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Abstract

Modelling COVID-19 transmission at live events and public gatherings is essential to
evaluate and control the probability of subsequent outbreaks. Model estimates can be
used to inform event organizers about the possibility of super-spreading and the predicted
efficacy of safety protocols, as well as to communicate to participants their personalised
risk so that they may choose whether to attend. Yet, despite the fast-growing body of
literature on COVID transmission dynamics, current risk models either neglect contextual
information on vaccination rates or disease prevalence or do not attempt to quantitatively
model transmission, thus limiting their potential to provide insightful estimates. This paper
attempts to bridge this gap by providing informative risk metrics for live public events,
along with a measure of their associated uncertainty. Starting with a thorough review of
the literature and building upon existing models, our approach ties together three main
components: (a) reliable modelling of the number of infectious cases at the time of the event,
(b) evaluation of the efficiency of pre-event screening and risk mitigation protocols, and (c)
modelling the transmission dynamics during the event. We demonstrate how uncertainty
in the input parameters can be included in the model using Monte Carlo simulations. We
discuss the underlying assumptions and limitations of our approach and implications for
policy around live events management.

1. Introduction

More than a year after a global, unprecedented cancellation of live events in March 2020, the future of
live events and the entertainment industry remains uncertain despite increasing vaccination rates and low
community prevalence levels (at the time of writing) . The main concern raised by these gatherings lies in
their susceptibility to “super-spreading” — a scenario whereby a few contagious participants inadvertently
infect a disproportionately large number of others [1, 2, 3, 4, 5, 6] . The role of super-spreading events has
been highlighted as a significant driver of the pandemic [7, 8, 9, 10, 11]. Despite the planned re-opening
of live events in the UK on June 21st 2021, the threat of existing and emergent COVID-19 variants coupled

Preprint. Under review.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 16, 2021. ; https://doi.org/10.1101/2021.05.13.21256857doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.05.13.21256857
http://creativecommons.org/licenses/by-nc-nd/4.0/


to dwindling immunity from vaccination over time suggests that policy makers and event organizers will
likely continue to struggle with the following two questions: (a) Is the COVID-19 transmission risk posed
by these events tolerable? and (b) What additional safety measures can be feasibly deployed to reduce this
risk? The answer to these questions is inherently tied to the estimation of two quantities: the number of
infections occurring at the event, and the post-event secondary attack rate, or number of subsequent infections
in the participants’ social circles. Evaluating the safety (or lack thereof) of large public gatherings can then
be reframed as quantifying the significance and magnitude of their effect on the distribution of the number
of primary and secondary COVID-19 cases. Yet, despite the growing body of literature on COVID-19 risk
evaluation and recent efforts to evaluate the safety of live events, their effect on COVID-19 transmission
remains ill-characterized. Nevertheless, over the past several months, a number of calculators were developed
to estimate this risk [12, 13, 14, 15]. These methods can typically be placed in one of three categories.
(a) Ranking heuristics: These estimators typically rank events on a scale ranging from “low” to “high” risk
based on the feedback of medical experts [13, 16, 17, 18]. However, these heuristics do not take into account
any contextual information, including the prevalence, such that the risk associated with the event would be
classified as high regardless of whether it was held in August 2020 (background prevalence of 1 in 3,000
individuals) or January 2021 (prevalence of 1 in 60 individuals1).
(b) Context-based heuristics: These calculators estimate the probability of encountering one COVID-case
based on the number of people attending an event [12, 13]. Whilst the latter are more context-aware than risk
assessment charts, they do not account for modelling transmission dynamics — which is undeniably one of the
main unknowns in the spread of viral epidemics — and consequently rarely stratify risk by type of activity. To
exemplify, a classical music recital of 1.5 hours for the BBC Proms would potentially be considered equally
risky to a 3-hour concert in which participants could be expected to sing along.
(c) Transmission risk calculators: Stemming from the physics of fluid dynamics, these calculators focus
on modelling the aerosolization and spread of micro-droplets — typically in a closed/indoor environment
[19, 20, 21, 22]. These fine-grained models have to be combined with extensive simulations of crowd
movements in order to model transmission dynamics during any given event.

Regardless of their category, most of these models rely on a large number and wide range of input parameters,
including (but not restricted to) the prevalence of the disease. Whilst certain calculators attempt to bridge the
gap between expert heuristics and physical models [12, 23], they are not capable of predicting the risk of a
future event. Moreover, all of these estimators provide point estimates – in other words, their output is a single
number to quantify the risk. Given the uncertainty associated with all the inputs and the parametrization of
the problem, the provision of a single consolidated outcome or number can potentially be misleading. This is
because a singular focus on the expected outcome precludes consideration of the distribution of all possible
outcomes, including worst-case scenarios.

Mitigating transmission risk. Meanwhile, with the increasing vaccination rates in several countries around
the world, a few initiatives have begun to evaluate the outbreak risk associated with live events [24, 25, 26, 27].
This is because vaccinated individuals may still be infected with SARS-CoV-2 [28, 29], and even antigen-test
based screening of ticket holders offers no guarantee due to false negatives [30, 31]. The estimation of what
constitutes an admissible level of risk thus poses a difficult conundrum to the live event industry. To begin
answering these questions, the CAPACITY study [32] — a partnership between CERTIFIC (a private, remote
testing, health status and identify certification service), LiveNation (a live events production company) and
Imperial College London – aims to predict and measure the outcomes of full capacity live events whilst
ensuring rigorous implementation and alignment to current public health and recommended safety measures.
Central to this study is the provision of a streamlined and efficient pre-event screening protocol of all ticket
holders using professionally-witnessed rapid at-home antigen tests followed by post-event monitoring based on
antigen tests, surveys and safety recommendations (see Appendix D). In this setting, providing risk estimates
not only becomes essential in communicating to the ticket holders their own level of risk so that they may
make an informed decision of whether or not to attend the event, but also necessary to inform event managers
and policy makers on the likelihood of an outbreak – a task which serves here as the motivating application
behind this paper.

A working example: Concert at the Royal Albert Hall. In order to understand and illustrate the potential
challenges that arise in the risk estimation for the CAPACITY study, we consider as an example a concert at
the Royal Albert Hall (RAH), and demonstrate how to estimate the associated risk assuming a near-capacity
attendance of 5,000 in the main concert hall, which has a volume of 86,650 m3 [33], with a dwell time of 3
hours. Attendees will be assumed to be a cross-section representative of the general British public and will be

1Source: Office for National Statistics Survey data

2

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 16, 2021. ; https://doi.org/10.1101/2021.05.13.21256857doi: medRxiv preprint 

https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/datasets/coronaviruscovid19infectionsurveydata
https://doi.org/10.1101/2021.05.13.21256857
http://creativecommons.org/licenses/by-nc-nd/4.0/


required to have a negative COVID antigen test result within 2 days prior to the event, as well as satisfying
other self-declared symptoms and exposure-risk questions. Vaccination status would be requested, but not
required for attendance, and full compliance with mask wearing is assumed in our default example.

Goals and Contributions. The objectives of our modelling approach are three-fold: (a) enable the quantitative
comparison of different activities and event characteristics, (b) estimate the efficacy of various safety protocols
and (c) provide a predictive risk assessment, i.e, the risk associated with a scheduled future event. To this
end, we delineate our approach into three sequential steps (see Fig. 1) as follows: 1) estimating the number of
contagious participants, 2) evaluating the transmission dynamics, and 3) comparing the risk of holding the
event with the null model i.e. if the event had not taken place. We illustrate the application of our risk modelling
pipeline in the RAH example to highlight the risk’s dependency on factors such as prevalence, mask wearing,
number of attendees and event duration. In particular, we demonstrate how this particular event held on three
different dates (3rd August 2020, 18th January 2021, 8th March 2021) would likely lead to transmission events
only slightly above background rates (0.5 vs 0.2, 6.7 vs 3.5, and 5.4 vs 2.5, respectively (Table 2)). However,
the 97.5 percentile of the prediction interval for the infections at the event would likely be substantially higher
than the background rate (6.8 vs 2, 89 vs 8, and 71 vs 7, respectively), further demonstrating that sole reliance
on vaccination and antigen testing to gain entry would significantly underestimate the tail risk of the event.
However, we emphasize that the goal of this paper is not to present a novel “state-of-the-art” risk estimation
procedure because COVID-19 transmission mechanisms remain poorly characterized, and we acknowledge
that our approach requires certain simplifications and assumptions which we discuss at length in the last
section of this paper. Rather, faced with the need to provide a risk evaluation tool despite many unknowns,
our estimation pipeline combines the best tools at hand to assess the order of magnitude of the risk – thereby
opening the avenue for further work on contextualized COVID risk assessment. Our model can be applied to
any event occurring in the near future, and is presented in a user-friendly R Shiny interface2.
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Figure 1: Summary of our modelling pipeline

2. Modelling The Risk of a Large Public Event

Step 1. Estimating the Number of Infectious Participants

Projected Incidence. The first step in our risk modelling procedure is to predict the number of infectious
cases attending a given future event. COVID forecasting is undeniably an involved task, as reflected by its
impressive corresponding body of literature (e.g, agent-based models, or Susceptible-Exposed-Infectious-
Removed (SEIR) models [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]). Predicting the number of new cases per
day typically depends on the choice of a specific parameterization (e.g, an exponential growth for computing
the reproductive number R [45, 46], etc), whose validity is severely hindered by continuous updates in public
policies. To alleviate these concerns, we use a non-parametric k-nearest neighbour (kNN) approach. Using
all trajectories of the disease incidence across countries and time since the beginning of the pandemic, we
compute the k = 100 closest trajectories (in terms of the `2 loss) on time windows of four weeks. These nearest
neighbours’ subsequent trajectories are then used to predict the daily incidence rate in the days leading to
the event. We defer to Appendix A for a more in-depth discussion of this estimation procedure, as well as
an evaluation of its performance compared to more standard methods. Figure 2 presents a comparison of the
projected incidence for various randomly sampled dates (August 3rd 2020, January 18th 2021, and March
8th 2021) for the RAH concert using four weeks of fitting, and predicting four weeks in advance. Note in
particular the good coverage provided by our method (the convex hull of the 95% prediction intervals for the

2Link to the prototype: https://homecovidtests.shinyapps.io/aerosol_transmission_model/
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Figure 2: Projected incidence (average and 95% prediction interval). The 4 weeks of fitting is denoted in light gray, and
the confidence interval for the next for weeks is highlighted in dark gray. We note that our kNN method provides good
coverage (the observed trajectory lies well within the 95% prediction interval).

projected incidences contains the actual observations). These plots highlight the importance and variability of
the incidence, which varied by orders of magnitude between August 2020 and January 2021.

Under-ascertainment Bias. The estimated number of new cases based on official incidence data will then
need to be corrected for under-ascertainment. The latter refers to the downward bias of the reported prevalence
in the population, due for instance to limited testing capacity, low test sensitivity or people being unwilling or
unable to take a test. To this end, we compare the ratio of the number of deaths over reported cases (translated
by three weeks) to an expected, age-stratified Infection-Fatality Ratio3 (see Appendix A for more details). To
highlight the potential importance of this correction step, the ascertainment rate for the United Kingdom was
evaluated as over 90% for August 2020, but below 40% for December 2020.

Determining the Number of Infectious participants at the event. Having predicted the background daily
incidence rate, we turn to the estimation of the number of infectious participants who will attend the event
despite the screening protocols. For an infectious individual to attend the event in spite of the CAPACITY
study’ screening protocol, they must (a) have no COVID-like symptoms or fail to report them on the morning
of the event, (b) receive a (false) negative result during antigen testing D = 2 days prior to the event, and (c) be
contagious (rather than simply infected) at the time of the event. We evaluate the joint probability of these
events as follows, and, for the sake of clarity, refer the reader to Appendix A for an in-depth explanation of our
estimation procedure.
(a) Symptoms-Check Failure. One of the main challenges associated with the COVID-19 crisis is the number
of asymptomatic cases - that is, infected individuals that do not express symptoms and are thus unaware of
their potential infectiousness. This group includes individuals that are either pre-symptomatic or completely
asymptomatic during the course of their illness – the latter are estimated to represent roughly 25% of all cases
[47]. For symptomatic patients, the probability of having symptoms on the day of the event is also a function
of time since infection. To account for this temporal dependency, we use estimates of the incubation period
(defined as the number of days between infection and symptom onset) from McAloon et al. [48] and data on
symptoms duration from van Kampen et al. [49] to estimate the probability for a ticket holder infected k days
before the event to exhibit symptoms on the day of the event. A density plot of this probability is displayed in
red in Figure 3a.
(b) Antigen test failure. The sensitivity of COVID tests depends heavily on the time since infection — whether
these are the gold-standard PCR or Lateral Flow Antigen Assays [50]. Moreover, studies have shown that LFA
tests have much lower sensitivity on asymptomatic individuals than symptomatic: in particular, according to a
recent CDC report [51], Rapid Antigen testing has 80% sensitivity on symptomatic individuals, but only 40%
sensitivity on asymptomatic individuals. Coupling the sensitivity estimates [50, 51] with the distribution of

3Data available at the following link: https://github.com/mbevand/covid19-age-stratified-ifr
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Figure 3: (a) Density of the COVID-19 incubation time, and Percentage culture positive. (b) Probability that an individual
is infectious (light grey),that the screening protocol will miss them (black), and that they will be missed and so attend the
event (red), as a function of days since infection. The shaded regions denote the uncertainty of this estimate due to the
uncertainty on the sensitivity of the test. The distribution of the incubation time already integrates the uncertainty on the
parameters µ and σ of the log-normal distribution.

incubation period and estimated percentage of asymptomatic cases [48, 47], for each individual infected at day
k taking an antigen test D days before the event, the probability of getting through the filtering protocol is thus
given by the formula:

P[Protocol Fails|Contaminated at Time k] = (1− s(symptomatic)
t−k−D )

(
pSC × p(symptom)

t−k + (1− p(symptom)
t−k )

)︸ ︷︷ ︸
P[{Test with Symptom Fails}

⋂
{Symptom Check Fails}]

+ p(asymptomatic) × (1− s(asymptomatic))︸ ︷︷ ︸
P[{Asymptomatic}

⋂
{Test on Asymptomatics Fail}]

where s(symptomatic)
t−k−D and s(asymptomatic) are respectively the sensitivities of the test taken D days before the event

for a symptomatic participant infected t − k days before the event and an asymptomatic individual. The
parameter p(symptom)

t−k denotes the probability for a symptomatic individual to exhibit symptoms t− k days after
infection, whereas p(asymptomatic) is the probability of being asymptomatic. Finally, the variable pSC denotes
the probability of the Symptoms Check failing — namely, that the participant does not want to report their
symptoms (see Appendix A for more details). The curve in black on Figure 3b shows the probability of the
failure of the screening protocol as a function of days after infection. The shaded areas denote the uncertainty
around this estimate due to the variability of the incubation time.
(c) Infectiousness. The infectiousness of the participants — that is, the propensity of an infected ticket holder

to contaminate others — is a function of time since infection. In order to estimate this relationship, we build
upon the existing literature studying the link between RT-PCR thresholds and cultivable virus [52, 53]. The
percentage of culturable viral material in the sample can indeed be used as a proxy for infectiousness. Using
the estimated percentages of viable samples [52, 53] as a function of time since symptom onset, compounded
with distribution of the incubation period duration [48], we compute an estimate of the infectiousness as a
function of time since infection (black curve in Figure 3a). A more complete description of this estimation
procedure is presented in Appendix A. The results are presented in Figure 3b. The red line in Figure 3b shows
the resulting probability for an infectious ticket holder to pass through the screening protocol and be allowed
into the event. Note that ticket holders that have been infected five days before the event are the most likely to
be infectious and let in the venue on the day of the event.

Determining the number of participants at risk. Finally, the last quantity that we need to infer before
getting into the specifics of the transmission mechanisms is the number of participants at risk of being infected
who present at the event. This requires a knowledge of the participants’ COVID susceptibility status, i.e, has the
participant already had COVID in the previous year and/or has the participant been vaccinated? While previous
history could be imputed through additional questions (e.g., previous positive test for COVID, symptoms,
etc, combined in a model such as in [54]), for the sake of simplicity, we only consider the vaccination status
of the participants — thus leaving out the proportion of the population that had COVID but was not yet

5

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 16, 2021. ; https://doi.org/10.1101/2021.05.13.21256857doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.13.21256857
http://creativecommons.org/licenses/by-nc-nd/4.0/


Date of the Event August 3rd 2020 January 18th 2021 March 8th 2021
Projected incidence 36 in 1,000,000 1,210 in 1,000,000 410 in 1,000,000

Number of Infected Participants 3.3 174 57.5
Number of Infectious Participants at the Event 0.20 10.5 5.3

Percentage of Caught Cases 71 % 69% 62 %
Number of Susceptible Participants 4,996.7 4,826.0 4036.5

Table 1: Comparison of the efficiency of the screening protocol and the number of infectious participants
at the event by event date. The combined effect of the screening protocol, and the natural time-dependent
infectiousness of infected ticket holders mean that the number of infectious participants at the event is likely to
be low, and in the order of tens in times of extremely high prevalence.

vaccinated. This induces a risk estimate that is biased upward, and is thus more conservative. We impute
missing data (cases where the participants have not filled in their vaccination status) using linear regression,
expressing vaccination rate as a function of time. This assumes that vaccinations are operating at capacity
(see Appendix A for a longer discussion on the reasons for this approximation, and further ways of improving
this model). Having imputed the rate of new vaccinations πs=1···t in the days leading to the event, we turn
to the estimation of the number of individuals that are likely to be susceptible. Recent reports indicate that
vaccine-acquired immunity is a function of both time since vaccination and number of doses [55]. To compute
the effective number of participants at risk in the event, we use a compound Poisson distribution: on each
day s in the weeks leading to the event, the number X of new participants vaccinated (having either their
first or second dose) is expressed as a Poisson(π(dose j)

s ), where j ∈ {1, 2}. Each of these newly vaccinated
individuals then has a probability ρ(dose j)

t−s of being immune, depending on the date and dose j that they have
received. The resulting number of immune people Z attending the event thus follows a Poisson model with
rate: Z ∼ Poisson(

∑2
j=1

∑T
s=1 π

(dose j)
s ρ

(dose j)
t−s ). We discuss in Appendix A how this estimation can easily

be modified as the vaccination rates increase and the Poisson approximation becomes no longer valid.

Royal Albert Hall Example For the RAH example, we present a comparison of each quantity for three different
dates (see Table 1). Of note is that the screening safety protocol is effective in more than 60% of cases that
when combined with the expected infectiousness of participants and self-reporting of COVID-like symptoms,
imply that 95% of infected cases are removed. We also note that prevalence is very important in determining
the number of infectious cases at the event — thereby highlighting the importance of a context-aware risk
calculator.

Step 2. Modelling Transmission Dynamics

Having estimated the number of infectious participants at the event, the second major component of our model
consists of estimating the number of transmission events during the event itself.

Identification of transmission mechanisms. More than a year after the start of the epidemic, the precise
mechanisms by which COVID-19 is transmitted are still unclear. Aside from direct physical contact, experts
continue to debate the significance of the following two main routes of infection:
(a) Droplet transmission. In this scenario, transmission happens through the inhalation of droplets (particles of
5 to 10 µm in diameter [56]), and typically occurs when a person is in close proximity (within 1 meter) with
someone who has respiratory symptoms (e.g. coughing or sneezing).
(b) Airborne transmission. Increasing concerns around airborne transmission have been raised by a number of
experts over the past few months [57, 58]. Airborne transmission refers to the presence of the virus within
droplet nuclei remaining in the air for long periods of time and with the potential to travel long distances [57]
and penetrate more deeply in respiratory tracts. Airborne transmission has been estimated to be nearly 19
times more likely indoors than outdoors [59]. In the context of large public events, this transmission route thus
has more diffusive power and hence could explain several super-spreader events (SSEs) [6] making it a major
cause for concern [60, 61, 53, 62, 2, 57, 63, 64, 65, 66].

While droplet emission is undeniably a source of concern and a major source of transmission, simple safety
precautions such as mask wearing have been shown to efficiently control this transmission source [67, 68]: it
is estimated that face masks can block 80% of exhaled droplets and reduce inhaled droplets by up to 50%,
and so on average reduce the transmission probability by 70% [67]. Conversely, the evidence concerning the
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Date of the Event August 3rd 2020 January 18th 2021 March 8th 2021
Scenario Event No Event Event No Event Event No Event
Median 0.5 0.2 20 3.5 5.4 2.5

1st Percentile 0.28 0 11 0 2.9 1
2.5th Percentile 0.28 0 11 0 3.0 1

97.5th Percentile 6.8 1 264 8 71.3 6
99th Percentile 14.6 2 575 8 162 7

Table 2: Quantiles of the number of transmission events for the RAH concert. The grey cells provide the
quantiles for the null distribution, that is, a situation in which the event does not take place but ticket holders
might still get infected as a by-product of the background community prevalence.

efficiency of standard protective equipment in filtering aerosol droplets varies widely across studies probably
due to “variation in experimental design and particle sizes analyzed” [67]. Airborne transmission in indoor
settings can thus represent one of the main risk factors in live events, which we focus on modelling using
the aerosol model proposed by Jimenez [69, 63]. The Jimenez aerosol transmission model [69, 21, 63, 70] is
currently one of the only COVID-transmission models that provides enough granularity to quantify the risk
associated with an event. This recognized model has been used several times in the literature over the course
of the pandemic, including to allow in-class teaching at the University of Illinois at Chicago [64]. Based on
the Wells-Riley model [71, 72, 73], this estimator calibrates the quanta to known transmission events, and
takes into account important factors to compute a risk estimate, including event-specific (number of people,
local prevalence, etc) and venue-specific variables (ventilation rate, size of the venue, UV exposure). This
Wells-Riley-based model relies on the evaluation of three quantities: (a) the quanta exhalation rate, which
is contingent on the activity performed and the number of infectious participants; (b) quanta concentration,
which is a function of the volume of the space, the room ventilation rate, and the quanta exhalation rate; and
(c) quanta inhalation rate, which is a function of the quanta concentration and breathing rate associated with
the activity performed. The probability for each susceptible individual to be infected can then be written as:
pinfection = 1− e−qinhalation (See Appendix B for more details).

Modelling the uncertainty of the model. To estimate the uncertainty associated with this model, we use
Monte-Carlo simulations. We simulate random input parameters (number of infectious and susceptible
individuals) using the distributions and uncertainty estimates discussed in the previous section. In order to
model the uncertainty associated with the Jimenez transmission model, we add a sampling step at the end of
the Jimenez pipeline. This allows us to account for individual variations in infectious participants’ ability to
spread the disease, and to remain consistent with the extensive literature on the heavy-tailed, Pareto nature
of COVID transmission and superspreading [74, 75, 76]. For each susceptible participant, we sample their
probability of infection pinfection from a Pareto distribution centered at the computed qinhalation, and with shape
θ = 1.16 and rate η = θ/(θ − 1)(1− e−qinhalation). This produces a distribution centered around 1− e−qinhalation ,
but heavily skewed to model variability in the crowd. This choice of parameters allows us to abide by the
Pareto principle, according to which 80% of transmissions are due to 20% of those infected.

Step 3. Comparison with the Null Model

To quantify the effect of the event, it is necessary to put it in context of the background rate of infections: even
if the participants had not been to the event, they could have been infected elsewhere. In this null model, the
number of infections is binomially distributed, such that the number infections Y is Y ∼ Binom(nsusceptible, π).

The Royal Albert Hall. We present the results for the RAH example in Table 2. This table shows in gray the
values of the different quantiles of this distribution. We note the skewed distribution that we obtain is expected
given the modelling of the uncertainty around inhalation rate. If the event did not occur, then on each respective
date there would be an expected community transmission of 0.2 (95% prediction interval: 0.00, 1), 3.5 (0.00,
8) and 2.5 (1, 6) events on August 3rd 2020, January 18rd 2021 and March 8th 2021, respectively. However,
with the event taking place on these dates, and calculating the expected number of infectious individuals,
susceptible individuals and transmission dynamics within the venue, the number of transmission events would
in general increase to 0.5 (0.3, 6.8), 20 (11, 264) and 5.4 (3.0, 71) in that same order.
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It is likely, although not inevitable, that the event will have an impact on the transmission and increase it
irrespective of the level of the prevalence. However, for low levels of prevalence and higher vaccination
rates, this substantially decreases. Having computed the number of expected transmission events, we can then
compute several complementary metrics of interest including for example the secondary attack rate (SAR) —
that is, the number of COVID cases in the participants’ community in both the null and the event model. SAR
can be calculated from the predicted reproductive rate (R) in the regions where the ticket holders dwell. In the
UK, R rates are updated on a weekly basis at regional levels (e.g. East Midlands, London etc) and available
from the Office for National Statistics, or can be derived from the kNN modelling previously described. An
opportunity for further research would be to estimate SAR within households by gathering contextual data
from ticket holders. Equally, estimates of hospitalizations and deaths might be possible based on individual
characteristics and comorbidities, however this is beyond the scope of the current article.

3. Evaluating the Effectiveness of the Screening Protocol

This risk modeling pipeline also allows comparison of different protocols and situations. For example, this
pipeline highlights (a) the importance of event duration: the longer the dwell time at the event, the more
at-risk the participants, and (b) the importance of wearing masks. Table 3 quantifies outcomes of holding the
event on our three dates, assuming that either 0, 50 or 100% of participants are wearing masks, or varying
parameters such as the density or length of the concert. Figure 4 completes that analysis by providing a visual
representation the effect of these parameters on the distribution of the number of infections.

Figure 4: Effect of different input parameters on the distri-
bution of the number of infections for an event at the RAH
held on March 8th 2021.

Date of the Event August 3rd, 2020
(median, 95% CI)

January 18th, 2021
(median, 95% CI)

March 8th 2021
(median, 95% CI)

No mask
3h

5,000 participants
3.4 (1.9, 46.6) 131 (74, 1748) 36.4 (20.3, 485)

50% mask
3h

5,000 participants
1.7 (0.9, 23.8 ) 65 (36, 873) 17.7 (9.9, 226.2

100% mask
3h

5,000 participants
0.5 (0.3, 6.8) 20 (11, 275) 5.4 (3.0, 71.3)

100% mask
1.5h

5,000 participants
0.3 (0.1, 3.3 ) 10 (5.6, 128) 2.6 (1.5, 35.7)

100% mask
3h

2,500 participants
0.2 (0.1, 2.3) 6.7 (3.8, 88.5) 1.8 (1.0, 24.4)

Table 3: Effect of different input parameters on the quantiles
of the number of infections for an event at the RAH across
all three dates.

In addition to the aggregated risk that a live event presents, individual risk of transmission can be estimated
and can be communicated to ticket holders so that they can gauge whether the risk of attending the event
outweighs their desire to attend. For the first person to purchase a ticket, risk of transmission will be calculated
based on their own immunity status (vaccination, regional prevalence etc) and a synthetic population based on
national prevalence at that time. As more bookings are assigned to ticket holders, the reliance on the synthetic
population decreases as understanding of the number of susceptible and potentially infectious individuals
attending the event increases. Therefore, the confidence in the risk score increases as the event draws closer
and as the proportion of tickets sold increases. This can be reflected in the updated risk scores provided
to ticket holders as the event approaches. The individual risk scores can be modified based on alternative
scenarios imputed into the risk algorithm. For example, for an individual not yet vaccinated, their risk could
be also presented as if they had been vaccinated, offering an opportunity for the individual to appreciate how
vaccination could have modified their risk. Such an approach could form the basis for behaviour change
interventional studies for promoting health literacy and tackling vaccine hesitancy (see Appendix D). By
working in partnership with the live events organizer, individuals that chose to opt out can be reimbursed
without delay and the ticket re-sold.
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4. Discussion

The modelling we propose is based on prevalence estimates and screening protocols to calculate the number
of infectious and susceptible individuals attending the event as well as transmission dynamics at the venue
to predict the number of new infections. Our paper demonstrates the value of estimating attack rates from
live events so that they can be appropriately managed. We also demonstrate how individual ticket holders
can receive personalized risk scores for contracting COVID-19 at the event which would, for the first time,
enable genuine informed consent to be obtained. Although this methodology provides clear benefit to event
organizers, local public health authorities and individual ticket holders, our approach is based on several
assumptions which group in two categories: modelling assumptions and parameter sensitivity.

Modelling Assumptions. As they combine data and tools from different sources, the computations in our
pipeline rely on assumptions at three main levels:

(a) Predicting COVID-19 prevalence. To predict future COVID-19 incidence, we chose a kNN approach
as it yields a more robust prediction and better uncertainty quantification than most existing parametric
methods. One of the downsides of this approach is that it might not generalize very well to entirely novel
behaviours or viral variants – in which case well-parameterized methods may outperform our approach as
knowledge of transmission, vaccination and other relevant model parameters continues to improve. While
prevalence predictions are important for event planners and attendees alike, on the day of the event the more
important metric is whether official case rates reflect actual cases, i.e. the ascertainment rate. Historically,
this rate has been low due to limited testing facilities, and our method to determine ascertainment using cases,
deaths and infection-fatality rates reflects this, but also indicates that ascertainment may exceed 100% in
times of widespread testing and low prevalence. It was beyond the scope of this paper to further investigate
ascertainment but we expect that future research will clarify the impact of different test types, their false
negative and positive rates, and their frequency of use in determining the ascertainment rate.

(b) Assessing the efficiency of the screening protocol. Our modelling framework assumes that events will
screen participants with COVID-19 tests, such as virtually-witnessed lateral flow antigen tests. Assessing the
efficiency of this screening step requires the estimation of (a) the sensitivity of the test, (b) the probability of
having symptoms, and (c) the probability of being infectious – all of these quantities being a function of days
since infection. Our estimation of each of these quantities is based on published data - with the exception of the
probability of Symptom Check failure (i.e, the probability that a participant lies about their symptoms to get
in). By default, we select this probability to be 50%, a choice that will be improved upon as the CAPACITY
and other similar studies gather behavioural data. However, as shown in Appendix C, this factor has a relatively
minor impact on the outcome of the model compared to the uncertainty of the other inputs. Of potentially
greater concern is our assumption that the probability of testing negative 2 days before the event is independent
(conditionally on time since infection) of a participant’s infectiousness during the event. A potential avenue
for improvement could consist of determining both test sensitivity and infectiousness as a function of viral
load, and estimating the joint probability of the viral load 2 days apart. However, the data required for this
approach is – to the best of our knowledge – still lacking, and given the variability of the viral load or PCR Ct
behaviour, this conditional independence assumption seemed a reasonable first-order approximation.

(c) Transmission at the event. The airborne transmission model that we use relies on an homogeneous
(well mixed) air hypothesis. While several other models have been proposed (either breaking the room
into compartments or using a distance index) to counter (disprove or annul) this hypothesis, we highlight
(following the discussion by Jimenez [69]) that this is a first order approximation: some participants will have
more risk and others less, so that at low quanta concentration, this effect will be averaged out. At very high
concentration, the model will likely under-estimate the number of infections, but given the efficiency of the
screening protocol and density limitations, we do not expect this scenario to be common. Finally, we note
that our model is not tied down to any specific transmission mechanism, and as our knowledge of COVID
transmission improves, we can refine and supplant the transmission dynamics with a superior alternative or
another model that is deemed more suitable.

Parameter Sensitivity. While we try to limit the number of input parameters in our pipeline, the sensitivity of
the estimates to these inputs (namely, the mask efficiency and population of interest) has to be studied. We refer
the reader to Appendix C for a quantitative sensitivity analysis and highlight our conclusions here. In terms of
the model parameters, the greatest unknown consists in determining the efficiency of masks and protective
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equipment - the latter having been shown to vary depending on the mask type and activity. However, we hope
to make use of the growing body of literature on the topic to update and refine this important factor. Secondly,
our prediction framework assumes that participants at the event have the same probability of infection and
vaccination as their regional average. However this might not be the case as participation in the event may be
an incentive to get vaccinated, or conversely might select for less cautious sub-populations. The importance of
this sampling frame assumption nonetheless decreases as participants’ vaccination status and behavioural data
from the CAPACITY study will result in more precise estimates.

5. Conclusion

A nuanced, data-driven system is required to assess risk at each event informed by the characteristics of all
ticket holders and the background risk of transmission concurrent to the event, so that proportionate and
specific action can be taken by event organizers and public health authorities. We have detailed our attempt to
create such a system and have outlined its predictions and limitations. Our end-to-end risk model is provided
in the form of an R-shiny interface. At times of high prevalence, this type of system will ensure events likely to
increase transmission can be halted. At times of low prevalence this will ensure events can potentially continue
to operate. Learning to live with SARS-CoV-2 will be about implementing systems that support hyper-local,
data driven decisions so that far-reaching and highly damaging sector-specific lockdowns can be avoided as
much as possible.
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A. Appendix: Prediction

As explained in the introduction, the aim of this paper is to develop a context-aware risk model: to be
informative, the estimates of the risk that the model outputs must informed by (a) the prevalence at the time
of the event, (b) the ticket holders’ vaccination status, and (c) the screening protocol employed by the event
management to reduce transmission risk. In this setting, the CAPACITY protocol serves as a case in point and
a motivation to our paper. Central to the study is the estimation of the risk associated with the event on two
different horizons:
Horizon 1: Weeks prior to the event. In this setting, the goal is to predict ahead of time the risk associated
with the event, and help organizers and ticket holders alike to plan ahead and decide whether or not they deem
the risk associated with the event acceptable. This step requires the prediction of both the prevalence of the
disease and the vaccination status of the crowd several weeks in advance.
Horizon 2: A few days before the event. The purpose of the risk estimation is to evaluate — with more certainty
— the admissibility of the risk associated with the event. In this step, the algorithm can rely on ticket holders’
reported vaccination status, as well as the most recent incidence rates to compute the risk.

Thus, whilst not crucial for Horizon 2 (in the last few days leading up to the event), the prediction of the crowd’s
vaccination status as well as the incidence rate are a major component of Horizon 1— thereby calling for
prediction methods that both provide accurate estimates and a correct evaluation of their associated uncertainty.
In this appendix, we focus on providing more details into the different predictive components that we use
to estimate the risk ahead of time (Horizon 1). These consist of the following three main steps, which we
subsequently describe in greater details:

• Step a: The prediction of the number of newly infected individuals who are ticket holders.
• Step b: The prediction of the number of infected participants that will escape the screening protocol.
• Step c: The prediction of the number of vulnerable ticket holders at the time of the event (i.e,

participants that are not immune).

Step a. Prediction of new cases through a k-Nearest Neighbour (k-NN) Approach. The first step in our
pipeline consists of the estimation of the daily incidence rate in the days leading to the event, which, in the
main text of this paper, we suggested solving using a k-nearest neighbour approach with k=100. Indeed,
this choice of k=100 neighbours allows us to have sufficient information to evaluate the percentiles of the
distribution of the prediction, whilst retaining a sufficient amount of similarity with the original trajectory. The
algorithm is described in details in Algorithm 1.

Data: Previous Incidence data Y ∈ Rn×T ;
Choice of k=100;
Input vector X ∈ Rptrain with ptrain the length of the training period;
ppred the desired length of prediction period;

Result: k-Nearest Neighbors sample trajectories of length ppred , average prediction and uncertainty
estimates

Step 1: Compute the distance matrix :
for i in 1:n do

for t in 1:T by 14 do
Compute distance: Dbt/14c+1,i = distance(X,Y(t−ptrain+1):t);

end
end
Step 2: Extract k nearest neighbours:

I,J = Row and Column Indices of the k-smallest elements of D;
Step 3: Recenter (translate) the prediction on start date to start the predicted trajectory:

Ŷ [1 : ppred] = Mean
(
Y [I,J : (J + ppred)] +X[1]− Y [I,J ]

)
;

Algorithm 1: Prediction of the epidemic curve using k-NN

Motivation for the k-NN approach. COVID-19 prediction is undoubtedly an involved task — as denoted by
the impressive amount of literature published on the topic [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]. Yet, as
emphasized in the main text, many of these methods rely on a parametrization of the problem (Exponential
growth, SEIR model, etc. [45, 46]) that require input parameters (eg, the reproductive number) that are both

16

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 16, 2021. ; https://doi.org/10.1101/2021.05.13.21256857doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.13.21256857
http://creativecommons.org/licenses/by-nc-nd/4.0/


unknown and non-stationary. Indeed, as the number of cases rises, policy makers are bound to adapt their
policies to limit the spread of the virus. Reciprocally, as community prevalence levels drop, strict lockdown
measures and stay-at-home orders are bound to be lifted — thus impacting the transmission modalities and
likelihood of propagation of the virus. Incorporating both uncertainty and non-stationarity in predictions is
thus a challenging task. Our solution to this problem relies on using a k-Nearest Neighbour approach (k-NN).
To predict the trajectory of the epidemic in the next ppred days, we use daily incidence (per hundred people)
data from all countries around the world at any time during the epidemic, and look for the 100 curves that best
match our country/region of interest in the past 28 days. This comparison is done using a simple `2 distance
(we discuss in the following paragraph other choices of distances). The choice of 28 days is motivated by the
fact that we need sufficient data to find trajectories with similar behaviours, whilst remaining sufficiently local
for the comparison to be valid. Having found these 100 closest neighbours and translated them adequately
to make them start at the observed value for the trajectory of interest on day 0, we use these 100 closest
neighbours’ observed trajectories in the next ppred days to deduce an estimate for our future trajectory and an
associated prediction interval. The underlying assumption here is that these observed 100-NN curves contain
information both on the reproductive number and propensity of the epidemic to grow, but also on policy
decisions made as a result of rising (or declining) prevalence numbers — thus making them an appealing
non-parametric candidate for incidence modelling.

Performance and Benchmarking of the k-NN approach. To provide more substantial ground for our proposed
kNN approach, we studied its performance compared to more traditional benchmarks using exponential growth
model and Attack rate models [46, 45], commonly used in the literature and implemented in the R package
R0 [77]. We compare a mix of classical projection methods, as well as k-Nearest Neighbour methods using
various distances:

• The Attack Rate method [45], using the R package R0 [77], Incidence [78] and Projections[79],

• The Exponential Growth model [46] (using the same R packages),

• Our k-NN method, computing the distance between the training trajectory and the dataset using the
`2 distance (we will denote this method by the “Sum of Squares”)

• Our k-NN method using a weighted `2 distance, in which the weights of observations are inversely
proportional to the time since the origin of prediction (ie: for each day k ∈ [1, ptrain], wk =

1
ptrain−k ). This weighting of the observations puts more emphasis on more recent observations, so that
trajectories that share a higher degree of similarity in their recent behaviours will be favoured by the
algorithm. We will denote this method by “Weighted Sum of Squares”.

• Our k-NN method, computing the distance between the training trajectory and the dataset using a
correlation measure between trajectories.

• Our k-NN method, computing the distance between the training trajectory and the dataset using a
correlation-based distance, whilst giving more weight to recent observations (in a similar manner
than for the “Weighted Sum of Squares” approach).

To compare these methods, we use data from "Our World in Data": for each country, we evaluate the
performance of each method for predictions from June 1st 2020 to February 14th 2021. Every 28 days, we
recreate a prediction scenario, in which we use 4 weeks of observations for training, and predict the daily
incidence for the next four weeks. The purpose of this experiment is to assess and compare across methods (a)
the mean square error as a measure of the methods’ prediction accuracy, and (b) the coverage (percentage of
times that the confidence interval covers the true observations), in order to establish which method allows to
correctly estimate the uncertainty and risk. The results across countries and periods are provided in Figure
5a and the coverage is shown in Figure 5b. We see that the k-NN method achieves comparable MSE to the
classical projection methods implemented in R. Yet, the k-NN method also achieves a coverage of more than
90% (and close to the nominal 95% that it targets), and the prediction interval that it provides is thus more
reliable than that of other methods. Interestingly, we also note that the weighted and unweighted “Sum of
Squares” k-NN achieve roughly the same performance. For the sake of simplicity, we thus use its unweighted
counterpart.

Under-ascertainment bias. Having predicted the daily incidence rate in the weeks leading to the events,
to correctly estimate the number of ticket holders that are likely to be contaminated, it is important to
correct this prevalence estimate for any under-reporting bias. The under-ascertainment bias refers to the fact
that the reported COVID cases are in fact an under-estimation of the actual number of cases, due to either
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(a) MSEs of the different methods (b) Coverage of the prediction intervals

Figure 5: Performance of the different methods for predicting the epidemics trajectories (all countries around the world)

asymptomatic cases or limited testing capacities. In order to compute the appropriate correction, we use
age-stratified estimates of the Infection-Fatality rate 4. The method provided at this link has the advantage of
computing robust IFR estimates by leveraging data from countries around the world, and adjusting for their
demographic makeup. The actual number of cases is then computed as:

bias[t− lag] =
cases[t− lag]

death[t]
× IFR

Indeed, since deaths are offset compared to the incidence rate, reported new cases must be compared to deaths
roughly three weeks later (according to CDC reports). The under-ascertainment in the case of Britain is plotted
in Figure 6a.

Step b. Estimating the Number of People who will escape the screening protocol. For the sake of clarity
and to make this appendix self contained, we repeat here the discussion of the screening protocol provided in
the main text, but provide additional detail on the estimation procedure. For an infectious individual to attend
the event in spite of the CAPACITY study’ screening protocol, they must (a) have no COVID-like symptoms
or fail to report them on the morning of the event, (b) receive a (false) negative result during antigen testing D
= 2 days prior to the event, and (c) be contagious (rather than simply infected) at the time of the event.
(i) Symptoms-Check Failure. Indeed, one of the main challenges associated with the COVID-19 crisis is
the number of asymptomatic cases - that is, infected individuals that do not express symptoms and are thus
unaware of their potential infectiousness. This group encompasses people that are either pre-symptomatic
or completely asymptomatic during the course of their illness – the latter are estimated to represent roughly
25% of all cases [47]. To account for this temporal dependency, we use estimates of the incubation period
(defined as the number of days between infection and symptom onset) from McAloon et al. [48] and data
on symptoms duration from van Kampen et al. [49] to estimate the probability for a ticket holder infected s
days before the event to exhibit symptoms on the day of the event. We rely on simulations to estimate this
probability distribution, finding estimates of the time to symptom onset by randomly generating an incubation
period using data from McAloon et al. [48], and sampling a symptom duration from van Kampen et al. [49].
The resulting density plot is displayed in red in Figure 3a.
(ii) Antigen test failure. The sensitivity of COVID tests depends heavily on the time since infection, and
whether these are the gold-standard PCR or Lateral Flow Antigen Assays [50]. Moreover, studies have shown
that LFA tests have much lower sensitivity on asymptomatic individuals than symptomatic: in particular,
according to a recent CDC report [51], Rapid Antigen testing has 80% sensitivity on symptomatic individuals,
but only 40% sensitivity on asymptomatic individuals. Coupling the sensitivity estimates [50, 51] with the
distribution of incubation period and estimated percentage of asymptomatic cases [48, 47], for each individual
infected at day k taking an antigen test D days before the event, the probability of getting through the filtering
protocol is thus given by the formula:

4The IFR have been taken from the following data source: https://github.com/mbevand/
covid19-age-stratified-ifr
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P[Protocol Fails|Contaminated at Time k] = (1− s(symptomatic)
t−k−D )

(
pSC × p(symptom)

t−k + (1− p(symptom)
t−k )

)︸ ︷︷ ︸
P[{Test with Symptom Fails}

⋂
{Symptom Check Fails}]

+ p(asymptomatic) × (1− s(asymptomatic))︸ ︷︷ ︸
P[{Asymptomatic}

⋂
{Test on Asymptomatics Fail}]

where s(symptomatic)
t−k−D and s(asymptomatic) are respectively the sensitivities of the test taken D days before the event

for a symptomatic participant infected t − k days before the event and an asymptomatic individual. The
parameter p(symptom)

t−k denotes the probability for a symptomatic individual to exhibit symptoms t− k days after
infection, whereas p(asymptomatic) is the probability of being asymptomatic. Finally, the variable pSC denotes
the probability of the Symptoms Check failing — namely, that the participant does not want to report their
symptom . Currently, this probability is set by default in our model to 50%, and we provide in our interactive
dashboard the option to choose other levels. As the CAPACITY study gathers more behavioural data on the
participants, we hope to improve this estimate. However, we study the sensitivity of our analysis to the choice
of this variable in Appendix C, and show that in view of the total uncertainty surrounding other parameters in
the model, the choice of this parameter does not severely affect the robustness of the results.
Figure 3b in the main text shows the probability of the failure of the screening protocol as a function of days
after infection. This curve was also simulated by sampling: we model the uncertainty in the sensitivity through
a set of Monte Carlo simulations, in which, for each simulation: (a) we sample a random sensitivity from a
beta distribution, with parameters chosen to match the uncertainty intervals provided in [50], and (b) associate
these random sensitivity to the probability of having symptoms and failing to report them. The shaded areas in
Figure 3b denote the uncertainty around this estimate due to the variability of the incubation time.
(iii) Estimating Infectiousness. Infectiousness is a function of time since infection. Many articles in the
literature have in particular estimated infectiousness to be at its peak within the first five days after symptom
onset. However, very few reports provide an in-depth description of infectiousness as a function of time since
infection. To this end, in this paper, we combine data from multiple sources. In particular, we rely on the data
from Singanayagam et al [52]. Indeed, in this article, the authors study infectiousness as a function of time
since symptom onset which they estimate by looking at the percentage of viable cultures that they can obtain
from samples collected at various intervals before and after symptom onset. Since our goal is to consider
infectiousness as a function of time since infection (rather than symptom onset), we combine this data with
the estimated distribution of incubation length (duration between the date of infection, and date of symptom
onset). One of the main issues in converting the data from [52] lies in the long tails of this distribution, which
extrapolates from the data and allows samples to be highly contagious up to 10 days before infection, Since
Singanayagam et al [52]have very few cases past 4 days prior since infection, we threshold infectiousness
to 0 to be consistent with the estimates by He et al [53]. We compound the distribution of incubation and
infectiousness by a probability of the incubation length, yielding a probability of infectiousness s days after
infection such that:

Infectiousnesss =
max(15,s−1)∑

i=1

P[Incubation Period = i days]P[Live Culture at day s− i]

Step c: Estimating the number of people at risk. Finally, the last quantity that we need to impute is the
number of people at risk during the event. As described in the main text, this requires a knowledge of the
participants’ COVID immunization status, i.e, has the participant already had COVID in the previous year
and/or has the participant been vaccinated. This immunization status could be imputed through the combination
of information regarding vaccination status as well as additional questions (previous positive test for COVID,
symptoms, etc, combined in a model such as in [54]). However, for the sake of simplicity, we only consider
here the vaccination status of the participants - thus leaving out the proportion of the population that has had
COVID but has not been vaccinated yet. This induces a risk estimate that is biased upward — that is, we do not
account for the immunity naturally gained by ticket holders through COVID infection —, and as such, is more
conservative. When imputing the risk for Horizon 1 (a few weeks before the event, and without any ticket
holders’ information), we impute the event’s crowd immunity level using linear regression. In other words, we
assume that the number of new vaccinations (first and second dose) grows linearly each day, which amounts to
assuming that vaccinations are operating at capacity. Figure 7 shows a plot of the cumulative number of first
and second doses in the UK as a function of time, highlighting a good fit between the linear model and the
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(a) Ascertainment rate for the United Kingdom. The y-
axis denotes the ratio of detected cases to cases predicted
by multiplying a 3-week shifted death rate by a calculated
infection-fatality rate for the UK. When the values are less
than one it suggests that many of the actual cases are not
being detected, and when the values are greater than one
it suggests that either a substantial proportion of cases are
false positives or that survival from COVID infection has
increased from baseline predictions, due to better treatments
or a greater bias towards infection of individuals at lower
risk of death

(b) Vaccination rate: comparison of the actual rates, and the
ones predicted by a linear model for the United Kingdom.
The vaccination rates (both first and second dose) seem to
be well approximated by a linear regression model (using
time as a covariate), with an associated R2 of 0.92. As
time progresses, and vaccination rates increase, this linear
fit might start becoming less accurate, as problems of vacci-
nation hesitancy or difficulty to access might induce vaccine
centers to operate under capacity.

Figure 6: Under-ascertainment rate (left) and vaccination rate (right) in the United Kingdom.

actual observations. We note though that as vaccination levels are increasing, the linear model will potentially
have to be modified: after a certain proportion of the population has been vaccinated, vaccinations could stop
operating at capacity since the remainder of the population could either have difficulties in gaining access to
the vaccine, or could be opposed to the vaccine altogether. However, at the time of writing, the linear fit seems
to be a good fit. Having imputed the rate of new vaccinations πs=1···t in the days leading to the event, we
turn to the estimation of the number of individuals that are likely to be susceptible. Recent reports indicate
that vaccine-acquired immunity is a function of both time since vaccination and number of doses [55]. To
compute the effective number of participants at risk in the event, we use a compound Poisson distribution: on
each day s in the weeks leading to the event, the number X of new participants vaccinated (having either their
first or second dose) is expressed as a Poisson(π(dose j)

s ), where j ∈ {1, 2}. Each of these newly vaccinated
individuals then has a probability ρ(dose j)

t−s of being immune, depending on the date and dose j that they have
received. The resulting number of immune people Z attending the event thus follows a Poisson model with
rate: Z ∼ Poisson(

∑2
j=1

∑T
s=1 π

(dose j)
s ρ

(dose j)
t−s ).

However, as the number of vaccination increases, we expect the probability of the participants being immune
to increase. In this case, we simply replace the Poisson binomial with a binomial, for various values of ρ(dose j)

t−s )
to allow the uncertainty around the immunity to percolate through the model.

B. Appendix: Transmission

In this appendix, we describe in greater details the model and assumptions made by the Jimenez aerosol
transmission model proposed in [69, 63] and used to model transmission dynamics in the main text.

The issue of COVID transmission. As discussed in the main text, the precise mechanisms by which COVID-
19 is transmitted are still unclear. Aside from direct physical contact, experts continue to debate the significance
of the following two main routes of infection:
(a) Droplet transmission. In this scenario, transmission happens through the inhalation of droplets (particles of
5 to 10 µm in diameter [56]), and typically occurs when a person is in close proximity (within 1 meter) with
someone who has respiratory symptoms (e.g. coughing or sneezing). In the context of live events, modelling
this specific transmission route involves (a) modelling the distribution of the number of close contacts between
infectious and susceptible ticket holders during the event and (b) modelling the transmission probability for
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each close contact. The latter is a function of the proximity between participants and the amount of time spent
in the vicinity of the infectious individual.
(b) Airborne transmission. Increasing concerns around airborne transmission have been raised by a number of
experts over the past few months [57, 58]. Airborne transmission refers to the presence of the virus within
droplet nuclei remaining in the air for long periods of time and with the potential to travel long distances [57]
and penetrate more deeply in respiratory tracts. Airborne transmission has been estimated to be nearly 19
times more likely indoors than outdoors [59]. In the context of large public events, this transmission route
thus has more diffusive power and hence could explain several super-spreader events (SSEs) [6] making it
a major cause for concern [60, 61, 53, 62, 2, 57, 63, 64, 65, 66]. In this setting, infection risk is typically
modelled using one of two distinct models: Wells-Riley equations and the dose-response model [80, 73] .
First introduced by Riley in 1978 in a study of measles outbreak [71], the Wells-Riley equations are based on
the concept of a hypothetical infectious unit called a "quantum of infection" [72], defined as the number of
infectious airborne particles required to infect a person. Quanta aim to capture in a single parameter the rate
of emission of viral particles in exhaled breath, the infectivity of the viruses upon emission, the particle size
distribution of the emissions, the deposition efficiency and deposition location in the respiratory tract of the
susceptible person, as well as the probability that deposition leads to infection. The dose-response model aims
to describe more directly the effect on organisms from the exposure to different doses of chemicals, drugs,
radiation, biological agents, or other stressors — and more recently to assess the infection risk of airborne
transmissible pathogens. The review by Sze To et al [73] provides an in-depth comparison of the two models.
In the context of COVID transmission, one of the main limitations of the dose-response model is that it relies
on infectious dose data to derive the dose-response relationship. By contrast, many of the parameters in the
Wells-Riley equation can be approximated and has thus been favored by many experts in the field [63, 70].

Choice of Transmission Route for this Model. While droplet emission is undeniably a source of concern
and a major source of transmission, simple safety precautions such as mask wearing have been shown to
efficiently control this transmission source [67, 68]: it is estimated that face masks can block 80% of exhaled
droplets and reduce inhaled droplets by up to 50%, and so on average reduce the transmission probability by
70% . Conversely, the evidence concerning the efficiency of standard protective equipment in filtering aerosol
droplets varies widely across studies probably due to “variation in experimental design and particle sizes
analyzed” [67]. Airborne transmission in indoor settings can thus represent one of the main risk factors in live
events, which we focus on modelling using the aerosol model proposed by Jimenez [69, 63]. The Jimenez
aerosol transmission model [69, 81, 63] is indeed currently one of the only COVID-transmission models that
provides enough granularity to quantify the risk associated with an event. This recognized model has been
used several times in the literature over the course of the pandemic, including to allow in-class teaching at
the University of Illinois at Chicago [64]. Based on the Wells-Riley model [72], this estimator calibrates the
quanta to known transmission events, and takes into account important factors to compute a risk estimate,
including event-specific (number of people, local prevalence, etc) and venue-specific variables (ventilation
rate, size of the venue, UV exposure).

A core principle behind the Wells-Riley model is the notion of “quantum of infection”. Exposure to one
quantum of infection gives an average probability of 63% = 1 − e−1 of becoming infected (essentially
an infectious dose 63%, ID63) [82]. The crux of the Wells-Riley equation consist in its modelling of the
probability of infection PI as a function of the ventilation, inhalation rates and quanta generation rates:

PI = 1− e−
Iqpt
Q (∗)

where nI is the number of infectors, p is the pulmonary ventilation rate of a person, q is the quanta generation
rate, t is the exposure time interval, and Q is the room ventilation rate with clean air. Note that this equation is
not dimensionless. As explained by Rudnick and Milton [82], q represents the generation rate of infectious
doses, not organisms or infectious particles; it is the average infectious source strength of infected individual.
Thus, the exponential form of the probability equation reflects the probability of a susceptible person in the
room inhaling at least one quanta, based on a Poisson distribution of the number of discrete quanta inhaled
by a susceptible person present in the space, given a certain aerosol quanta concentration in the room and an
inhalation time.

One of the advantages of the Wells-Riley model is that many extensions have been studied, allowing the
incorporation of additional influencing factors. In particular, the effect of respiratory protection can be
considered by multiplying the term in the exponential by a fraction [83, 84, 85]:
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PI = 1− exp{−RIqpt
Q
} (∗∗)

where R is a number between 0 and 1 representing the fraction of particle penetration of the respiratory
protection (it is in particular equal to 1 when no respirator is used). Other variables, such as the ultra-violet
irradiation, particle filtration have been taken into account in the Wells-Riley equation through the equation:

PI = 1− exp{− Iqpt

Q+ λUV V +Qrηr
} (∗ ∗ ∗)

where λUV is rate coefficient of inactivation by ultraviolet irradiation, V is the room volume, Qr is the flow
rate to the filter, and ηr is the filtration efficiency.

As suggested by by Jimenez et al [69, 63], instead of modelling each of parameters in the Wells Riley equation
explicitly, we can use the concept of quanta, and calibrate the emission rate to known outbreaks of the disease.
We base the following description of the model as detailed by Jimenez et al [69, 63]. This model relies on the
computation of three main components:

1. The Quanta Emission Rate . The quanta emission rate can be interpreted as the number of quanta emitted
by unit of time by a single infectious participant. It can be modelled as:

qe = Quanta Exhalation Rate× (1−Mask Efficiency ∗ P[wear mask])× ninfectious

2. The Quanta Concentration Rate. The quanta concentration rate qc is computed as:

qc =
qe

Loss× Volume
× (1− 1

Loss× Duration
× (1− exp{−Loss× Duration}))

where qe is the quanta emission rate and ninfectious is the number of infectious people at the event. The loss
corresponds to the first order loss:

Loss = Decay+Ventilation Rate with outside+Deposition Rate to surfaces+Additional Control Measures

The term "Decay" corresponds here to the decay rate of the virus, and is a function of the UV, temperature
and relative humidity of the event. The Decay rate per hour is computed according to the following formula
[86, 87] for which an open-source calculator is available online 5:

Decay = (7.57 + 1.41× T − 20.54

10.66
+ 0.022× RH − 45.24

28.67
+

7.55× (
0.185UV)− 50

50
+
T − 20.54

10.66

0.185UV− 50

50
× 1.40)× 60

(1)

where T is the temperature and UV is the UV index. The tool is valid for the following ranges of conditions:
10 to 30°C (50-86°F), 20-70% relative humidity, and UV indices of 0-10. For live events in an indoor setting,
the UV parameter should be set to 0.

We have checked that our computations are aligned with the figures provided in the references.

3. The Quanta Inhalation Rate. The quanta inhalation rate is computed as:

qinhaled = qconcentration × Breathing Rate ∗ Duration × (1−Mask Inhalation Efficiency× P[Wear Mask])

Values for the Mask Inhalation Efficiency, as well as for the breathing rate (which varies by activity) can be
found at the bottom of this page. For the sake of completeness and to make this manuscript self-contained, we
have included the tables suggested by Jimenez [69] in Appendix E (Figures 12, 13, and 14), and refer to the
sources he suggests for a more fine-grain estimate of what these should be6.

5This calculator can be found at the following link: https://www.dhs.gov/science-and-technology/
sars-airborne-calculator

6Link to the EPA website:https://www.epa.gov/expobox/exposure-factors-handbook-chapter-6

22

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 16, 2021. ; https://doi.org/10.1101/2021.05.13.21256857doi: medRxiv preprint 

https://www.dhs.gov/science-and-technology/sars-airborne-calculator
https://www.dhs.gov/science-and-technology/sars-airborne-calculator
https://www.epa.gov/expobox/exposure-factors-handbook-chapter-6
https://doi.org/10.1101/2021.05.13.21256857
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a) Decay rate as a function of UV and relative humidity,
for a temperature of 20° Celsius.

(b) Decay rate as a function of UV and temperature
(in Celsius), for a relative humidity of 40% (Relative
humidity is judged comfortable within ranges of 30 to
50%).

Figure 7: Decay rate of the virus, reproduced from [86, 87], and as a function of humidity, UV index, as well as temperature.
NA values appear as transparent tiles.

Ventilation Rates. The ventilation rate per person is computed as:

Ventilation =
1

ntot
Volume× Ventilation with outside air× 1000

3600
(2)

where ntot is the total number of participants, and the ventilation rate is measured in L−1/s and depends on
the activity. Again, for the sake of completeness, we have included in Appendix E (Figure 15 )the table from
the AHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) listing all the
activities as well as their corresponding ventilation rates 7 that were suggested by Jimenez [69] to perform the
computations.

C. Appendix: Sensitivity Analysis

Whilst we have based our estimates of the different parameters used in this model on the literature, and tried
to incorporate estimates of their uncertainty to try and correctly estimate our confidence in the output of the
model, this is nevertheless contingent on several choices on (a) the probability that a ticket holder will lie
and fail to report symptoms on the day of the event in order to get into the event, and (b) the efficiency of the
masks, and input parameters in the room.

(a) Probability of lying. As explained in the introduction, the risk model that we aim to develop has to
be context-aware. That is, the estimates of the risk that the model should output should depend (a) on the
prevalence at the time of the event and (b) on the ticket holder’s vaccination status. The only input that requires
to be determined is the propensity of people to lie if they have symptoms. This is a priori a difficult parameter
to estimate, which would be required to be informed by sociology studies. As the CAPACITY study proceeds,
this is in particular one of the parameters that we hope to be able to inform better. However, in the absence of
information as to what value of that parameter should be set, we propose here a sensitivity analysis to show
that the model is in fact relatively weakly sensitive to the choice of this particular parameter. We show the
different infectiousness curves corresponding to different values of the parameter plie in Fig. 8 and 9. As
shown in Fig. 8 , this probability of lying impacts the value of the maximum probability of infectiousness at
the event: this value is maximal at 4 days before the event, with a value of 42.1% if the participants never lie,
48% if these participants lie half of the time, and 53% if they always lie. This represents a 25.8% increase in
probability from a scenario where participants are considered as completely trustworthy to one where these
participants are considered as unreliable. Table 4 quantifies the impact of this parameter in the case of the
Royal Albert Hall in order to assess the sensitivity of the entire pipeline to this particular choice of parameter
in two situations: low prevalence (August 3rd 2020) and high prevalence (January 18th 2021). As denoted

7Link to the ASHRAE tables: https://ashrae.iwrapper.com/ASHRAE_PREVIEW_ONLY_STANDARDS/STD_62.
1_2019
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Figure 8: Analysis of the sensitivity of our infectiousness estimation to various values of the probability of lying.

in this table, the impact of this parameter is small in situations where the prevalence is already small. More
substantial deviations occur when the prevalence increases, and such deviations are especially important in
the tails (here, the median increases by 6 cases (35%) while the 97.5th prediction interval increased by 29%
(69 cases) in situations of high prevalence between plie = 0 and plie = 1. While the relative increase (29%) is
important, the absolute difference (69 cases) is small compared to the uncertainty in the prevalence (1245 (sd
375) cases ).

Figure 9: Analysis of the sensitivity of our infectious-
ness estimation to various values of the probability of
lying.

August 3rd, 2020 January 18th, 2021
Never Lies 50/50 Always Lies Never Lies 50/50 Always Lies

Median 0.44 0.21 0.51 17 20 23
97.5 Quantile 5.63 6.81 7.42 222 264 311
99th Quantile 13.0 14.6 16.0 479 575 670

Table 4: Quantitative comparison of the sensitivity of the results
(number of transmissions at the event) as a function of pSC . While
the absolute difference between the scenarios remains reasonable
for the median, this difference becomes particularly important in
the tails of the distribution (97.5th and 99th quantiles).

Mask Efficiency. Another parameter of great importance in the model consists of the effect of the mask
efficiency. To this end, we contrast again a scenario with 100% of mandatory mask wearing, but with exhaled
efficiency varying from 30, 50, 70, and 90% (the inhaled breathing being fixed efficiency to 50% – the same
phenomenon would hold if varying the inhaled breathing efficiency). The results are presented in Table 5. We
note the importance sensitivity of the results in the tails of the distribution: the absolute difference (in terms of
number of cases) diverges significantly when looking at the 97.5th quantile of the distribution for instance.
This highlights the efficiency of masks in limiting superspreading phenomena. We hope to use in particular the
results of the CAPACITY study (and behavioural factors such as abidance to mask wearing, preferred type of
mask, etc) as well as the growing literature of mask efficiency to be able to refine our estimate of the mask
efficiency. In the meantime, in this paper, we use the conservative 70% efficiency (lower bound provided in
[67]).

Discussion. In the modelling, we neglect any correlation between ticket holders, however this is unlikely to
hold in real life as some might come from the same household. Given participants from the same household
would all be rejected if one of them were to test positive, this simplification is likely to be a conservative
estimate. Due to the nature of the problem and gaps in what is known about transmission risks, our model does
not contend to make precise estimates of the form “ we expect x numbers of cases” as a result of the event.
Rather, it should be taken as a means of providing a scale of the risk and is best used to make comparisons,
for example against a null model in which the event does not occur but individuals still get infected in the
community. As such, our methodology provides a relative quantification of that risk such as “holding the
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August 3rd, 2020 January 18th, 2021
Mask Efficiency (%) 30 50 70 90 30 50 70 90

Median 1.2 0.90 0.52 0.17 46.0 32.7 19.8 6.6
97.5 Quantile 16.3 11.0 6.1 2.3 607 440 264 89
99th Quantile 34.6 24.0 11.6 4.9 1351 959 566 202

Table 5: Sensitivity of the results to Mask efficiency. Note the significant absolute difference in the tails of the
distribution.

event is expected to increase the number of cases by x% in this pool of participants.” The use of Monte
Carlo simulations allow us to account for some uncertainty in our model, and to produce more meaningful
risk estimates. As our second goal is to quantify the efficiency of the screening protocol, this pipeline can
be run using different screening protocols or testing strategies to determine their efficiency.We also hope to
be able to further develop this pipeline through (a) leveraging in-situ data collection and (b) refinement of
the models themselves. In particular, using a fully anonymous, post-event questionnaire, we would evaluate
participants’ compliance with the screening protocol, as well as with the safety measures at the time of the
event. As more events are held, we can quantify the success of our pipeline to provide coverage of the observed
number of infections. From the model perspective, we hope to explore further extensions to the current aerosol
transmission model, which is based on the Wells-Riley model and so assumes uniform mixing of the quanta in
the venue. Using information on the potential induced cases (e.g, their relative seating distance), we aim to
refine this model by studying ways of accounting for the spatial heterogeneity of the quanta distribution.

D. Appendix: Risk Communication

Vaccine passports and widespread antigen tests – a false sense of security?. The use of vaccine passports
for international air travel has ignited significant debate in the UK and even more controversial is their use
for entry to mass, live events [12]. Notwithstanding the challenges surrounding operational verification of
vaccine certification, the ethical implications of excluding those unable or unwilling to be vaccinated from
participating in normal social encounters and the resulting implications for social inequities [13], the use of
vaccine certification to permit entry to an event will likely significantly overestimate its safety. Vaccinated
individuals may still be infected with SARS-CoV-2. Even antigen-test based screenings of ticket holders prior
to an event will likely overestimate the safety of the event as some tests will be falsely negative. The definition
of what constitutes an admissible level of risk thus poses a difficult conundrum to the live event industry.

CAPACITY-UK. The motivating application behind this paper is the CAPACITY study [32]— a partnership
between CERTIFIC (a private, remote testing, health status and identify certification service), LiveNation (a
live events production company) and Imperial College London – to predict and measure the outcomes of full
capacity live events whilst ensuring rigorous abidance by public health and safety measures. Central to this
study is the efficiency of pre-event screening by testing all ticket holders using professionally-witnessed rapid
at-home antigen tests, and post-event monitoring based on antigen tests, surveys and safety recommendations.
Mass rollout of home-based Lateral Flow Testing to all adults in the UK [88] for twice weekly testing ensures
that all households will already have the tests available to them. CAPACITY-UK proposes simply for the tests
to be professionally witnessed via the CERTIFIC application to overcome the trust issue, verifying that tests
have been collected and conducted to the appropriate standard. In addition to testing (which is susceptible
to false positives and negatives), the CAPACITY protocol gathers anonymized information on participant
vaccination status, regional address, and a few basic questions regarding individual characteristics (see Fig. 10).
The purpose of this additional information is to allow the design of a tailored risk estimation model — both at
the participant and at the community level. Such risk estimates are central to the protocol: not only are they
necessary in the context of informed consent and communicating to the ticket holders their own level of risk so
that they may choose to attend the event, they are essential in informing event managers and policy makers on
the likelihood of an outbreak. This system potentially allows for the management of full capacity, live events
– a crucial parameter for commercial viability of the industry. Moreover, contrary to the issues surrounding
vaccination passports, vaccination status would be requested, but not required for attendance – particularly if
overall risk of transmission at the event remains within acceptable bounds.

This system potentially allows for the management of full capacity, live events – a crucial parameter for
commercial viability of the industry. Moreover, contrary to the issues surrounding vaccination passports, vac-
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Applicants

Agree to terms of service and consents, purchases ticket, 
takes survey, books antigen test, loads public health test 

and trace app

Ticket holder reminded of hygiene, limiting exposure and 
mask wearing to reduce infection risk

Ticket holder takes virtually-witnessed antigen (rapid) test 
and symptom/COVID exposure check, then later receives 

risk estimate after all/most results collected

Ticket holder passes symptom check, travels to event and 
passes ID, CERTIFIC, contact tracing, ticket and security 

checks, receives safety reminders and attends event

Attendee travels home, limits contact and receives daily 
SMS reminders to isolate, report any symptoms and book 

post-event antigen test

Attendee takes antigen test, symptom check, attendee 
experience survey and receives completion reward

Overall risk of infections and hospitalisations estimated 
using case predictions, screening efficacy and transmission 

dynamics on a hypothetical population

Model updated with individual data (age, vaccination 
status, location, antigen result etc) 

Model predictions compared with post event antigen test 
and questionnaire results

1-2 
weeks 
before 
event

2 days 
pre-event

Event day

Days 1-5 
post-
event

Days 6-8 
post-
event

Timeline Participant flow Model inputs Risk  estimate outputs

Case predictions, screening efficacy and 
transmission dynamics on a 

hypothetical population

Estimation of the overall risk of 
infections and hospitalisations

Improved risk estimates communicated 
to ticket holders after individual data 

and antigen test results collected, with 
option to withdraw available

Evaluation of the validity of the risk 
model

Figure 10: CAPACITY process flow from the ticket holder perspective. On the left hand side in red lined boxes are the
timings of various stages in CAPACITY process flow. In the middle the process flow is described from the participant
perspective. On the right hand side the interaction between user-supplied data and model-generated risk estimates is
described. The certainty in the model output is conveyed through the varying shades of grey (the darker the colour, the
more certain the model).

cination status would be requested, but not required for attendance – particularly if overall risk of transmission
at the event remains within acceptable bounds.

Risk Communication.. The risk estimate is then provided to the participants using a variety of different
formats, for better interpretability and communicability of the risk to the general public. Fig 11 shows a few
examples of the displays used by the CAPACITY study.
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Figure 11: Top left – baseline estimates; Top right – final estimates; Bottom left – individual risk communication; Bottom
right – tailored risk scores under different scenarios
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E. Appendix: Reference Tables

 
 
 
 

Figure 12: Inhalation Rates. Link to the EPA website:https://www.epa.gov/expobox/
exposure-factors-handbook-chapter-6
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Figure 13: Inhalation Rates. Link to the EPA website:https://www.epa.gov/expobox/
exposure-factors-handbook-chapter-6
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Figure 14: Inhalation Rates. Link to the EPA website:https://www.epa.gov/expobox/
exposure-factors-handbook-chapter-6
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Figure 15: Ventilation Rates taken from the ASHRAE standards 8
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