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Abstract	
Background:	 With	 multimorbidity	 becoming	 the	 norm	 rather	 than	 the	 exception,	 the	
management	 of	multiple	 chronic	 diseases	 is	 a	major	 challenge	 facing	healthcare	 systems	
worldwide.	

Methods:	Using	a	 large,	nationally	 representative	database	of	 electronic	medical	 records	
from	the	United	Kingdom	spanning	the	years	2005	to	2016	and	consisting	over	4.5	million	
patients,	we	apply	statistical	methods	and	network	analysis	to	identify	comorbid	pairs	and	
triads	of	diseases	and	identify	clusters	of	chronic	conditions	across	different	demographic	
groups.	Unlike	many	previous	 studies,	which	 generally	 adopt	 cross-sectional	 designs,	we	
examine	 temporal	 changes	 in	 the	 patterns	 of	 multimorbidity.	 In	 addition,	 we	 perform	
survival	analysis	to	examine	the	impact	of	multimorbidity	on	mortality.	

Results:	 The	 proportion	 of	 the	 population	 with	 multimorbidity	 has	 increased	 by	
approximately	2.5	percentage	points	over	the	 last	decade,	with	more	than	17%	having	at	
least	two	chronic	morbidities.	We	find	that	the	prevalence	and	the	severity	of	multimorbidity	
increase	progressively	with	 age.	 Stratifying	by	 socioeconomic	 status,	we	 find	 that	people	
living	in	more	deprived	areas	are	more	likely	to	be	multimorbid	compared	to	those	living	in	
more	affluent	areas	at	all	ages.	The	same	trend	holds	consistently	for	all	years	in	our	data.	In	
addition	 to	 a	 number	 of	 strongly	 associated	 comorbid	 pairs	 (e.g.,	 cardiac-vascular	 and	
cardiac-metabolic	disorders),	we	 identify	 three	principal	 clusters:	 a	 respiratory	 cluster,	 a	
cardiovascular	 cluster,	 and	 a	 mixed	 cardiovascular-renal-metabolic	 cluster.	 These	 are	
supported	by	established	pathophysiological	mechanisms	and	shared	risk	factors,	and	are	
largely	consistent	with	existing	studies	in	the	medical	literature.	

Conclusions:	 In	 this	 paper,	 we	 use	 data-driven	methods	 to	 characterize	multimorbidity	
patterns	 in	 different	 demographic	 groups	 and	 their	 evolution	 over	 the	 past	 decade.	 Our	
findings	contribute	to	the	better	understanding	of	the	epidemiology	of	multimorbidity	that	
is	needed	to	develop	more	effective	primary	care	for	multimorbid	patients.	
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1 Introduction	
Multimorbidity,	defined	as	the	coexistence	of	two	or	more	chronic	medical	conditions	in	an	
individual	patient1,	is	a	growing	public	health	concern	for	healthcare	systems	worldwide.	It	
has	been	 found	to	be	associated	with	adverse	health	outcomes,	 including	a	higher	risk	of	
mortality,	 a	 lower	quality	of	 life,	 increased	utilization	of	healthcare,	 and	 correspondingly	
higher	healthcare	costs.2–14	It	is	most	prevalent	in	the	elderly	population,	as	organs	gradually	
lose	 full	 function	with	 the	 aging	process.8,15–17	With	 an	 increasing	 life	 expectancy	 and	an	
aging	population,	the	number	of	people	with	multiple	health	conditions	is	set	to	rise,	as	is	
public	expenditure	on	long-term	medical	care.	Unfortunately,	current	healthcare	systems	are	
largely	designed	 to	 treat	single	diseases,	 resulting	 in	 the	need	 to	use	multiple	services	 to	
manage	multimorbidity.11,18–20	Due	 to	poor	 coordination	 and	 integration	 in	medical	 care,	
causing	a	lack	of	continuity	in	treatment,	disorders	not	designated	as	the	primary	condition	
are	often	undertreated.21	

In	order	to	align	primary	care	more	closely	to	the	needs	of	patients	suffering	from	multiple	
health	 conditions,	 a	 better	 understanding	 of	 the	 epidemiology	 of	 multimorbidity	 in	 the	
general	population	is	necessary.	However,	previous	studies	on	multimorbidity	have	mostly	
been	limited	in	focus	to	elderly	patients,	due	to	its	high	prevalence	in	that	population.2,19,20,22–
25	 Since	 this	 data	 is	 typically	 collected	 through	 self-administered	 questionnaires	 and	
research	interviews,	it	may	be	subject	to	self-reporting	bias.	Analyses	based	on	small	sample	
sizes	 from	 selected	 populations	 are	 known	 not	 to	 generalize	 well.	 	 Furthermore,	 many	
studies	employ	only	a	narrow	range	of	methods	to	study	multimorbidity	patterns.	

In	this	paper,	we	aim	to	characterize	multimorbidity	patterns	not	only	in	older	patients,	but	
also	across	groups	with	different	demographic	and	socioeconomic	statuses,	using	a	 large,	
nationally	 representative	 primary	 care	 electronic	 medical	 records	 database.	 We	 apply	
standard	statistical	methods	to	identify	common	comorbid	pairs	and	triads	of	diseases,	and	
use	 network	 analysis	 algorithms	 to	 identify	 clusters	 of	 chronic	 conditions.	 Unlike	 many	
previous	studies,	which	adopted	a	cross-sectional	design	(i.e.,	analyzing	data	at	a	single	point	
in	time),	we	examine	temporal	changes	in	the	patterns	of	multimorbidity	across	a	decade	of	
patient	data.	In	addition,	we	analyze	the	impact	of	multimorbidity	on	mortality	using	survival	
models.	In	the	discussion,	we	compare	our	findings	with	related	works	in	literature.	
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2 Methods	

a Data	
We	 use	 anonymized	 electronic	medical	 records	 from	 The	 Health	 Improvement	 Network	
(THIN)26	database	for	our	analysis.	The	database	contains	longitudinal	patient	data	collected	
at	primary	care	clinics	throughout	the	UK,	covering	approximately	6%	of	the	UK	population.	
We	 extract	 demographic	 information	 (e.g.,	 date	 of	 birth,	 sex,	 geographical	 location,	 and	
socioeconomic	group),	baseline	vitals	(e.g.,	smoking	and	alcohol	status),	and	medical	history	
(e.g.,	medical	condition	and	date	of	diagnosis)	from	patient	records	between	2005	and	2016.	
We	 categorize	 the	 subjects	 into	 seven	 mutually	 exclusive	 age	 groups	 based	 on	 Medical	
Subject	Headings	(MeSH)	definitions	(see	Appendix	A).27	

Diagnoses	are	recorded	in	the	THIN	database	using	Read	Codes,	a	coded	thesaurus	of	clinical	
terms	used	by	the	UK	National	Health	Service	since	1985.28	There	is	no	standard	method	for	
the	selection	and	definition	of	morbidities	 in	the	 literature.	After	consulting	with	medical	
officers	and	Life	&	Health	(L&H)	actuaries	at	Swiss	Re,	we	identify	chronic	conditions	in	the	
records,	 that	 is,	diseases	that	are	either	permanent,	caused	by	nonreversible	pathological	
alterations,	or	require	long	periods	of	rehabilitation	and	care,19,29	and	map	them	to	a	list	of	
46	higher	level	morbidities.	Furthermore,	we	classify	the	morbidities	into	14	System	Organ	
Classes	 (SOCs)	 as	 defined	 in	 the	 Medical	 Dictionary	 for	 Regulatory	 Activities	 (MedDRA)	
dictionary.	(See	Appendix	A	for	list	of	morbidities	and	classifications.)	As	in	similar	studies,	
we	define	multimorbidity	as	the	presence	of	at	least	2	of	the	46	morbidities	in	a	patient.	

	

b Statistical	analysis	
We	examine	the	distribution	of	multimorbidity	in	relation	to	age	and	socioeconomic	status,	
as	done	 in	Barnett	et	al.11	However,	we	use	 the	 Index	of	Multiple	Deprivation	(IMD)	as	a	
proxy	for	socioeconomic	status.	The	IMD	is	a	widely	used	measure	of	relative	deprivation	or	
poverty	of	wards	and	districts	in	the	UK.	It	is	computed	using	census	data	as	a	weighted	index	
of	deprivation	in	seven	domains,	 including	income,	employment,	education,	health,	crime,	
barriers	to	housing	and	services,	and	living	environment.30	(IMD	data	was	available	only	for	
a	subset	of	the	patients.	See	Appendix	B	for	the	sample	sizes	used	in	this	analysis.)	We	note	
that	the	same	approach,	defining	socioeconomic	status	by	the	area	of	residence,	has	been	
used	in	previous	studies.11,31	

For	each	age	group,	we	also	compute	the	observed	prevalence	for	all	individual,	pairs,	and	
triplets	of	morbidities.	By	the	assumptions	of	probability	theory,	we	expect	diseases	that	are	
independent	to	co-occur	at	a	rate	close	to	the	product	of	the	observed	prevalence	of	each	
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individual	constituent	disease	(i.e.,	the	expected	prevalence).	Therefore,	by	comparing	the	
ratio	of	the	observed	prevalence	versus	the	expected	prevalence	(i.e.,	the	lift),	we	can	identify	
pairs	and	triads	of	diseases	that	occur	together	more	frequently	than	expected	by	chance,	
possibly	 driven	by	 an	underlying	pathophysiological	mechanism.	As	 a	 second	metric,	we	
estimate	 the	 odds	 ratio	 using	 logistic	 regression	 models	 to	 determine	 the	 association	
between	each	pair	of	diseases,	both	without	adjustment	and	adjusted	by	age,	 sex,	and	all	
other	diseases.	

Next,	we	construct	multimorbidity	networks	to	study	the	natural	clustering	of	diseases	in	
the	 dataset.	 We	 consider	 diseases	 as	 nodes	 with	 sizes	 proportional	 to	 their	 observed	
prevalence.	 For	 each	 pair	 of	 diseases,	 we	 connect	 their	 nodes	 with	 an	 undirected	 edge	
weighted	by	 the	 estimated	 lift,	 a	measure	of	 the	 strength	of	 the	 association	between	 the	
comorbid	pair.	This	creates	a	dense	network	where	each	node	is	linked	to	almost	every	other	
node.	This	density,	however,	makes	visualization	and	inference	difficult.	As	a	pre-processing	
step	for	subsequent	analysis,	we	extract	the	main	graph	structure	by	removing	edges	from	
the	adjacency	matrix	 that	are	peripheral	and	relatively	unimportant.	We	prune	the	edges	
between	nodes	that	have	joint	prevalence	below	the	90th	percentile,	and	keep	only	the	edges	
that	 have	 a	 lift	 above	 2.0,	 i.e.,	 those	 edges	 between	 pairs	 that	 co-occur	 two	 times	more	
frequently	than	expected	by	chance.	Similar	thresholds	have	been	used	in	related	studies.2,32–
35	

We	 compute	 measures	 of	 centrality	 to	 identify	 the	 most	 important	 vertices	 in	 the	
multimorbidity	 network.	 In	 particular,	 for	 each	 node,	we	 compute	 the	 degree	 centrality,	
which	 is	 defined	 as	 the	 number	 of	 links	 incident	 on	 a	 node,	 a	 direct	 measure	 of	 the	
connectivity	of	a	node.	 In	 this	 context,	 a	disease	with	high	degree	centrality	 is	 important	
because	 it	 often	 co-occurs	 with	 a	 large	 number	 of	 pathologies.	 We	 also	 estimate	 the	
eigenvector	 centrality,	 a	 measure	 of	 the	 transitive	 influence	 of	 nodes.	 To	 calculate	 the	
eigencentrality,	each	node	is	assigned	a	score	that	is	proportional	to	the	sum	of	the	scores	of	
all	of	 its	neighbors.	Nodes	with	high	eigencentrality	either	have	many	connections,	or	are	
connected	to	important	neighbors.	In	addition,	we	compute	the	graph	clustering	coefficient	
(also	 known	 as	 the	 transitivity)	 as	 a	 quantitative	measure	 of	 the	 network’s	 tendency	 to	
aggregate	 in	smaller	subgroups.	To	 identify	any	clusters	embedded	in	the	multimorbidity	
networks,	we	apply	a	community	detection	algorithm	based	on	modularity	maximization36–
38	to	partition	nodes	into	groups	that	have	dense	intra-group	connections	and	sparse	inter-
group	connections.	

To	 gain	 insight	 into	 temporal	 disease	 associations,	we	 construct	 directed	multimorbidity	
networks.	We	extract	from	each	patient’s	medical	history	a	sequence	of	diseases	ordered	by	
the	time	of	diagnosis.	Using	these	trajectories,	we	can	derive	the	probability	of	any	given	
disease	conditional	on	some	prior	diagnosis,	i.e.,	Prob(Disease	B	given	Disease	A).	We	use	
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these	probabilities	as	weights	of	the	directed	edges	in	the	network.	As	before,	we	prune	the	
network	based	on	node	prevalence	and	edge	weights.	Since	these	connections	are	directed,	
we	can	compute	the	in-degree	and	out-degree	centralities,	defined	as	the	number	of	edges	
directed	to	the	node,	and	the	number	of	edges	directed	from	the	node	to	others,	respectively.	
A	node	with	a	high	in-degree	centrality	is	often	diagnosed	following	other	diseases;	a	node	
with	 a	 high	 out-degree	 centrality	 often	 leads	 to	 subsequent	 diagnoses	 in	 other	 diseases.	
These	 metrics	 are	 useful	 for	 understanding	 disease	 progression,	 and	 any	 causal	 or	
contributory	relationships	between	diseases.	

Finally,	 we	 examine	 the	 impact	 of	 multimorbidity	 on	 mortality	 by	 performing	 survival	
analysis	on	the	dataset.	We	use	the	five-year	overall	survival	as	the	primary	outcome	variable,	
and	consider	in	our	models	a	range	of	features,	including	demographic	group,	baseline	vitals,	
baseline	medical	history,	the	severity	of	multimorbidity	as	quantified	by	the	number	of	co-
occurring	chronic	conditions,	and	the	presence	of	any	of	the	top	ten	most	prevalent	pairs	and	
triplets	of	morbidities	as	observed	 in	 the	aged	and	elderly	age	groups.	We	exclude	 those	
subjects	aged	65	or	less	from	this	part	of	the	analysis,	as	younger	age	groups	have	five-year	
overall	mortality	rates	close	to	zero.	

We	explore	three	standard	methods	used	in	survival	modeling,	the	Cox	proportional	hazards	
model39,	the	regularized	Cox	model,	and	the	accelerated	failure	time	model,	and	additionally,	
we	 apply	 a	 nonlinear	 and	 non-parametric	 neural	 network	 survival	 model.40	 For	 model	
estimation	and	validation,	we	randomly	split	 the	original	dataset	 into	 two	disjoint	sets,	a	
training	set	that	comprises	70%	of	the	data,	and	a	testing	set	that	comprises	the	remaining	
30%.	We	use	the	training	set	to	estimate	our	models,	and	keep	the	testing	set	as	an	out-of-
sample	dataset	for	performance	validation.	We	use	the	concordance	index	(C-index)	as	the	
metric	for	model	performance.	This	metric	is	commonly	used	in	survival	analysis	to	evaluate	
its	predictive	power.41	 It	 is	a	measure	of	the	concordance	between	orderings	of	observed	
survival	times	and	the	predicted	times	or	risks.	(A	C-index	of	0.5	corresponds	to	a	random	
model,	while	a	value	of	1.0	corresponds	to	a	perfect	model.)	We	use	cross-validation	to	tune	
the	hyperparameters	of	the	models.	

In	addition	to	discriminative	power,	we	assess	the	calibration	of	our	models	by	comparing	
the	 actual	 and	 the	 predicted	 survival	 probabilities	 at	 36,	 48,	 and	 60	 months	 of	 overall	
survival.	For	each	time	cutoff,	we	divide	the	test	set	into	quintiles	based	on	the	predicted	risk	
scores.	 We	 then	 compute	 the	 average	 predicted	 score	 and	 the	 true	 survival	 probability	
observed	in	each	of	the	quintiles.	Lastly,	we	create	calibration	plots	by	plotting	the	observed	
probabilities	against	the	predicted	probabilities.	 In	the	ideal	case,	the	points	should	lie	as	
close	as	possible	to	the	diagonal	line,	which	represents	perfect	calibration.	
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3 Results	
We	summarize	the	demographic	statistics	of	the	study	population	in	Table	1.	On	average,	the	
dataset	consists	of	approximately	4.6	million	patients	each	year,	with	an	even	mix	of	both	
sexes	in	all	years.	Most	of	the	patient	records	were	collected	in	England,	which	makes	up	the	
largest	 part	 of	 the	 population	 of	 the	 United	 Kingdom.	 However,	 the	 distribution	 in	
geographical	 location	 has	 evolved	 over	 the	 years,	 shifting	 towards	 other	 regions	 in	 the	
country.	Over	60%	of	the	patients	are	in	the	Adult	(19	to	45	years	old)	and	Middle-Aged	(45	
to	 65	 years	 old)	 age	 groups,	 as	 defined	 by	 the	 MeSH	 classification	 (see	 Appendix	 A).	
Approximately	15%	are	over	65	years	old.	

The	proportion	of	the	population	with	multimorbidity	has	increased	by	approximately	2.5	
percentage	points	over	the	last	decade,	with	more	than	17%	of	all	patients	having	at	least	
two	 chronic	 morbidities	 in	 2016.	 We	 find	 that	 the	 prevalence	 and	 the	 severity	 of	
multimorbidity	increase	progressively	with	age	(see	Figure	1).	By	age	60,	approximately	half	
the	 population	 has	 been	 diagnosed	 with	 at	 least	 one	 chronic	 condition,	 after	 which	 we	
observe	a	steep	rise	in	multimorbidity,	with	close	to	1	in	3	patients	suffering	from	at	least	
two	morbidities	by	age	70.	Stratifying	the	prevalence	of	multimorbidity	by	IMD	in	Figure	2,	
we	 find	 that	 people	 living	 in	 more	 deprived	 areas	 are	 more	 likely	 to	 be	 multimorbid	
compared	to	those	living	in	more	affluent	areas	at	all	ages.	The	same	trend	holds	consistently	
for	all	years	in	our	data.	

We	characterize	the	epidemiology	of	 individual	diseases	by	plotting	heat	maps	of	disease	
prevalence	 in	 different	 age	 groups	 separately.	 We	 find	 that	 asthma	 and	 respiratory	
conditions	have	high	prevalence	across	all	age	groups,	with	the	former	occurring	especially	
frequently	 in	 the	 Adolescent	 age	 group	 (13	 to	 19	 years	 old).	 We	 observe	 the	 onset	 of	
metabolic	and	cardiovascular	diseases	in	the	Middle-Aged	and	older	age	groups,	in	particular,	
of	diabetes	and	hypertension.	Not	surprisingly,	diseases	such	as	dementia,	kidney	diseases,	
and	stroke	occur	most	frequently	in	the	oldest	patients	(65	years	and	above).	We	observe	an	
increasing	trend	in	prevalence	for	some	diseases.	For	example,	the	prevalence	of	diabetes	in	
the	Aged	age	group	(65	to	80	years	old)	has	increased	by	almost	35%	in	the	past	decade	(see	
Figure	3).	 In	contrast,	 the	prevalence	of	diseases	such	as	angina	has	been	falling	over	the	
study	period.	

In	Table	2,	we	summarize	the	lift	and	odds	ratio	of	the	top	ten	most	frequently	co-occurring	
pairs	of	diseases	in	the	Aged	age	group	in	2016.	(See	Appendix	C	for	other	age	groups	and	
years.)	 In	 all	 age	 groups,	 asthma	 occurs	 in	 combination	 with	 other	 respiratory-related	
diseases	approximately	twice	more	often	than	expected	by	chance	(i.e.,	the	lift	is	greater	than	
2.0).	 Additionally,	 the	 estimated	 odds	 ratios,	 both	 unadjusted	 and	 adjusted,	 indicate	 that	
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patients	with	asthma	are	at	least	twice	as	likely	to	suffer	from	other	respiratory	conditions	
at	the	same	time,	and	vice	versa.	

Hypertension	is	most	associated	with	a	second	condition	in	the	older	age	groups,	although	
most	pairs	do	not	necessarily	occur	more	 frequently	 than	by	chance.	The	combination	of	
hypertension	and	diabetes	 stands	out	with	a	 relatively	high	 lift	 and	an	odds	 ratio	 that	 is	
greater	than	2.0,	suggesting	that	this	disease	pair	may	be	comorbid.	Angina	and	coronary	
artery	 disease	 (CAD)	 also	 demonstrate	 a	 strong	 association	 in	 the	 Aged	 and	 Elderly	 age	
groups	with	unusually	high	lift	and	odds	ratio.	

To	better	visualize	the	data,	we	plot	the	lift	of	all	combinations	of	disease	pairs	in	heat	maps,	
stratified	 by	MedDRA	 system	 organ	 classes.	 (See	 Figure	 4	 and	Appendix	 C	 for	 other	 age	
groups	and	years.)	The	co-occurrence	of	cardiac-cardiac	and	cardiac-respiratory	disorders	
is	a	major	risk	across	all	age	groups.	We	observe	significant	coupling	between	cardiac	and	
hepatobiliary	disorders	in	the	Adolescent	and	Child	(2	to	13	years	old)	age	groups.	On	the	
other	hand,	combinations	of	cardiac-vascular	and	cardiac-metabolic	disorders	are	the	most	
dominant	in	the	Middle-Aged	and	older	age	groups.	We	observe	the	same	general	patterns	
across	time.	

As	shown	in	Figure	1,	the	proportion	of	patients	with	three	or	more	co-occurring	disorders	
is	small	in	the	younger	age	groups.	For	patients	aged	45	years	and	older,	triplets	involving	
angina,	CAD,	hypertension,	diabetes	and	myocardial	infarction	(MI)	occur	most	frequently	
with	high	lift,	suggesting	strong	correlations	between	these	diseases	(see	Table	3).	

In	Figures	5	and	6,	we	plot	the	undirected	and	directed	multimorbidity	networks	observed	
in	the	Aged	age	group	in	2016.	(See	Appendix	C	for	other	age	groups	and	years.)	Instead	of	a	
force-directed	 layout,	we	place	 the	nodes	 in	 fixed	positions	around	a	circle	 to	allow	easy	
visualization	of	temporal	changes	in	connections	and	clusters	when	comparing	plots	from	
different	 years.	 The	 edge	 thickness	 is	 proportional	 to	 the	 lift	 between	 each	 disease	 pair.	
Apart	from	single-node	clusters,	the	communities	detected	using	modularity	maximization	
are	given	different	colors.	

In	Tables	4	and	5,	we	identify	clusters	that	remain	relatively	stable	throughout	the	years	in	
undirected	and	directed	multimorbidity	networks,	respectively.		We	find	between	one	and	
four	clusters	for	each	age	group.	The	number	of	diseases	in	each	cluster	ranges	between	two	
and	twelve.	In	general,	the	communities	found	in	Adolescent	and	younger	patients	can	vary	
greatly	from	year	to	year	compared	to	older	age	groups,	where	the	clusters	evolve	very	little	
over	time.	This	is	expected,	given	that	only	a	small	proportion	of	the	former	cohort	suffers	
from	more	 than	two	co-occurring	disorders	(see	Figure	1),	 so	 the	results	are	sensitive	 to	
small	changes	in	prevalence	each	year.	
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A	 respiratory	 cluster	 of	 asthma,	 chronic	 obstructive	 pulmonary	 disease	 (COPD),	 and	
respiratory-related	diseases	appears	to	be	present	in	all	age	groups	in	both	undirected	and	
directed	 graphs.	 Similarly,	 a	 vascular-metabolic-hepatobiliary-renal	 cluster	 that	 is	
characterized	 by	 hypertension,	 diabetes,	 liver	 diseases,	 and	 kidney	 diseases,	 with	 the	
occasional	appearance	of	cardiac	disorders,	is	also	present	in	almost	all	cohorts.	As	observed	
in	previous	analyses,	we	also	find	several	clusters	dominated	by	cardiovascular	disorders	
such	as	angina,	CAD,	myocardial	infarction	(MI),	atrial	fibrillation,	cardiac	arrhythmia,	heart	
failure,	heart	valve	disorder	(HVD),	stroke,	peripheral	artery	disease	(PAD),	and	transient	
ischemic	attack	(TIA).	

In	Tables	 6	 and	7,	we	 summarize	 the	 top	 five	 diseases	 for	 each	 centrality	measure.	 (See	
Appendix	 C	 for	 the	 full	 set	 of	 results.)	 The	 degree	 centrality	 and	 eigencentrality	 for	
hypertension,	diabetes,	CAD,	and	angina	are	the	highest	when	all	age	groups	are	aggregated	
in	undirected	multimorbidity	networks.	In	the	Adolescent	and	younger	age	groups,	kidney	
disease	 shows	 both	 high	 degree	 centrality	 and	 eigencentrality.	 Other	 important	 nodes	
include	respiratory-related	diseases	and	HVD,	which	have	high	degree	centrality	and	high	
eigencentrality,	respectively.	For	the	Adult	and	Middle-Aged	age	groups,	hypertension	and	
diabetes	are	the	most	central	nodes	with	respect	to	both	measures.	In	the	Aged	and	Elderly	
age	groups,	we	find	that	cardiac	disorders	make	up	all	of	the	top	five	most	connected	nodes.	

We	 observe	 similar	 results	 in	 directed	 networks.	 In	 general,	 hypertension,	 diabetes,	 and	
respiratory-related	 diseases	 demonstrate	 high	 in-degree	 centrality	 and	 eigencentrality,	
while	cardiac	disorders	show	high	out-degree	centrality.	 In	the	Middle-Aged	and	younger	
age	groups,	asthma	emerges	as	a	new	central	node	with	high	in-degree	centrality,	while	the	
top	five	diseases	for	the	Aged	and	Elderly	age	groups	remain	dominated	by	cardiovascular	
diseases.	

We	 summarize	 the	dataset	used	 for	 survival	 analysis	 in	Table	8.	 	 The	 sample	 consists	 of	
approximately	390,000	patients	in	the	Aged	and	Elderly	age	groups	for	each	year	between	
2010	and	2012.	More	than	50%	of	the	patients	are	multimorbid.	In	terms	of	predicting	five-
year	overall	survival,	we	find	the	performance	of	the	linear	and	nonlinear	survival	models	
explored	to	be	very	similar	(see	Appendix	D).	We	focus	on	the	Cox	model	here	due	to	its	ease	
of	interpretability.	The	model	achieves	a	promising	C-index	of	0.81	(95%	CI	0.80–0.81)	on	
out-of-sample	data	in	2012.	In	addition,	its	calibration	curves	lay	close	to	the	ideal	diagonal,	
indicating	 that	 the	 model	 is	 well	 calibrated,	 i.e.,	 the	 model	 does	 not	 systematically	
overestimate	or	underestimate	survival	 rates	 in	any	of	 the	quintiles.	 (See	Appendix	C	 for	
plots.)	

In	Table	9,	we	extract	the	top	ten	coefficients	in	the	Cox	model	to	identify	specific	risk	factors.	
To	correct	for	multiple	testing,	we	perform	the	Benjamini-Hochberg	adjustment	with	a	5%	
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false	 discovery	 rate	 for	 identifying	 significant	 factors.	 Apart	 from	 cancers,	 we	 find	 the	
presence	of	multimorbidity	to	be	a	strong	adverse	risk	factor,	i.e.,	the	higher	the	number	of	
co-occurring	chronic	conditions,	the	greater	the	mortality	risk.	For	example,	the	hazard	ratio	
of	having	four	or	more	chronic	conditions	is	2.44	(95%	CI	2.22–2.69).	We	also	find	a	high	
IMD,	 corresponding	 to	 a	 lower	 socioeconomic	 status,	 to	 be	 significantly	 associated	 with	
increased	risk,	although	this	factor	is	not	in	the	top	ten	coefficients.	

	

4 Discussion	
With	 multimorbidity	 becoming	 the	 norm	 rather	 than	 the	 exception2,12,17,22,42,43,	 the	
management	 of	 multiple	 chronic	 diseases	 in	 older	 adults	 is	 a	 major	 challenge	 facing	
healthcare	systems	worldwide.	It	is	clear	that	a	better	understanding	of	the	epidemiology	of	
multimorbidity	 is	 required	 to	develop	more	effective	preventive	 interventions	and	better	
primary	medical	care	for	multimorbid	patients.	In	this	paper,	we	use	data-driven	methods	
to	characterize	multimorbidity	patterns	in	different	demographic	groups	and	their	evolution	
over	 the	 past	 decade,	 using	 a	 large,	 representative	 electronic	 medical	 records	 database	
consisting	of	over	4.5	million	patients.	

Consistent	with	other	studies,	we	find	that	the	prevalence	and	severity	of	multimorbidity	
increase	substantially	with	age.	In	addition,	we	observe	social	inequalities	in	multimorbidity,	
with	patients	in	socioeconomically	deprived	areas	more	likely	to	be	multimorbid.11,12,31,42,44–
46	Our	 findings	also	support	 the	role	of	hypertension	as	an	 important	risk	 factor	 in	older	
adults,	as	reported	in	the	literature.2,33,47	Hypertension	is	one	of	the	most	prevalent	and	most	
central	 chronic	 conditions	 in	 our	 dataset,	 and	 one	 that	 serves	 as	 an	 important	 bridge	
between	many	diseases	in	our	networks.	Other	trends	identified	in	our	analysis,	such	as	the	
falling	 prevalence	 of	 angina48–51	 and	 the	 growing	 prevalence	 of	 diabetes52,	 are	 also	well	
documented	in	previously	published	population	studies.	

In	 our	 pairwise	 analysis,	 we	 find	 strong	 association	 between	 multiple	 pairs	 of	 chronic	
conditions,	including	between	asthma	and	respiratory-related	diseases53,54	in	the	Adolescent	
age	group,	between	hypertension	and	diabetes25,55–57	and	between	CAD	and	angina58	among	
older	 patients,	 and	 between	 cardiovascular	 and	 respiratory	 disorders	 in	 all	 age	 groups.2	
Triplets	involving	cardiovascular	and	metabolic	disorders,	such	as	CAD,	hypertension,	and	
diabetes,	also	occurred	more	frequently	than	expected	by	chance.2,22,25,59	

Our	network	analysis	further	identified	several	meaningful	communities	that	are	common	
across	 all	 demographics,	 including	 a	 respiratory	 cluster	 (e.g.,	 asthma	 and	 COPD)60,	 a	
cardiovascular	cluster19,61,	and	a	mixed	cardiovascular-renal-metabolic	cluster32,62–64,	all	of	
which	are	supported	by	either	established	pathophysiological	mechanisms	or	shared	risk	
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factors.	 For	 example,	 it	 is	 well	 known	 that	 cardiovascular	 diseases	 are	 one	 of	 the	 most	
common	 complications	 of	 diabetes.	While	 we	 do	 not	 find	 any	 particular	 multimorbidity	
pattern	to	have	a	significant	effect	on	mortality,	our	models	do	indeed	verify	the	substantial	
burden	of	multimorbidity	(as	quantified	by	the	number	of	co-occurring	chronic	conditions)	
on	overall	survival	in	older	patients.7,12,23,65,66	

However,	 we	 must	 emphasize	 that	 our	 results	 do	 not	 necessarily	 imply	 any	 causal	 link	
between	diseases	identified	to	be	in	the	same	cluster.	The	association	might	be	attributable	
to	shared	risk	factors	(e.g.,	smoking)	or	other	adverse	events,	and	any	temporal	relationships	
to	be	inferred	from	the	multimorbidity	directed	networks	might	be	administrative	in	nature	
(e.g.,	incomplete	medical	records	that	are	rectified	in	subsequent	visits)	or	biased	by	delayed	
diagnosis.	

In	general,	the	lack	of	an	accepted	standard	for	defining	multimorbidity	makes	it	difficult	for	
any	 meaningful	 comparison	 of	 results	 across	 different	 studies.67,687	 Moreover,	 because	
results	can	be	highly	dependent	on	the	study	population,	the	disease	ontology	used,	and	the	
number	of	chronic	conditions	considered,	it	is	not	uncommon	for	studies	to	report	seemingly	
conflicting	findings.	In	this	paper,	we	consider	a	wide	range	of	demographic	groups	and	a	
total	 of	 46	 morbidities,	 which	 is	 more	 than	 most	 similar	 studies,11	 and	 well	 above	 the	
minimum	of	11	to	12	as	recommended	by	systematic	reviews	in	this	field	of	research.68,69	In	
addition,	our	findings	are	largely	consistent	with	existing	studies	in	the	medical	literature.	

Lastly,	we	note	that	cancer	appears	to	be	under	represented	in	the	THIN	database.	This	is	
because	many	 cancer	patients	 are	 treated	 separately	 in	 cancer	 centers	under	 the	 care	of	
specialized	clinical	teams.	Unfortunately,	data	on	such	patients	rarely	make	their	way	back	
to	the	primary	care	clinics	where	the	THIN	data	is	collected,	leading	to	a	gap	in	this	area.	

	

5 Conclusions	
Current	healthcare	systems	are	largely	centered	on	single-disease	approaches	to	treatment,	
resulting	in	the	fragmentation	of	care	and	a	lack	of	continuity	in	the	management	of	multiple	
diseases.	Even	most	clinical	trials	exclude	multimorbid	patients.	Because	multimorbidity	is	
more	 common	 in	 disadvantaged	 groups,	 the	 current	 structure	 exacerbates	 health	
inequalities	in	society.	In	this	paper,	we	apply	statistical	methods	and	network	analysis	to	
characterize	 multimorbidity	 associations	 in	 the	 general	 UK	 population	 using	 a	 large	
electronic	 medical	 records	 database	 spanning	 the	 years	 2005	 to	 2016.	 Our	 findings	
contribute	 to	 a	 better	 understanding	 of	multimorbidity	 that	may	 be	 useful	 for	 the	 early	
detection	and	prevention	of	comorbidities,	 for	example,	recommending	that	hypertension	
patients	reduce	sugar	intake	as	a	preventive	measure	for	diabetes.	
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There	 is	 a	 pressing	 need	 for	 a	 universal	 framework	 that	 standardizes	 the	 way	 that	
multimorbidity	is	assessed	(e.g.,	the	minimum	number	of	diseases	and	the	choice	of	chronic	
conditions	to	include)	in	order	to	facilitate	comparisons	between	studies	and	populations.	
With	the	"Omics"	revolution,	the	combination	of	phenotypic,	genomic,	and	epigenomic	data	
has	 the	 potential	 to	 provide	 deeper	 insights	 into	 the	 underlying	 pathophysiological	
associations	 between	 comorbid	 diseases.	 Unfortunately,	 the	 availability	 of	 such	 linked	
datasets	 remains	 very	 limited.	 Further	 research	 is	 also	 needed	 to	 better	 understand	 the	
impact	 of	 multimorbidity	 on	 different	 health	 outcomes,	 such	 as	 the	 quality	 of	 life	 and	
healthcare	costs,	in	order	to	align	the	primary	healthcare	system	more	closely	to	the	needs	
to	multimorbid	patients.	
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Tables	
	
Table	1.	Demographics	of	the	dataset	between	2005	and	2016.	
Proportion	(%)	 2005	 2006	 2007	 2008	 2009	 2010	 2011	 2012	 2013	 2014	 2015	 2016	
Sex	 	            
Male	 49.9	 49.9	 49.9	 49.9	 49.8	 49.8	 49.7	 49.7	 49.6	 49.6	 49.6	 49.6	
Female	 50.1	 50.1	 50.1	 50.1	 50.2	 50.2	 50.3	 50.3	 50.4	 50.4	 50.4	 50.4	
Country	 	            
England	 70.1	 69.8	 68.9	 68.7	 67.9	 67.2	 66.7	 65.9	 63.3	 59.7	 51.1	 45.1	
Northern	Ireland	 4.3	 4.4	 4.6	 4.4	 4.5	 4.6	 4.7	 4.7	 5.1	 5.5	 6.8	 7.6	
Scotland	 15.6	 15.6	 16.0	 16.3	 16.7	 16.9	 17.0	 17.4	 18.7	 20.5	 24.9	 27.8	
Wales	 9.9	 10.1	 10.5	 10.7	 11.0	 11.4	 11.6	 12.0	 12.9	 14.2	 17.2	 19.4	
Age	Group	 	            
Infant	 0.9	 0.9	 0.9	 0.9	 1.0	 0.9	 1.0	 1.0	 1.0	 0.9	 0.9	 0.9	
Child	 12.5	 12.5	 12.5	 12.5	 12.6	 12.6	 12.7	 12.8	 12.8	 13.0	 13.0	 13.1	
Adolescent	 6.6	 6.6	 6.6	 6.6	 6.6	 6.6	 6.7	 6.7	 6.7	 6.8	 6.8	 6.8	
Adult	 35.6	 35.4	 35.2	 34.9	 34.7	 34.3	 34.0	 33.8	 33.3	 33.0	 32.9	 33.1	
Middle-Aged	 27.2	 27.4	 27.6	 27.7	 27.7	 27.9	 27.8	 27.6	 27.6	 27.6	 27.7	 27.7	
Aged	 12.5	 12.4	 12.5	 12.6	 12.7	 12.8	 13.1	 13.4	 13.7	 13.8	 13.9	 13.7	
Elderly	 4.7	 4.7	 4.7	 4.7	 4.7	 4.8	 4.9	 4.9	 4.9	 4.9	 4.8	 4.8	
Multimorbidity	 	            
0	 63.6	 62.9	 62.4	 62.0	 61.7	 61.4	 61.1	 60.9	 60.5	 60.3	 60.2	 60.4	
1	 21.8	 22.0	 22.1	 22.3	 22.3	 22.4	 22.4	 22.4	 22.5	 22.5	 22.5	 22.4	
2	 7.9	 8.1	 8.3	 8.4	 8.5	 8.6	 8.7	 8.8	 8.9	 8.9	 8.9	 8.9	
3	 3.3	 3.5	 3.6	 3.6	 3.7	 3.8	 3.8	 3.9	 4.0	 4.0	 4.1	 4.0	
4	 1.7	 1.8	 1.8	 1.9	 1.9	 1.9	 2.0	 2.0	 2.0	 2.1	 2.1	 2.1	
5	 0.9	 0.9	 0.9	 1.0	 1.0	 1.0	 1.0	 1.0	 1.1	 1.1	 1.1	 1.1	
6	 0.4	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.6	 0.6	 0.6	
7	 0.2	 0.2	 0.2	 0.2	 0.2	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	
8+	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.3	 0.3	 0.3	
Total	(millions)	 4.84	 4.93	 5.04	 5.11	 5.07	 5.01	 4.97	 4.92	 4.62	 4.23	 3.51	 3.15	
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Table	2.	Lift	and	odds	ratio	of	the	top	10	most	prevalent	multimorbidity	pairs	in	the	Aged	subgroup	in	
2016.	See	Appendix	C	for	other	age	groups	and	years.	
Disease	1	 Disease	2	 N	 Lift	 Unadjusted	OR	(95%	CI)	 Adjusted	OR	(95%	CI)	
Diabetes	 Hypertension	 50,105	 1.5	 3.0	(2.9,	3.0)	 2.7	(2.7,	2.8)	
Hypertension	 Other	Respiratory	Disease	 26,587	 1.1	 1.2	(1.2,	1.3)	 1.1	(1.1,	1.1)	
Asthma	 Hypertension	 24,320	 1.1	 1.2	(1.2,	1.2)	 1.1	(1.1,	1.2)	
CAD	 Hypertension	 19,479	 1.2	 1.6	(1.6,	1.7)	 1.2	(1.2,	1.2)	
Hypertension	 PAD	 19,203	 1.2	 1.4	(1.4,	1.4)	 1.2	(1.1,	1.2)	
COPD	 Hypertension	 18,529	 1.1	 1.1	(1.1,	1.1)	 0.9	(0.9,	1.0)	
Atrial	Fibrillation	 Hypertension	 17,644	 1.3	 1.9	(1.8,	1.9)	 1.4	(1.4,	1.5)	
Angina	 Hypertension	 16,234	 1.3	 1.9	(1.8,	1.9)	 1.4	(1.4,	1.4)	
Angina	 CAD	 14,867	 7.2	 25.9	(25.2,	26.6)	 16.7	(16.2,	17.2)	
Asthma	 Other	Respiratory	Disease	 12,245	 2.1	 2.9	(2.8,	3.0)	 2.4	(2.4,	2.5)	

	
Table	3.	Lift	of	the	top	10	most	prevalent	multimorbidity	triplets	in	the	Aged	subgroup	in	2016.	See	
Appendix	C	for	other	age	groups	and	years.	
Disease	1	 Disease	2	 Disease	3	 N	 Lift	
Angina	 CAD	 Hypertension	 8,988	 9.3	
Diabetes	 Hypertension	 Other	Respiratory	Disease	 7,738	 1.9	
CAD	 Diabetes	 Hypertension	 7,417	 2.8	
Asthma	 Diabetes	 Hypertension	 6,761	 1.8	
Asthma	 Hypertension	 Other	Respiratory	Disease	 6,457	 2.4	
Angina	 Diabetes	 Hypertension	 6,304	 3.0	
CAD	 Hypertension	 MI	 6,171	 7.5	
Diabetes	 Hypertension	 PAD	 5,975	 2.1	
Atrial	Fibrillation	 Diabetes	 Hypertension	 5,417	 2.4	
Asthma	 COPD	 Hypertension	 5,290	 2.7	
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Table	4.	Clusters	identified	in	undirected	multimorbidity	networks	in	different	age	groups.	

Age	Group	 Cluster	1	 Cluster	2	 Cluster	3	 Cluster	4	
Infant	 Asthma,	COPD,	

Respiratory-related	
diseases	

Cardiac	arrhythmia,	
Heart	failure,	HVD,	
Cardiac-related	
diseases,	Kidney	
disease,	Hypertension	

	 	

Child	 Cardiac	arrhythmia,	
HVD,	Cardiac-related	
diseases,	Hypertension	

Liver	disease,	Liver-
related	diseases,	
Encephalitis,	Stroke,	
Kidney	disease,	
Hypertension,	PAD	

	 	

Adolescent	 Asthma,	COPD,	
Respiratory-related	
diseases	

Cardiac	arrhythmia,	
HVD,	Cardiac-related	
diseases	

Liver	disease,	Liver-
related	diseases,	
Diabetes,	Leukemias,	
Kidney	disease,	
Hypertension,	PAD	

	

Adult	 Asthma,	COPD,	
Respiratory-related	
diseases	

Cardiac	arrhythmia,	
Cardiac-related	
diseases,	Kidney	
disease,	PAD	

HVD,	Liver	disease,	
Liver-related	diseases,	
Diabetes,	Lupus,	
Hypertension	

	

Middle-Aged	 CAD,	MI,	Cardiac-
related	diseases,	
Asthma,	COPD,	
Respiratory-related	
diseases,	PAD	

Angina,	Atrial	
fibrillation,	Heart	
failure,	Liver	disease,	
Liver-related	diseases,	
Diabetes,	Stroke,	
Stroke-related	
diseases,	Kidney	
disease,	Hypertension,	
TIA	

	 	

Aged	 Cardiac-related	
diseases,	PAD	

Heart	failure,	Diabetes	 Asthma,	COPD,	
Respiratory-related	
diseases	

Angina,	Atrial	
fibrillation,	CAD,	
Cardiac	arrhythmia,	
MI,	TIA	

Elderly	 Asthma,	COPD,	
Respiratory-related	
diseases	

Angina,	CAD,	MI	 Atrial	fibrillation,	
Cardiac	arrhythmia,	
Heart	failure,	HVD	
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Table	5.	Clusters	identified	in	directed	multimorbidity	networks	in	different	age	groups.	

Age	
Group	

Cluster	1	 Cluster	2	 Cluster	3	 Cluster	4	

Infant	 Cardiac	arrhythmia,	
Cardiac-related	
diseases,	Liver	disease,	
Liver-related	diseases,	
Respiratory-related	
diseases	

	 	 	

Child	 Kidney	disease,	
Hypertension,	PAD	

Cardiac	arrhythmia,	
Heart	failure,	HVD,	
Cardiac-related	
diseases	

Liver-related	diseases,	
Asthma,	Diabetes,	
Respiratory-related	
diseases	

	

Adolescent	 Liver-related	diseases,	
Asthma,	Respiratory-
related	diseases	

Cardiac	arrhythmia,	
Heart	failure,	HVD,	
Cardiac-related	
diseases	

Diabetes,	Kidney	
disease,	Hypertension,	
PAD	

	

Adult	 Asthma,	Respiratory-
related	diseases	

Liver	disease,	Liver-
related	diseases	

Diabetes,	Lupus,	Kidney	
disease,	Kidney-related	
diseases,	Hypertension	

Atrial	fibrillation,	Heart	
failure,	HVD,	Cardiac-
related	diseases,	Lupus,	
Stroke,	PAD	

Middle-
Aged	

Atrial	fibrillation,	
Cardiac	arrhythmia,	
HVD,	Cardiac-related	
diseases,	Stroke	

Angina,	CAD,	Heart	
failure,	MI,	Stroke,	TIA	

Liver	disease,	Liver-
related	diseases,	
Asthma,	Diabetes,	
Breast	cancer,	
Colorectal	cancer,	
Cancer-related	
diseases,	Kidney	
disease,	COPD,	
Respiratory-related	
diseases,	Hypertension,	
PAD	

	

Aged	 Angina,	CAD,	MI	 Atrial	fibrillation,	
Cardiac	arrhythmia,	
Heart	failure,	HVD,	
Cardiac-related	
diseases,	Stroke,	TIA	

Asthma,	Diabetes,	
Colorectal	cancer,	
Cancer-related	
diseases,	COPD,	
Respiratory-related	
diseases,	Hypertension,	
PAD	

	

Elderly	 Angina,	CAD,	MI,	
Cardiac-related	
diseases	

Asthma,	Diabetes,	
COPD,	Respiratory-
related	diseases,	
Hypertension,	PAD	

Atrial	fibrillation,	
Cardiac	arrhythmia,	
Heart	failure,	HVD,	
Stroke,	Stroke-related	
diseases,	Dementia,	TIA	
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Table	6.	Centrality	measures	for	top	five	diseases	in	undirected	multimorbidity	networks	with	mean	
computed	over	time.	
All	

	
Infant	

	
Child	

	
Adolescent	

	

Disease	 Mean	 Disease	 Mean	 Disease	 Mean	 Disease	 Mean	
Degree	Centrality	 	 	 	 	 	 	 	
Hypertension	 23.5	 Respiratory-

related	
7.7	 Kidney	Disease	 11.7	 Kidney	Disease	 10.1	

Diabetes	 17.5	 Cardiac-related	 5.1	 Liver-related	 10.1	 Diabetes	 7.4	
PAD	 11.9	 HVD	 4.8	 Respiratory-

related	
9.8	 Respiratory-

related	
7.0	

CAD	 7.8	 Liver-related	 4.4	 HVD	 7.9	 Liver-related	 6.8	
Angina	 7.7	 Cardiac	

Arrhythmia	
3.7	 Cardiac-related	 6.5	 Asthma	 6.8	

Eigencentrality	 	 	 	 	 	 	 	
CAD	 0.9	 Cardiac-related	 0.9	 HVD	 1.0	 Kidney	Disease	 1.0	
Diabetes	 0.9	 HVD	 0.8	 Kidney	Disease	 0.9	 HVD	 0.9	
Hypertension	 0.9	 Hypertension	 0.6	 Cardiac-related	 0.8	 Cardiac-related	 0.9	
Angina	 0.9	 Cardiac	

Arrhythmia	
0.6	 Cardiac	

Arrhythmia	
0.8	 Liver	Disease	 0.8	

PAD	 0.8	 Kidney	Disease	 0.5	 Hypertension	 0.8	 Cardiac	
Arrhythmia	

0.7	

Transitivity	 	 	 	 	 	 	 	 
0.32	

	
0.29	

	
0.37	

	
0.40	

	
Table	6	(continued).	Centrality	measures	for	top	five	diseases	in	undirected	multimorbidity	networks	
with	mean	computed	over	time.	
Adult	

	
Middle-Aged	

	
Aged	

	
Elderly	

	

Disease	 Mean	 Disease	 Mean	 Disease	 Mean	 Disease	 Mean	
Degree	Centrality	 	 	 	 	 	 	 	
Hypertension	 12.7	 Diabetes	 10.8	 CAD	 5.4	 Heart	Failure	 3.5	
PAD	 8.5	 Hypertension	 9.5	 Angina	 4.7	 CAD	 3.1	
Cardiac-related	 7.8	 PAD	 6.8	 Atrial	Fibrillation	 3.0	 Angina	 3.0	
Kidney	Disease	 7.6	 COPD	 5.9	 MI	 3.0	 Atrial	Fibrillation	 2.5	
Liver	Disease	 6.7	 CAD	 5.7	 Cardiac-related	 2.8	 MI	 2.3	
Eigencentrality	 	 	 	 	 	 	 	
Hypertension	 1.0	 Diabetes	 0.8	 CAD	 1.0	 CAD	 1.0	
Cardiac-related	 0.8	 CAD	 0.8	 Angina	 0.9	 Angina	 0.9	
Liver	Disease	 0.8	 Angina	 0.7	 MI	 0.8	 MI	 0.8	
Kidney	Disease	 0.8	 Hypertension	 0.6	 Atrial	Fibrillation	 0.5	 Heart	Failure	 0.8	
Liver-related	 0.8	 PAD	 0.6	 Cardiac-related	 0.4	 Atrial	Fibrillation	 0.4	
Transitivity	 	 	 	 	 	 	 	 

0.66	
	

0.31	
	

0.59	
	

0.57	
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Table	7.	Centrality	measures	for	top	five	diseases	in	directed	multimorbidity	networks	with	mean	
computed	over	time.	We	exclude	eigencentralities	that	are	close	to	zero.	
All	

	
Infant	

	
Child	

	
Adolescent	

	

Disease	 Mean	 Disease	 Mean	 Disease	 Mean	 Disease	 Mean	
In-degree	Centrality	

      

Diabetes	 11.0	 Respiratory-
related	

5.3	 Asthma	 10.9	 Asthma	 11.1	

Respiratory-
related	

11.0	 Cardiac-related	 0.5	 Respiratory-
related	

10.7	 Respiratory-
related	

10.9	

Hypertension	 11.0	 Kidney	Disease	 0.4	 Kidney	Disease	 3.4	 Hypertension	 3.9	
COPD	 10.8	 HVD	 0.3	 HVD	 3.1	 Kidney	Disease	 3.1	
PAD	 10.1	 Liver-related	 0.3	 Cardiac	

Arrhythmia	
2.9	 HVD	 2.7	

Out-degree	Centrality	
      

CAD	 15.3	 Heart	Failure	 1.3	 Cardiac-related	 6.3	 Hypertension	 7.5	
Atrial	Fibrillation	 15.2	 Hypertension	 1.3	 Hypertension	 5.7	 Liver	Disease	 6.5	
Angina	 14.9	 Liver-related	 1.0	 Liver	Disease	 5.3	 HVD	 6.0	
Cardiac-related	 14.0	 Stroke	 0.9	 Leukemias	 5.2	 Cardiac-related	 5.8	
Hypertension	 12.9	 Cardiac	

Arrhythmia	
0.7	 HVD	 4.4	 Cancer-related	 3.8	

Eigencentrality	 	 	 	 	 	 	 	
Hypertension	 1.0	

	  
Asthma	 0.9	 Asthma	 0.9	

Diabetes	 0.4	
	  

Respiratory-
related	

0.4	 Respiratory-
related	

0.4	

CAD	 0.4	
	      

Respiratory-
related	

0.4	
	      

Angina	 0.3	
	      

Transitivity	
	       

 
0.76	

	
0.14	

	
0.57	

	
0.57	
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Table	7	(continued).	Centrality	measures	for	top	five	diseases	in	directed	multimorbidity	networks	
with	mean	computed	over	time.	We	exclude	eigencentralities	that	are	close	to	zero.	
Adult	

	
Middle-Aged	

	
Aged	

	
Elderly	

	

Disease	 Mean	 Disease	 Mean	 Disease	 Mean	 Disease	 Mean	
In-degree	Centrality	

      

Asthma	 11.0	 Asthma	 11.0	 Atrial	Fibrillation	 11.0	 Atrial	Fibrillation	 11.0	
Diabetes	 11.0	 Diabetes	 11.0	 Diabetes	 11.0	 Hypertension	 11.0	
Respiratory-
related	

11.0	 Respiratory-
related	

11.0	 Respiratory-
related	

11.0	 Diabetes	 10.6	

Hypertension	 11.0	 Hypertension	 11.0	 Hypertension	 11.0	 PAD	 10.4	
PAD	 11.0	 PAD	 11.0	 PAD	 11.0	 CAD	 10.3	
Out-degree	Centrality	

      

Cardiac-related	 13.4	 Cardiac-related	 16.8	 Cardiac-related	 14.2	 CAD	 13.1	
Kidney	Disease	 12.3	 CAD	 14.6	 CAD	 13.8	 Hypertension	 12.5	
HVD	 12.3	 Hypertension	 14.5	 Atrial	Fibrillation	 13.1	 Angina	 12.4	
Cancer-related	 10.4	 PAD	 10.9	 Angina	 12.0	 PAD	 12.4	
Hypertension	 10.3	 MI	 10.7	 Hypertension	 11.7	 Atrial	Fibrillation	 12.3	
Eigencentrality	 	 	 	 	 	 	 	
Asthma	 1.0	 Hypertension	 1.0	 Hypertension	 1.0	 Hypertension	 1.0	
Respiratory-
related	

0.7	 Diabetes	 0.5	 Diabetes	 0.4	 CAD	 0.4	

Hypertension	 0.5	 Respiratory-
related	

0.4	 CAD	 0.4	 Angina	 0.3	

Diabetes	 0.3	 Asthma	 0.3	 Angina	 0.3	 Atrial	Fibrillation	 0.3	
PAD	 0.2	 CAD	 0.3	 Respiratory-

related	
0.3	 Diabetes	 0.3	

Transitivity	
	       

 
0.82	

	
0.70	

	
0.78	

	
0.75	
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Table	8.	Summary	statistics	of	dataset	used	for	survival	analysis.	
	 2010	  2011	  2012	
Proportion (%) Train Test All  Train Test All  Train Test All 
Sex  	 	 	 	 	 	 	 	 	 	
Male 44.8 44.9 44.9  44.9 45.0 44.9  45.0 45.3 45.1 
Female 55.2 55.1 55.1  55.1 55.0 55.1  55.0 54.7 54.9 
Age Group  	 	 	 	 	 	 	 	 	 	
Aged 71.6 71.6 71.6  71.3 71.2 71.3  71.6 71.5 71.5 
Elderly 28.4 28.4 28.4  28.7 28.8 28.7  28.4 28.5 28.5 
IMD  	 	 	 	 	 	 	 	 	 	
1 25.4 25.4 25.4  25.3 25.5 25.4  25.5 25.5 25.5 
2 25.2 25.1 25.2  25.1 25.1 25.1  24.9 24.7 24.8 
3 21.7 21.6 21.7  21.6 21.5 21.6  21.5 21.4 21.4 
4 17.6 17.6 17.6  17.7 17.7 17.7  17.8 18.0 17.8 
5 10.2 10.3 10.3  10.3 10.2 10.2  10.3 10.4 10.4 
Multimorbidity   	 	 	 	 	 	 	 	 	
0 20.5 20.6 20.5  20.1 20.3 20.2  20.2 20.3 20.3 
1 27.2 27.1 27.2  27.0 26.8 26.9  26.7 26.8 26.7 
2 21.2 21.2 21.2  21.2 21.4 21.3  21.3 21.3 21.3 
3 13.7 13.6 13.7  13.8 13.8 13.8  13.8 13.7 13.8 
4+ 17.4 17.5 17.4  17.9 17.7 17.9  18.0 17.9 17.9 
Mortality 12.1 12.1 12.1  11.7 11.7 11.7  9.9 9.9 9.9 
Total (Mil) 261,862 112,226 374,088  273,596 117,255 390,851  271,812 116,490 388,302 

	

Table	9.	Top	ten	risk	factors	of	the	Cox	Proportional	Hazards	model	for	2012.	Asterisks	denote	factors	
that	are	significant	after	the	Benjamini-Hochberg	adjustment.	
Factor	 HR	(95%	CI)	

	

Pancreas	Cancer	 4.67	(3.61,	6.02)	 *	
Osophageal	Cancer	 4.42	(3.75,	5.22)	 *	
Lung	Cancer	 4.38	(3.99,	4.80)	 *	
Liver	Cancer	 4.35	(3.66,	5.16)	 *	
Multimorbidity	(4+)	 2.44	(2.22,	2.69)	 *	
Dementia	 2.28	(2.18,	2.39)	 *	
Ovarian	Cancer	 2.21	(1.84,	2.65)	 *	
Multimorbidity	(3)	 2.16	(2.00,	2.34)	 *	
Parkinson's	Disease	 2.06	(1.91,	2.23)	 *	
Multimorbidity	(2)	 1.89	(1.76,	2.02)	 *	
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Figures	
	

	
Figure	1.	Number	of	co-occurring	chronic	conditions	by	age	in	2016.	See	Appendix	C	for	other	years.	
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Figure	2.	Prevalence	of	multimorbidity	by	age	and	IMD	in	2016.	See	Appendix	C	for	other	years.	
Higher	score	corresponds	to	greater	deprivation.	
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Figure	3.	Single	disease	prevalence	in	the	Aged	subgroup	between	2005	and	2016.	See	Figures	7	and	8	
for	disorder	to	index	mapping	and	MedDRA	SOC	abbreviations.	See	Appendix	C	for	other	age	groups.	
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Figure	4.	Heat	map	of	lift	of	multimorbidity	pairs	in	the	Aged	subgroup	in	2016.	See	Figures	7	and	8	
for	disorder	to	index	mapping	and	MedDRA	SOC	abbreviations.	See	Appendix	C	for	other	age	groups	
and	years.	
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Figure	5.	Undirected	multimorbidity	network	in	the	Aged	subgroup	in	2016.	Edge	thickness	is	
proportional	to	the	lift	between	each	disease	pair.	Intra-group	edges	and	inter-group	edges	are	
represented	by	solid	lines	and	dashed	lines,	respectively.	Only	communities	with	more	than	one	node	
are	colored.	See	Figures	7	and	8	for	mapping	of	disorder	to	index	and	MedDRA	SOC	abbreviations.	See	
Appendix	C	for	other	age	groups	and	years.	
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Figure	6.	Directed	multimorbidity	network	in	the	Aged	subgroup	in	2016.	Edge	thickness	is	
proportional	to	the	lift	between	each	disease	pair.	Intra-group	edges	and	inter-group	edges	are	
represented	by	solid	lines	and	dashed	lines,	respectively.	Only	communities	with	more	than	one	node	
are	colored.	See	Figures	7	and	8	for	mapping	of	disorder	to	index	and	MedDRA	SOC	abbreviations.	See	
Appendix	C	for	other	age	groups	and	years.	
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Figure	7.	Mapping	between	index	and	chronic	conditions.	

	

	
Figure	8.	Abbreviations	for	MedDRA	SOCs	used	in	figures.	
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