haemorrhagic strokes compared to influenza patients (4). In addition, the median length of stay in the 81 

intensive care unit was twice as high for COVID-19 patients compared to influenza patients, and 82 

COVID-19 patients were more likely to require mechanical ventilation (4). Furthermore, the in-hospital 83 

mortality for COVID-19 patients was 16.9% compared to 5.8% for influenza patients indicating a 84 

roughly three times higher relative risk of death for COVID-19 (4).  85 

 86 

The viral immune response against influenza is well characterised (5). Briefly, initial defence involves 87 

cells of the innate immune system (e.g. macrophages, granulocytes and dendritic cells (DCs)), which 88 

release proinflammatory cytokines and type I interferons (IFN) to inhibit viral replication, recruit other 89 

immune cells to the site of infection, and stimulate the adaptive immune response. The adaptive 90 

immune response consists of a humoral and a cellular mediated immunity, initiated principally by 91 

virus-specific antibodies and T cells. Current understanding of the immune response specific to SARS-92 

CoV-2 indicates that COVID-19 severity and duration are largely due to a total or early evasion of an 93 

innate immune and type I and type III interferon (IFN) responses (6–9), while patients infected with 94 
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influenza are able to express type I and type II IFNs at a significantly higher concentration (3) which 95 

correlates with quicker recovery and decreased disease severity and mortality (10,11). Consistent with 96 

this observation, early administration of inhaled recombinant IFN-beta for COVID-19 patients was 97 

associated with a lowered in-hospital mortality and quicker recovery (12,13). Despite the reduced IFN 98 

response in patients with COVID-19 the expression of pro-inflammatory cytokines occurs for a 99 

prolonged time at similar levels with influenza patients (3), and interleukin (IL) -6 and IL-10 (14–16) 100 

and CCL3 (3) were associated with increased disease severity for COVID-19. The presence of CD4+ and 101 

CD8+ T cells, and antibodies were correlated with a positive patient outcome in the case of COVID-19 102 

(17). This puts elderly patients at a higher risk due a smaller naïve T cell pool (18–20) and an absence 103 

of a pre-existing adaptive immunity (21) resulting in a potential delayed T cell response to a novel virus 104 

like SARS-CoV-2 (22). Delaying an adaptive immune response which, when combined with a high viral 105 

load, could lead to a poor outcome (23). As discussed by Sette and Crotty (24) an absent T cell response 106 

may cause an increased innate response attempting to control the virus resulting in an excessive lung 107 

immunopathology.  108 

 109 

To investigate unique molecular features associated with COVID-19, a cohort of patients was identified 110 

from hospitalised individuals that were positive for SARS-CoV-2. As a comparator an equivalent group 111 

of patients hospitalised with influenza virus were identified. An extensive record of clinical parameters 112 

and peripheral blood, used for RNA-seq to obtain a global blood transcriptome overview, were taken 113 

at point of care and could therefore be correlated with any molecular signatures of disease. Through 114 

these side-by-side comparisons, we aim to identify distinct patterns of blood transcript abundances 115 

and cellular composition related to specific antiviral immune responses. Furthermore, we aim to 116 

identify a promising prognostic signature indicative of COVID-19 outcome. 117 

 118 

 119 
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Materials & Methods 120 

Ethics and consent 121 

The study was approved by the South Central - Hampshire A Research Ethics Committee (REC): REC 122 

reference 20/SC/0138 (March 16th, 2020) for the COVID-19 point of care (CoV-19POC) trial; and REC 123 

reference 17/SC/0368 (September 7th, 2017) for the FluPOC trial. For full inclusion and exclusion 124 

criteria details see (25) and (26). Patients gave written informed consent or consultee assent was 125 

obtained where patients were unable to give consent. Demographic and clinical data were collected 126 

at enrolment and outcome data from case note and electronic systems. ALEA and BC data 127 

management platforms were used for data capture and management.  128 

 129 

Study design and participants   130 

All participants were recruited within the first 24 hours of admission to two large studies of molecular 131 

point-of-care testing (mPOCT) for respiratory viruses (CoV-19POC and FluPOC). Blood samples 132 

including whole blood in PAXgene Blood RNA tubes (BRT) (Preanalytix) were collected from SARS-CoV-133 

2 positive patients and influenza positive patients, within 24 hours of enrolment, and stored at -80°C. 134 

The studies were prospectively registered with the ISRCTN trial registry: ISRCTN14966673 (COV-135 

19POC) (March 18th, 2020), and ISRCTN17197293 (FluPOC) (November 13th, 2017). The COV-19POC 136 

study was a non-randomised interventional trial evaluating the clinical impact of mPOCT for SARS-137 

CoV-2 in adult patients presenting to hospital with suspected COVID-19, using the QIAGEN QIAstat-Dx 138 

PCR testing platform with the QIAstat-Dx Respiratory SARS-CoV-2 Panel (27). The trial took place 139 

during the first wave of the pandemic, from 20th March to 29th April 2020, and prior to the availability 140 

of approved COVID-19 treatments. All patients were recruited from the Acute Medical Unit (AMU), 141 

Emergency Department (ED) or other acute areas of Southampton General Hospital. The FluPOC study 142 

was a multicentre randomised controlled trial evaluating the clinical impact of mPOCT for influenza in 143 
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hospitalised adult patients with acute respiratory illness, during influenza season, using the BioFire 144 

FilmArray platform with the Respiratory Panel 2.1 (28). The trial took place during influenza seasons 145 

over the two winters of 2017/18 and 2018/19. All patients were recruited from the AMU and ED of 146 

Southampton General Hospital and Royal Hampshire County Hospital. 147 

 148 

Extraction of RNA from clinical samples and Illumina sequencing 149 

Total RNA was extracted from PAXgene BRT using the PAXgene Blood RNA Kit (PreAnalytix), according 150 

to the manufacturer’s protocol at Containment Level 3 in a Tripass Class I hood. Extracted RNA was 151 

stored at -80°C until further use. Following the manufacturer’s protocols, total RNA was used as input 152 

material into the QIAseq FastSelect–rRNA/Globin Kit (Qiagen) protocol to remove cytoplasmic and 153 

mitochondrial rRNA and globin mRNA with a fragmentation time of 7 or 15 minutes. Subsequently the 154 

NEBNext® Ultra™ II Directional RNA Library Prep Kit for Illumina® (New England Biolabs) was used to 155 

generate the RNA libraries, followed by 11 or 13 cycles of amplification and purification using AMPure 156 

XP beads. Each library was quantified using Qubit and the size distribution assessed using the Agilent 157 

2100 Bioanalyser and the final libraries were pooled in equimolar ratios. Libraries were sequenced 158 

using 150 bp paired-end reads on by an Illumina® NovaSeq 6000 (Illumina®, San Diego, USA). Raw 159 

fastq files were trimmed to remove Illumina adapter sequences using Cutadapt v1.2.1 (29). The option 160 

“−O 3” was set, so that the 3’ end of any reads which matched the adapter sequence with greater than 161 

3 bp was trimmed off. The reads were further trimmed to remove low quality bases, using Sickle 162 

v1.200 (30) with a minimum window quality score of 20. After trimming, reads shorter than 10 bp 163 

were removed. 164 

 165 
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Data QC and alignment 166 

Quality control (QC) of read data was performed using FastQC (31) (v0.11.9) and compiled and 167 

visualised with MultiQC (32) (v1.5). Samples with <20 million total reads were excluded from further 168 

analysis. The STAR index was created with STAR’s (33) (v2.7.6a) genomeGenerate function using 169 

GRCh38.primary_assembly.genome.fa and gencode.v34.annotation.gtf (34) (both downloaded from 170 

GENCODE), with –sjdbOverhang 149 and all other settings as default. Individual fastq files were 171 

aligned using the --twopassMode Basic flag, with the following parameters specified (following 172 

ENCODE standard options): --outSAMmapqUnique 60, outFilterType BySJout, --173 

outFilterMultimapNmax 20, --alignSJoverhangMin 8, --outFilterMismatchNmax 999, --174 

outFilterMismatchNoverReadLmax 0.04, --alignIntronMin 20, --alignIntronMax 1000000, --175 

alignMatesGapMax 1000000 and all other options as default. For rMATs (35) (v4.1.0) analysis, STAR 176 

was run again as before, but with the addition of --alignEndsType EndToEnd. Samtools (36) (v1.8) was 177 

used to sort and index the aligned data. 178 

 179 

Comparisons of baseline clinical characteristics  180 

Baseline clinical characteristics of the patient groups were assessed using R (37) (v4.0.2) and RStudio 181 

(38) (v1.3.959) for comparisons between COVID-19 versus influenza, and COVID-19 survivors versus 182 

non-survivors. Extreme outliers (values < Q1 - 3 interquartile range, or > Q3 + 3 interquartile range) 183 

were identified with the R package rstatix (39) (v0.7.0) and removed. Statistical testing was performed 184 

including a Shapiro-Wilk test to assess for data normality followed with either an unpaired parametric 185 

T-test (Shapiro-Wilk test p-value > 0.05) or an unpaired non-parametric Wilcoxon test (Shapiro-Wilk 186 

test p-value < 0.05) for continuous data, or a Chi-square test for categorical data. The R package Table1 187 

(40) (v1.3) was used to plot the baseline clinical characteristics. 188 

 189 
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Systems immunology-based analysis of blood transcript modules 190 

Blood transcript module (BTM) analysis was performed with molecular signatures derived from 5 191 

vaccine trials (41) as a reference dataset, and BTM activity was calculated using the BTM package (41) 192 

(v1.015) in Python (42) (v3.7.2) using the normalized counts as input. Module enrichment significance 193 

was calculated using CAMERA (43) (v3.46.0). The significance threshold for the linear model was set 194 

at false discovery rate (FDR) 0.05 for the comparison between patients with COVID-19 or influenza.  195 

 196 

Unbiased gene clustering analysis  197 

Gene co-expression analysis was performed with BioLayout (44) (v3.4) using a correlation value of 198 

0.95, other settings were kept at default. Clusters were manually assessed to determine gene 199 

expression differences depending on for example patient cohort. Genes were subsequently analysed 200 

with ToppGene (45) gene list enrichment analysis using the default settings. 201 

 202 

Differential gene expression analysis between patient groups 203 

HTSeq (46) (v0.11.2) count was used to assign counts to RNA-seq reads in the Samtools sorted BAM 204 

file using GENCODE v34 annotation. Parameters used for HTSeq were --format=bam, --order=pos, --205 

stranded=reverse, --type=exon and the other options were kept at default. EdgeR (47) (v3.30.3) was 206 

used for differential gene expression analysis with R (v4.0.2) in RStudio (v1.3.959). Genes with low 207 

counts across all libraries were filtered out using the filterByExpr command. Filtered gene counts were 208 

normalised using the trimmed mean of M-values (TMM) method. Differentially expressed genes were 209 

identified, after fitting the negative binomial models and obtaining dispersion estimates, using the 210 

exact test and using a threshold criteria of FDR p-value < 0.05 and log2 fold change < -1 and > 1. Genes 211 

which were within the threshold criteria were used for ToppGene gene list enrichment analysis. A 212 
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principal component analysis (PCA) graph was constructed based on all differentially expressed genes 213 

to assess sample clustering.  214 

 215 

Assessment of difference in adaptive immune response related gene expression  216 

A higher abundance of transcripts from 83 immunoglobulin genes, overlapping with the genes in the 217 

Gene Ontology (GO) (48,49) biological process term ‘adaptive immune response’ (Additional file 1), 218 

was found in patients with COVID-19 compared to influenza. To assess gene transcript abundance 219 

differences for these 83 genes in each patient a heatmap was generated and Z-scores were summed 220 

to give an overall positive (high) or negative (low) total Z-score. Patient baseline clinical characteristics 221 

were explored, as above, for any explanatory factors for the involvement of a high or low total Z-score 222 

between patients with COVID-19 or influenza, and those that survived COVID-19 versus those that 223 

died within 30 days of hospital admission. Metadata comparison plots were made with the R package 224 

ggplot2 (50) (3.3.2) and statistical testing with the R package ggpubr (51) (v0.4.0).  225 

 226 

Topological mapping of global gene patterns 227 

TopMD Pathway Analysis (52) was conducted using the differential transcript abundances identified 228 

by differential gene expression analysis, generating a map of the differentially activated pathways 229 

between all patients with COVID-19 or influenza. The TopMD pathway algorithm measures the 230 

geometrical and topological properties of global differential gene expression embedded on a gene 231 

interaction network (53). This enables plotting and measurement of the differentially activated 232 

pathways through extrapolation of groups of mechanistically related genes, called TopMD pathways. 233 

TopMD pathways possess a natural hierarchical structure and can be analysed for enriched GO terms, 234 

by chi-square test.   235 

 236 
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Assessment of differential splicing between patient groups 237 

Three different tools were used to assess differential gene splicing between patients with COVID-19 238 

or influenza, and COVID-19 survivors or non-survivors after 30 days of hospital admission. rMATs (35) 239 

(v4.1.0) was run using BAM files with soft clipping suppressed, generated with STAR and GENCODE 240 

v34 gene annotation. Additional settings used were -t paired, --readLength 150 and --libType fr-241 

firststrand. Results were filtered for FDR p-value < 0.05. LeafCutter (54) (v0.2.9) was run in stages 242 

following the Differential Splicing protocol (55) (bam2junc.sh generated junction files from BAMs, 243 

leafcutter_cluster.py grouped junctions into clusters, leafcutter_ds.R tested for differential splicing, 244 

all with default settings, except –min_samples_per_intron was set to be approximately 60% of the 245 

smaller group size for each comparison (46 for COVID-19 vs influenza, 9 for COVID-19 survivors vs non-246 

survivors), and results were filtered to exclude events with delta PSI <10%, based on 247 

recommendations (56). The LeafViz script (57), prepare_results.R was used to generate a data table 248 

from which gene names for significant events were extracted, while the map_clusters_to_genes R 249 

function was used to assign genes to non-significant tested events. Overlap between LeafCutter 250 

differentially spliced and EdgeR differentially expressed genes was tested for significance using 251 

Fisher’s Exact Test (fisher.test in R (v3.5.1) using a 2x2 contingency table and two.sided alternative 252 

hypothesis). MAJIQ (58) (v2.2) was run in two stages (majiq build and majiq deltapsi) with default 253 

settings, and results were filtered (delta PSI >20%, probability >0.95) using Voila (58)  (v2.0).  254 

 255 

In silico immune profiling predicting immune cell levels between patient groups 256 

Relative abundance of 22 immune cell types and their statistical significance was deconvoluted from 257 

whole blood using the reference gene signature matrix (LM22) using CIBERSORTx (59). CIBERSORTx 258 

analysis was conducted on the CIBERSORTx website (60) using 100 permutations. Immune cell 259 

distribution between the groups were compared by Mann–Whitney test.  260 

 261 
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Identification of immune signatures as a predictor for COVID-19 outcome 262 

Transcript to transcript gene co-expression network analysis with BioLayout 3D (v3.4) (Pearson 263 

coefficient 0.85, MCL=1.7) assembled 537 genes differentially expressed (EdgeR, FDR < 0.5 and |log2 264 

fold change > 1|) in blood taken on admission between patients with COVID-19 who either survived 265 

or died of COVID-19 within 30 days of admission to hospital. Combinations of 100 genes from the top 266 

4 clusters were assessed as predictor variables for outcome using Boosted Logistic Regression, 267 

Bayesian Generalised Linear and RandomForest models within SIMON (61) (v0.2.1) installed with 268 

Docker (62) (v20.10.2). TMM normalised gene expression data was centred and scaled. Covariant 269 

features were removed based on correlation analysis. Samples were randomly split into train:test 270 

subsets at the ratio 75%:25%.  271 

 272 

Results 273 

Number of participants  274 

In total RNA-seq was done for 80 patients with COVID-19 and 88 patients with influenza. Five patients 275 

with influenza failed QC (read count < 20M) leaving 83 patients with influenza for analysis, of which 276 

76% were infected with the influenza A virus and 22% with influenza B virus. Two patients with COVID-277 

19 were identified by PCA as outliers, subsequent assessment revealed an elevated white blood cell 278 

and lymphocyte count caused by pre-existing underlying chronic lymphocytic leukaemia, and these 279 

patients were excluded from further analyses (Supplementary figure 1). This left 78 patients with 280 

COVID-19, of whom 62 survived and 16 died within 30 days of hospital admission, and 83 patients with 281 

influenza.  282 

 283 
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Clinical differences 284 

The baseline clinical characteristics of the patients used in this study for the comparison between 285 

influenza and COVID-19 were assessed and no differences in distribution of sex or age were detected 286 

between patient groups, however, more patients with influenza were of White British ethnicity (p-287 

value 1.12x10-05) and more were current smokers (p-value 9.07x10-05). There were also differences in 288 

the proportion of cases with underlying comorbidities, with patients with COVID-19 more commonly 289 

having hypertension (p-value 1.42x10-02), liver disease (p-value 3.63x10-02) and diabetes mellitus (p-290 

value 6.44x10-03) than those with influenza. However, underlying respiratory disease was more 291 

common in patients with influenza (p-value 1.22x10-03). Patients with COVID-19 generally exhibited 292 

more severe clinical symptoms. While the National Early Warning Score 2 (NEWS2) was not different 293 

between patients with COVID-19 or influenza, patients with COVID-19 had a higher respiratory rate 294 

(p-value 2.79x10-02) and a greater proportion of patients with COVID-19 were on supplementary 295 

oxygen at hospital admission (p-value 6.81x10-03). Laboratory results indicated higher levels of C-296 

reactive protein (p-value 1.73x10-03) and lymphocytes (p-value 2.76x10-02) in patients with COVID-19. 297 

Furthermore, COVID-19 patients had a longer duration of symptoms prior to presentation to hospital 298 

(p-value 1.17x10-05) and once admitted a longer length of stay (p-value 5.51x10-10). Longer stay time 299 

was associated with increased 30 day mortality after hospital admission and patients with COVID-19 300 

were more likely to have died compared to patients with influenza (p-value 4.42x10-05) (Table 1).  301 

 302 

Between patients with COVID-19 who survived and those who died, a fatal outcome occurred in older 303 

patients (p-value 2.58x10-09). COVID-19 non-survivors also had a shorter duration of symptoms before 304 

being admitted to hospital (p-value 5.38x10-03). COVID-19 non-survivors more commonly had 305 

underlying comorbidities including hypertension (p-value 1.93x10-03), cardiovascular disease (p-value 306 

3.97x1003), diabetes mellitus (p-value 2.31x10-02) and underlying respiratory disease (p-value 1.06x10-307 

02). While the NEWS2 scores were not different, COVID-19 survivors had a higher heart rates than 308 
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COVID-19 non-survivors (p-value 9.27x10-03). Laboratory results showed an increase of white blood 309 

cell count (p-value 3.83x10-02), total protein levels (p-value 2.5x10-03), creatinine (p-value 3.87x10-02), 310 

alanine aminotransferase levels (p-value 2.85x10-02), troponin levels (p-value 2.37x10-04), tumour 311 

necrosis factor α  (TNFα) (p-value 1.43x10-02), interleukin (IL)-6 levels (p-value 2.78x10-03), IL-8 (p-value 312 

2.24x10-02), IL-1β (p-value 3.78x10-02) and IL-10 (p-value 7.51x10-02) in COVID-19 non-survivors. Patient 313 

outcome and length of hospital stay were different due to separation based on patient survival (Table 314 

2). 315 

 316 

Table 1: Baseline clinical characteristics and outcomes of hospitalised patients with COVID-19 or influenza.  317 

 318 

Comparisons are given between patients with COVID-19 or influenza for baseline demographic data, patient outcome, clinical 319 
observations, laboratory results and known patient comorbidity. Laboratory results were done on peripheral blood taken on 320 
admission to hospital. Similarly, clinical observations were recorded on hospital admission. Statistical testing was done with 321 
a Shapiro-Wilk test for data normality followed with either an unpaired parametric T-test or an unpaired non-parametric 322 
Wilcoxon test for continuous data, or a Chi-square test for categorical data.  323 
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 324 

Table 2: Baseline clinical characteristics and outcomes of hospitalised COVID-19 patients: survivors versus non-survivors.  325 

 326 

Comparisons are given between COVID-19 survivors and non-survivors for baseline demographic data, patient outcome, 327 
clinical observations, laboratory results and known patient comorbidity. Laboratory results were done on peripheral blood 328 
taken on admission to hospital. Similarly, clinical observations were recorded on hospital admission. Statistical testing was 329 
done with a Shapiro-Wilk test for data normality followed with either an unpaired parametric T-test or an unpaired non-330 
parametric Wilcoxon test for continuous data, or a Chi-square test for categorical data.  331 

 332 

Molecular differences 333 

RNA-seq was used to investigate potential blood transcriptomic signatures of immune activation 334 

between patients infected with SARS-CoV-2 versus influenza, and COVID-19 survivors versus those 335 
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that died. A median of 60.4 million reads in patients with COVID-19, and 58.9 million reads in patients 336 

with influenza was obtained (Supplementary figure 2A). In patients who died of COVID-19 a median 337 

of 55.7 million reads was obtained and for COVID-19 survivors the median was 62.6 million reads 338 

(Supplementary figure 2B). Clustering analysis between patients with COVID-19 or influenza indicated 339 

a homogeneity of blood transcriptome profiles suggesting any variation between groups to be subtle 340 

(Supplementary figure 3A). A partial separation was found between patients who survived or died of 341 

COVID-19 based on patient outcome after 30 days of hospital admission, indicative of a larger variation 342 

in the blood transcriptome (Supplementary figure 3B). 343 

 344 

Contrasting innate and adaptive immune programmes  345 

Previous studies have suggested that severe COVID-19 is associated with aberrant  immune pathology 346 

(63,64), and therefore BTM analysis and gene co-expression analysis were used to investigate the 347 

balance between the innate and adaptive response in patients with either COVID-19 or influenza virus 348 

and to identify patterns of changes associated with each arm of the immune system. A systems 349 

immunology-based analysis of BTMs between patients with COVID-19 or influenza revealed several 350 

differences (Figure 1). For the upregulated BTMs in COVID-19, signatures were observed related to 351 

the cell cycle and adaptive immune response, primarily CD4+ T cells, B cells, plasma cells and 352 

immunoglobulins. In contrast, the downregulated BTMs showed signatures associated with 353 

monocytes, inflammatory signalling and an innate antiviral and type I IFN response. 354 

 355 
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 356 

Figure 1: Blood transcript module (BTM) analysis between patients with COVID-19 or influenza. Upregulated signatures in 357 
COVID-19 patients are associated with cell cycle and an adaptive immune response, primarily CD4+ T cells, B cells, plasma 358 
cells and immunoglobulins. While the downregulated signatures, associated with influenza patients, are involved with 359 
monocytes, inflammatory signalling and an innate antiviral and type I interferon response.  360 

 361 

Gene co-expression analysis was done on a total of 4,093 transcript abundances for unbiased gene 362 

clustering between patients with COVID-19 or influenza (TMM normalised counts per million EdgeR 363 

FDR p-value <0.05) and identified 50 clusters of 4 or more genes (BioLayout 3D, Pearson R >= 0.85, 364 

MCL = 1.7). These clusters are clearly separated into groups comprising increased transcript 365 
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abundances in blood of patients with influenza or COVID-19 (Figure 2) and the top 12 clusters are 366 

shown in Table 3. 367 

 368 

 369 

Figure 2: Top 12 clusters identified with BioLayout. A) Enrichment of gene clusters in blood of patients with influenza 370 
(annotated in red) and COVID-19 (annotated in blue). Increased abundances of gene transcripts in influenza patients are 371 
involved with an innate immune response, while in COVID-19 clusters are involved with an adaptive immune response, blood 372 
coagulation and neutrophil degranulation. B) After TMM normalisation a significant difference in gene clusters between 373 
patients with influenza or COVID-19 was detected. The abundance of gene transcripts involved with an innate immune 374 
response and plasmacytoid dendritic cell were observed to be higher in influenza patients. In contrast, the abundance of gene 375 
transcripts involved with an adaptive immune response and neutrophil degranulation was higher in COVID-19 patients. 376 

 377 

 378 

 379 

 380 

 381 
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 382 

Table 3: Summary of the top 12 BioLayout clusters. 383 

Cluster No. of 
genes 

Cell type  
(FDR p-value) 

Top biological process  
(FDR p-value) 

Disease 

1 362 Myeloid  
(1.20x10-24) 

Cell activation  
(5.16x10-13) 

Influenza 

2 264 Plasmacytoid dendritic cell  
(4.17x10-22) 

Defence response to virus  
(1.34x10-37) 

Influenza 

3 166 Erythroblast  
(5.31x10-20) 

Erythrocyte differentiation  
(1.70x10-05) 

Influenza 

4 140 Progenitor B cell / T cell  
(1.28x10-131) 

Mitotic cell cycle  
(3.97x10-57) 

COVID-19 

5 100 Progenitor pluripotent cells  
(1.38x10-02) 

Translation  
(8.48x10-04) 

COVID-19 

6 96 Megakaryocytes / platelets  
(3.30x10-92) 

Blood coagulation  
(2.84x10-12) 

COVID-19 

7 64 Plasma cells 
(1.27x10-28) 

Response to stress  
(6.41x10-09) 

COVID-19 

8 29 Myeloid cells  
(2.57x10-03) 

Myeloid leukocyte activation  
(4.15x10-04) 

Influenza 

9 20 Neutrophils  
(1.11x10-03) 

Neutrophil degranulation  
(4.43x10-19) 

COVID-19 

10 18 Antigen presenting cells  
(2.21x10-03) 

Th1 stimulation  
(4.53x10-03) 

Influenza 

11 16 Dendritic cells  
(4.32x10-04) 

Cell morphogenesis  
(1.37x10-02) 

Influenza 

12 14 Not specified Histone modification  
(3.55x10-02) 

Influenza 

Gene clusters were identified with BioLayout (r=0.85, MCL = 1.7). For each cluster the number of genes, predicted cell type 384 
and top biological process are given and whether that cluster was enriched in patients with COVID-19 or influenza. 385 

 386 

Interestingly, an increased abundance of gene transcripts in patients with COVID-19 are involved in 387 

adaptive immunity, pointing to activation/priming of T cells and B cells, including induction of 388 

proliferation (cluster 4, FDR p-value 3.97x10-57), Additionally, an increased abundance of gene 389 

transcripts encoding neutrophil degranulation (cluster 9) and blood coagulation (cluster 6) clearly 390 

differentiated patients with COVID-19 from patients with influenza (FDR p-value 4.33x10-19 and FDR p-391 

value 2.84x10-12 respectively). In contrast, an decreased abundance of gene transcripts in the blood 392 

transcriptome of patients with COVID-19 in comparison to patients with influenza were associated 393 

with innate immunity, including biological processes involved with defence response to virus (cluster 394 

2) (FDR p-value 1.34x10-37),  type 1 helper T cell stimulation (cluster 10) (FDR p-value 4.53x10-03),  395 

dendritic cell morphogenesis (cluster 11) (FDR p-value 1.37x10-02), and myeloid cell activation (clusters 396 
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1 and 8) (FDR p-value 5.16x10-13 and FDR p-value 4.15x10-04 respectively). Importantly, the largest 397 

decrease of transcript abundances in patients with COVID-19 comprised genes expressed in 398 

plasmacytoid dendritic cells (pDC) (FDR p-value 4.17x10-22), indicating impaired immune responses to 399 

viruses (FDR p-value 1.34x10-37) and impaired IFN signalling (FDR p-value 5.56x10-30). This was 400 

suggestive of contrasting innate and adaptive immune programmes between the different infections 401 

and these were further investigated. 402 

 403 

High abundance of immunoglobulin genes associated COVID-19  404 

A total of 20,542 abundance measures of gene transcripts were obtained after filtering out transcripts 405 

with low counts, of which 4,094 transcripts were found to be significantly different between patients 406 

with COVID-19 or influenza (FDR p-value < 0.05) of which, 197 transcripts exceeded a log2 fold change 407 

of < -1 or >1, with 126 transcripts showing higher abundance in patients with COVID-19 and 71 408 

transcripts showing higher abundance in patients with influenza (Figure 3A and Additional file 2). 409 

Complimentary to the findings from gene co-expression analysis, the transcripts with increased 410 

abundance in patients with COVID-19 were found to be involved with humoral immune response, 411 

complement activation and B cell mediated immunity (Figure 3B).  412 
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 413 

Figure 3: Increased adaptive immune response in patients with COVID-19 compared to influenza. A) Volcano plot of 414 
transcripts falling within the threshold values (FDR < 0.05 and log2 fold change < -1 or >1) which were used for enrichment 415 
analysis with ToppGene. B) Enrichment analysis of the transcripts with an increased abundance in patients with COVID-19 416 
identified an increased adaptive immune response. Percentage in annotation is the ratio of the input query genes overlapping 417 
with the genes in the pathway database. C) Heatmap of 83 immunoglobulin gene transcripts, which overlap with the GO 418 
biological process term ‘adaptive immune response’, found at a higher abundance in patients with COVID-19. Positive Z-419 
scores are seen mostly in patients with COVID-19 while negative Z-scores are mostly seen in patients with influenza. 420 

 421 

83 immunoglobulin genes, associated with the GO biological process term ‘adaptive immune 422 

response’, were found to have higher transcript abundance in the majority of patients with COVID-19 423 
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than those with influenza (p-value < 2.22x10-16, Wilcoxon test) (Figure 3C and Supplementary figure 424 

4) and by using a total Z-score, patients with COVID-19 or influenza were classified as having either a 425 

high or low abundance of these 83 immunoglobulin genes. A high abundance was associated with a 426 

total positive Z-score (1.46 to 175.46) which was identified in 59 patients with COVID-19 and 21 427 

patients with influenza indicating a higher than average abundance of these 83 adaptive immune 428 

response related immunoglobulin genes. While a low abundance was associated with a total negative 429 

Z-score (-0.12 to -154.93) identified in 19 patients with COVID-19 and 62 patients with influenza 430 

indicating a lower than average abundance of adaptive immune response related immunoglobulin 431 

genes. COVID-19 patients with lower abundance of adaptive immune response related 432 

immunoglobulin genes, a total negative Z-score, were found to be significantly older (p-value 6.32x10-433 

3, T-test) and had a shorter duration of symptoms before being admitted into hospital (p-value 5.9x10-434 

04, Wilcoxon test).  Additionally, COVID-19 patients with high abundance of adaptive immune response 435 

related immunoglobulin genes, a total positive Z-score, were significantly more likely to be still alive 436 

30 days after admitted into hospital (x2 13.39 and p-value 2.52x10-04, Chi-square test) (Figure 4).  437 

 438 

 439 

 440 

 441 

 442 

 443 

 444 

 445 

 446 
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 447 

Figure 4: Comparison of 83 immunoglobulin gene abundances in patients with COVID-19 or influenza. Metadata of patients 448 
with COVID-19 or influenza with a low or high abundance of the 83 immunoglobulin genes related to GO biological process 449 
term ‘adaptive immune response’ were compared. Significant differences were detected based on age (patients with COVID-450 
19, p-value 1.8x10-3, Wilcoxon-test) and duration of symptoms (patients with COVID-19, p-value 5.9x10-04 and patients with 451 
influenza, 1.3x10-03, Wilcoxon test), with older individuals and shorter symptom duration associated with the low 452 
immunoglobulin gene abundance group for COVID-19. Additionally, a low abundance of immunoglobulin genes was 453 
associated with decreased COVID-19 survival (x2 13.39 and p-value 2.52x10-04, Chi-square test).  454 

 455 
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Topological mapping of global gene patterns 456 

Topological analysis allows the measurement of the global profiles of transcript abundances relative 457 

to gene pathways without data reduction and this was used to define a global map of differentially 458 

activated pathways between COVID-19 and influenza. The first differentially activated TopMD 459 

pathway was enriched for ribosomal and insulin related pathways, with peak gene UBA52: named by 460 

GO analysis as cytoplasmic ribosomal proteins (adjusted p-value 1.55x10-146). This pathway was also 461 

found to be enriched for genes expressed by transcription factor Myc (adjusted p-value 7.07x10-53) 462 

against the ChEA 2016 transcription factor database and of dendritic cells in the ARCHS4 transcription 463 

factors’ co-expression database (adjusted p-value 1.34x10-36). Activated Myc represses interferon 464 

regulatory factor 7 (IRF7) and a significant lower abundance of IRF7 was found in patients with COVID-465 

19 compared to influenza (Supplementary figure 5). The second differentially activated TopMD 466 

pathway had peak gene NDUFAB1; named by GO analysis as mitochondrial complex I assembly model 467 

OXPHOS system WP4324 (adjusted p-value 2.81x10-66). The third differentially activated TopMD 468 

pathway was named by GO analysis as proteasome degradation WP183 (adjusted p-value, 1.46x10-469 

64), with PSMD14 as the peak gene (Figure 5 with full detail in Additional file 3 and the global map of 470 

differentially activated pathways available online (65)). 471 

 472 

 473 

 474 

 475 

 476 
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 477 

Figure 5: Differentially activated pathways between hospitalised patients with COVID-19 or influenza identified with 478 
topological analysis. The difference (Log2 fold change) in patients with COVID-19 compared to patients with influenza is 479 
plotted for the top 20 genes of the 1st, 2nd and 3rd TopMD pathways.  480 
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 481 

Cell subsets supporting innate and adaptive immune response differences 482 

Analysis of the blood transcriptome can be used to predict the immune cells present (64). Levels of 483 

different predicted cell types were assessed to determine whether there were differences in immune 484 

system associated cells between patients with COVID-19 or influenza (Figure 6). Statistical testing was 485 

done on cell type levels identified with CIBERSORTx. M0 macrophages (p-value 3.63x10-06), plasma 486 

cells (p-value 5.05x10-04), cytotoxic CD8+ T cells (p-value 4.58x10-03), regulatory T cells (p-value 487 

7.30x10-03) and resting natural killer cell (p-value 8.90x10-03) were found to be significantly higher in 488 

COVID-19 patients, while in influenza patients activated dendritic cells (p-value 2.23x10-02) were 489 

significantly higher. 490 

 491 

Figure 6: Increase of predicted cells associated with an innate and adaptive immune response in COVID-19 patients. M0 492 
macrophages, plasma cells, cytotoxic CD8+ T cells, regulatory T cells and resting natural killer (NK) cells were found to be 493 
significantly higher in COVID-19 patients. In influenza patients a significantly higher proportion of activated dendritic cells 494 
was detected. 495 

 496 
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Predicted cell type levels between COVID-19 survivors and non-survivors indicated an increase of 497 

neutrophils (p-value 2.84x10-04) in patients who died of COVID-19. In contrast, an increase of naïve 498 

CD4+ T cells (p-value 1.92x10-03), M0 macrophages (p-value 1.20x10-02), M2 macrophages (p-value 499 

1.48x10-02), naïve B cells (p-value 1.57x10-02) and naïve cytotoxic CD8+ T cells (p-value 2.31x10-02), were 500 

identified in patients who went on to survive COVID-19 (Figure 7). 501 

 502 

 503 

Figure 7: Differences in immune response indicated by predicted cell types in COVID-19 survivors and non-survivors. A) A 504 
statistically significant higher count of neutrophils in COVID-19 patients who died after 30 days indicating the presence of an 505 
elevated innate immune response. B) Adaptive immune response in COVID-19 survivors as can be seen by the statistically 506 
significant higher count of naïve B cells, and CD4+ and CD8+ T cells. 507 

 508 

Efficient adaptive immune response associates with COVID-19 survival 509 

As already noted, a high abundance of the GO biological process ‘adaptive immune response’ related 510 

transcripts, mostly immunoglobulin genes, was associated with COVID-19 survival (Figure 4). Here a 511 

direct assessment was done of the blood transcriptome differences between patients who, at 30 days 512 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 15, 2021. ; https://doi.org/10.1101/2021.05.12.21257086doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.12.21257086
http://creativecommons.org/licenses/by/4.0/


after hospital admission, survived or who died of COVID-19. A total of 23,850 abundance measures of 513 

gene transcripts were obtained after filtering out transcripts with low counts, of which 6.645 514 

transcripts were found to be significant (FDR p-value < 0.05) of which, 537 transcripts exceeded a log2 515 

fold change of < -1 or > 1, with 265 transcripts showing higher abundance in patients who survived 516 

COVID-19 and 272 transcripts showing a higher abundance in patients who died of COVID-19 (Figure 517 

8A and Additional file 4). 518 

 519 

Figure 8: Increased innate immune response in COVID-19 non-survivors and increased adaptive immune response in 520 
COVID-19 survivors. A) Volcano plot of transcripts falling within the threshold values (FDR < 0.05 and log fold change < -1 or 521 
>1) which were used for enrichment analysis with ToppGene. B) Enrichment analysis identified an increased innate immune 522 
response in patients who died of COVID-19 after 30 days of hospital admission. Percentage in annotation is the ratio of the 523 
input query genes overlapping with the genes in the pathway database. C) An enrichment of adaptive immune response 524 
related pathways was detected in patients with COVID-19 who were still alive 30 days after hospital admission. Percentage 525 
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in annotation is the ratio of the input query genes overlapping with the genes in the pathway database. D) Increase of T cell 526 
and B cell proliferation in COVID-19 survivors (paired non-parametric T-test). 527 

 528 

In patients who died of COVID-19 an enrichment for biological processes involved with an 529 

inflammatory response including interleukin signalling and neutrophil activation and degranulation 530 

was detected (Figure 8B). While in COVID-19 survivors biological processes involved with the adaptive 531 

immune system including complement activation, B cell mediated immunity and a humoral immune 532 

response mediated by circulating immunoglobulins was found to be enriched (Figure 8C). Additionally, 533 

transcript abundances associated with T cell and B cell proliferation were significantly higher in COVID-534 

19 survivors (p-value < 1.0x10-04, paired non-parametric T-test) (Figure 8D).  535 

 536 

Immune signatures as predictors of COVID-19 outcome 537 

Distinct immune signature genes were selected and assessed for their prediction accuracy in 538 

stratifying patients with COVID-19 for disease outcome, fatality or survival. A signature of 47 genes 539 

was identified (Figure 9A), representative of the four biggest clusters of genes associated with either 540 

patients with COVID-19 who survived or died. The associated GO biological process terms were 541 

‘humoral immune response mediated by circulating immunoglobulin’ (FDR p-value 2.23x10-46), 542 

‘nucleosome assembly’ (FDR p-value 5.46x10-19), ‘regulation of T-helper 1 cell cytokine production’ 543 

(FDR p-value 4.24x10-03) and  ‘regulation of T cell activation’ (FDR p-value 4.51x10-04) (Supplementary 544 

figure 6). This was highly predictive for outcome, with a maximum specificity of 75% and sensitivity of 545 

93% (Figure 9B and Table 4). 546 

 547 
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 548 

Figure 9: Receiver Operating Characteristic (ROC) curves showing prediction accuracy COVID-19 survivors and non-549 
survivors. A) Genes identified with EdgeR and gene co-expression analysis and used for subsequent modelling. B) ROC curves 550 
according to the three models used (Boosted Logistic Regression (LogitBoost), Bayesian Generalised Linear (Bayesglm) and 551 
RandomForest (rf)). 552 

 553 

Table 4: Potential for stratifying patients with COVID-19 upon admission to hospital on likely disease outcome. 554 

ModelName Accuracy TrainAUC PredictAUC Sensitivity Specificity 

rf 0.7368 0.96 0.9 0 0.9333 

LogitBoost 0.8421 0.9381 0.875 0.75 0.8667 

Bayesglm 0.8421 0.895 0.7333 0.25 1 

In total three different models were used (RandomForest (rf), Boosted Logistic Regression (LogitBoost) and Bayesian 555 
Generalised Linear (Bayesglm)). The 47 genes identified with gene co-expression and differential gene expression analysis 556 
were used as input. The highest sensitivity obtained was 75% and for specificity 93%. 557 

 558 

 559 

 560 

 561 

 562 
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Discussion 563 

As previously reported transcriptomic analysis of blood samples provide a relatively non-invasive 564 

window on the immune response, as previously shown by differentiating patients with Ebola virus 565 

disease at the acute stage (66). In this study we explored the functional blood transcriptomic 566 

differences, focussing mainly on the immune response, between patients with COVID-19, admitted to 567 

hospital during the first wave of the pandemic, and patients with a well-characterised stereotypical 568 

seasonal respiratory virus infection, influenza. Furthermore, we compared the blood transcriptomes 569 

of COVID-19 survivors and non-survivors for promising prognostic signatures indicative of COVID-19 570 

survival.  571 

 572 

35 variables that can provide prognostic information on COVID-19 associated mortality and 14 573 

variables that can provide prognostic information on COVID-19 severity have previously been reported 574 

(67). We compared these known COVID-19 prognostic variables (67) between patients with COVID-19 575 

or influenza and found more active smokers among influenza patients. High C-reactive protein (CRP), 576 

which previously has been reported to be similar upon admission to hospital between patients with 577 

COVID-19 or influenza (3), hypertension and diabetes were more common among patients with 578 

COVID-19. We also found an increase of liver disease, which has been classified as a low or very low 579 

certainty predictor (67), in patients with COVID-19. In our cohort more patients with influenza had an 580 

underlying respiratory disease. Similar to what has been previously reported (3) upon admission to 581 

hospital both patients with COVID-19 or influenza presented with similar WBC and neutrophil counts, 582 

and although we detected a difference in lymphocytes between patients with COVID-19 or influenza, 583 

there was no difference the N/L ratio. Similar to Piroth et al. (4) we found that the average length of 584 

stay was higher for patients with COVID-19 compared to influenza, and more patients with COVID-19 585 

needed supplementary oxygen, and finally while Piroth et al. (4) report a roughly three times higher 586 

relative risk of death for COVID-19, in our cohort no influenza patients died whilst admitted to hospital 587 
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and so this could not be assessed. In addition, we compared COVID-19 survivors and non-survivors, 588 

and as reported the high certainty prognostic variables for mortality and/or severity of increased age, 589 

hypertension, cardiovascular disease, diabetes, underlying respiratory disease (including COPD) and a 590 

high WBC (67) were increased in non-survivors. While it has previously been reported that CRP and 591 

N/L ratio were elevated in patients with COVID-19 who became critically ill (3), in our study we saw 592 

no difference in CRP, neutrophil count and lymphocyte count between COVID-19 survivors and non-593 

survivors. However, we found that urea, creatinine, alanine aminotransferase, troponin and several 594 

cytokines, including IL-1β, IL-6, IL-8, IL-10 and TNFα, to be higher in patients who died of COVID-19. 595 

 596 

Our initial global analysis of blood transcriptomic differences between patients with COVID-19 or 597 

influenza detected contrasting innate and adaptive immune programmes. An impaired immune 598 

response to viruses and interferon signalling in patients with COVID-19 was found, as described 599 

previously (6–9), compared to patients with influenza, which are known to produce an IFN response 600 

(3). Furthermore, in accordance with accumulating evidence of aberrant blood clotting in patients with 601 

COVID-19 (68,69), transcripts expressed by megakaryocytes and platelets associated with blood 602 

coagulation were in a higher abundance in COVID-19 patients. Gene clusters associated with an innate 603 

immune response were found to be associated with influenza. While, in contrast, gene clusters 604 

associated with an adaptive immune response and an increase of predicted plasma cells and CD8+ T 605 

cells with COVID-19, pointing to T cell and B cell activation / priming. 606 

 607 

Further analysis revealed various immunoglobulin genes had increased transcript abundance in 608 

patients with COVID-19 compared to patients with influenza. This significant over representation of a 609 

wide range of heavy chain and light chain V genes in patients with COVID-19 has been described before 610 

(70) and the implementation of antibody analysis in plasma samples has been used as an additional 611 

tool in diagnosing COVID-19 (71). We found that the 86.8% (53/61) of patients who survived COVID-612 

19 had a higher than average transcript abundance of 83 immunoglobulin genes, which overlap with 613 
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the GO biological term ‘adaptive immune response’, while this was 37.5% among the patients who 614 

died of COVID-19. Further analysis revealed that the aforementioned higher than average transcript 615 

abundance is associated with  a younger age of the patient, a longer symptom duration before 616 

admittance into hospital and a positive survival outcome 30 days after hospital admission. A lower 617 

than average transcript abundance of 83 immunoglobulin genes was detected in 62.5% (10/16) of 618 

patients who died of COVID-19, compared to 14.8% (9/61) of patients who survived COVID-19. 619 

 620 

We subsequently detected an increased transcript abundance from genes associated with T cell and 621 

B cell proliferation, an enrichment for gene pathways involved with an adaptive immune response, 622 

and an increase in predicted CD4+ and CD8+ T cells and naïve B cells in patients who survived COVID-623 

19, highlighting the importance of an efficient adaptive immune response as previously reported (17). 624 

The predicted cell fraction of naïve CD4+ T cell was found to be higher compared to CD8+ T cells 625 

indicating a higher CD4+ T cell response to SARS-CoV-2 than a CD8+ T cell response, supporting 626 

previous observations (17,72), which has been found to control primary SARS-CoV-2 infection (22). 627 

We note that the CD8+ T cells were mostly seen in COVID-19 survivors, compared to COVID-19 non-628 

survivors, which has been associated with a positive COVID-19 outcome (22,73).  629 

 630 

In contrast, we detected in COVID-19 non-survivors an enrichment of pathways involved with the 631 

negative regulation of lymphocyte activation and increased neutrophil activation and degranulation, 632 

supported by a significant decrease in predicted cell fraction of naïve B cells and naïve CD4+ and CD8+ 633 

T cells and an increase of the neutrophil cell fraction. This is consistent with previous studies finding 634 

elevated levels of neutrophils in blood (74) and lungs (75–78) in severe COVID-19. Furthermore, gene 635 

pathways involved with an inflammatory response and cytokine signalling were enriched in COVID-19 636 

non-survivors and we detected that a higher transcript abundance of several IL genes (IL1-RAP, IL-10, 637 

IL1-R1, IL1-R2, IL18-R1 and IL18-RAP) and laboratory results indicated a increase of TNFα, IL-1β, IL-8, 638 

and IL-33 with the largest increase for IL-6 and IL-10. This is consistent with the previously reported 639 
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positive regulation of genes encoding the activation of innate immune system, viral and IFN response 640 

(3), and increase of proinflammatory macrophages (79) and elevated IL-6 and IL-10 in severe COVID-641 

19 cases (14–16).  642 

 643 

When comparing the immune response between patients who either survived or died of COVID-19 it 644 

appears that, as Sette and Crotty (24) summarised, that COVID-19 severity is largely due to an early 645 

virus-driven evasion of innate immune recognition leading to a subsequent delayed adaptive immune 646 

response with a fatal COVID-19 outcome, as shown by Lucas et al. (80), where the innate immune 647 

response is ever-expanding due to an absence of a quick T cell response. A delayed adaptive immune 648 

response to COVID-19 can occur in the elderly due to their reduced ability to mount a successful 649 

adaptive immune response leading to an increased risk of death (22). This reduced ability to mount 650 

an adaptive immune response in the elderly is due to a scarcity of naïve T cells caused by aging (18–651 

20) and the association of age and severe or fatal COVID-19 is already known, for example, as of April 652 

15th 2021 in the United States 95.4% of COVID-19 deaths have occurred in 50-year-olds and older, and 653 

59.3% in 75-year-olds and older (81). Similarly, we found that patients who survived COVID-19 were 654 

younger, had a higher predicted naïve CD4+ T cell and naïve B cell fraction, and had  an increased heart 655 

rate compared to non-survivors. Further research is needed to assess the causality of these factors, 656 

for example the relationship between increased age and heart rate in non-survivors. 657 

 658 

Topological analysis was performed to identify the global map of gene pathways differentially 659 

activated between COVID-19 and influenza. The first differentially activated pathway was enriched for 660 

genes related to ribosomal and insulin pathways indicating differences in effects on translational 661 

machinery and supporting the reported roles of insulin resistance linked to COVID-19 severity (82). 662 

Although highly speculative, insulin signalling differences may reflect the role of angiotensin 663 

converting enzyme 2 (ACE2), the binding site for SARS-CoV-2, which degrades angiotensin 2, 664 

protecting against oxidative stress and insulin resistance driven by the renin-angiotensin-aldosterone 665 
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system (83). Additionally, ACE2 expression has been found to be increased in rats given a high sucrose 666 

diet or insulin sensitisers (84). Furthermore, the first pathway was also found to be enriched for genes 667 

transcribed by Myc. Activated Myc represses IRF7 which regulates type I IFN production (85), and 668 

correspondingly we found a significant lower IRF7 expression and a lower induction of IFN in patients 669 

with COVID-19 compared to influenza. This low IFN induction in COVID-19 may be due to the virus 670 

avoiding or delaying an intracellular innate immune response to type I and type III IFNs (6–9). The 671 

second most differentially activated pathway, peak gene NDUFAB1, involved with the mitochondrial 672 

complex I assembly model OXPHOS system supports reported increased COVID-19 disease severity 673 

linked to SARS-CoV-2 being able to highjack mitochondria of immune cells, replicate and disrupt 674 

mitochondrial dynamics (86). The third differentially activated pathway was associated with the 675 

cellular ubiquitin-proteasome pathways which are known to play important roles in coronavirus 676 

infection cycles (87). The protein synthesis and ubiquitination-related pathways might reflect 677 

mechanisms of increased viral replication and suppression of host interferon signalling pathways, 678 

including increased degradation of IκBα which suppresses the IFN-induced NF-κB activation pathway. 679 

Also, in SARS-CoV, accessory protein P6, whose sequence is conserved in SARS-CoV-2 (88), promotes 680 

the ubiquitin-dependent proteasomal degradation of N-Myc interactor, thus limiting IFN signalling 681 

(89). However, the peak marker of this pathway PSMD14 which prevents interferon regulatory factor 682 

3 (IRF3) autophagic degradation and therefore, permits IRF3-mediated type I IFN activation (90); 683 

shedding light on the complex mechanistic differences regulating interferon production between 684 

COVID-19 and influenza.  685 

 686 

Conclusions  687 

In this study, we have compared side-by-side SARS-CoV-2 and a stereotypical respiratory viral infection 688 

(influenza), and COVID-19 survivors and non-survivors. Distinct patterns of transcript abundances and 689 

cellular composition were found in whole blood that can differentiate the infection source, furthering 690 
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our understanding of the antiviral immune response differences. Additionally, we observed a 691 

proinflammatory signature associated with a negative outcome in patients with COVID-19. Finally, a 692 

signature of transcript abundances in the blood transcriptome of COVID-19 patients, upon admission 693 

to hospital, was identified with prognostic potential to stratify patients into those likely to survive or 694 

die. 695 
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