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Abstract  

Cerebral small vessel disease (SVD) is a major cause of vascular cognitive impairment and 

dementia. There are few treatments, largely reflecting limited understanding of the underlying 

pathophysiology. Metabolomics can be used to identify novel risk factors in order to better 

understand pathogenesis and to predict disease progression and severity. 

We analysed data from 624 patients with symptomatic cerebral SVD from two prospective 

cohort studies. Serum samples were collected at baseline and patients underwent MRI scans 

and cognitive testing at regular intervals with up to 14 years of follow-up. Using ultra-

performance liquid chromatography mass spectrometry and nuclear magnetic resonance 

spectroscopy, we obtained metabolic and lipidomic profiles from 369 annotated metabolites 

and 54,764 unannotated features and examined their association with respect to disease 

severity, assessed using MRI SVD markers, cognition, and future risk of all-cause dementia. 

Over 100 annotated metabolites were significantly associated with SVD imaging markers, 

cognition, and progression to dementia. Decreased levels of multiple glycerophospholipids, 

sphingolipids, and sterol lipids were associated with increased SVD load as evidenced by 

higher white matter hyperintensities (WMH) volume, lower mean diffusivity normalised peak 

height (MDNPH), greater brain atrophy, and impaired cognition. Higher levels of several 

amino acids and nucleotides were associated with higher WMH volume, greater atrophy, and 

lower MDNPH. Lower baseline levels of carnitines and creatinine were associated with higher 

annualised change in peak width of skeletonised mean diffusivity (PSMD), and several 

metabolites, including lower levels of valine, caffeine, and VLDL analytes, were associated 

with future dementia incidence. Additionally, we identified 1,362 unannotated features 

associated with lower MDNPH and 2,474 unannotated features associated with increased 

WMH volume. 

Our results show multiple distinct metabolic signatures that are associated with imaging 

markers of SVD, cognition, and conversion to dementia. Further research should assess 

causality and the use of metabolomic screening to improve the ability to predict future disease 

severity and dementia risk in SVD. The metabolomic profiles may also provide novel insights 

into disease pathogenesis and help identify novel treatment approaches.  
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Abbreviations: ADL = Activities of Daily Living; BI-LISA = Bruker IVDr Lipoprotein 

Subclass Analysis; BI-QUANT = Bruker IVDr automated quantification of small molecule 

metabolites; DTI = diffusion tensor imaging; DSM = Diagnostic and Statistical Manual of 

Mental Disorders; FDR = false discovery rate; LOESS = locally estimated scatterplot 

smoothing; MDNPH = mean diffusivity normalised histogram peak height measured within 

normal appearing white matter voxels; NMR = nuclear magnetic resonance; UPLC-MS = ultra-

performance liquid chromatography mass spectrometry; PSMD = peak width of skeletonised 

mean diffusivity; RUN-DMC = Radboud University Nijmegen Diffusion Tensor and Magnetic 

Resonance Imaging Cohort; SCANS = St George’s Cognition and Neuroimaging in Stroke; 

SD = standard deviation; SVD = small vessel disease; WMH = white matter hyperintensities 
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Introduction  

Cerebral small vessel disease (SVD) accounts for a quarter of all ischaemic strokes and is the 

most common pathology underlying vascular cognitive impairment and dementia.1 SVD is 

characterised by typical radiological features seen on brain MRI including lacunes, white 

matter hyperintensities (WMH), cerebral microbleeds, diffuse ultrastructural changes that can 

be detected using diffusion tensor imaging (DTI), and brain atrophy. Despite its importance, 

there are few effective treatments for delaying disease progression. A major reason for this is 

limited understanding of the disease pathogenesis. Furthermore, although it is a major cause of 

dementia, only a proportion of patients with radiological SVD progress to cognitive 

impairment.2 Once effective treatments become available, predicting which patients are at 

elevated risk will become clinically important, and better markers of disease progression are 

therefore required.3 

Metabolomics, the high-throughput identification and quantification of small molecules in 

biological samples, offers the potential to both identify novel disease mechanisms and develop 

better predictive markers.4 Metabolomics assays surpass standard chemistry techniques for the 

purposes of comprehensive metabolome measurement5 since they are capable of precise 

analysis of hundreds or even thousands of metabolites.6 This allows detailed characterisation 

of metabolic phenotypes, enabling characterisation of metabolic arrangements underlying 

disease pathogenesis, discovery of new therapeutic markers, and identification of novel 

biomarkers to diagnose and monitor disease.6 Metabolomics has been applied successfully in 

a number of cardiovascular and neurological diseases,7,8 but there have been few studies in 

SVD. 

Ultra-performance liquid chromatography mass spectrometry (UPLC-MS) and nuclear 

magnetic resonance (NMR) spectroscopy are effective analytical techniques for detecting and 

measuring chemical constituents within blood samples. In this analysis we obtained baseline 

metabolomics profiles from 624 patients with symptomatic MRI-confirmed SVD and up to 14 

years of follow-up. We examined associations between metabolites and disease severity, 

assessed using both MRI disease markers and cognitive parameters. We also evaluated 

relationships between metabolites and future risk of all-cause dementia. 
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Materials and methods  

Data sources  

We analysed individual participant data from two studies involving patients with symptomatic 

SVD: first, St George’s Cognition and Neuroimaging in Stroke (SCANS), a longitudinal study 

of cognitive impairment in 121 patients with moderate to severe symptomatic SVD;2,9 and 

second, the Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Imaging 

Cohort (RUN-DMC), a prospective cohort study from the Netherlands of 503 individuals aged 

between 50-85 years with symptomatic SVD.10 SCANS participants had multimodal MRI and 

cognitive tests performed at baseline and at years 1, 2, and 3, as well as 5-year follow-up for 

dementia, and RUN-DMC participants had MRI, cognitive, and clinical assessments performed 

at baseline and at years 5, 9, and 14, with 14 years of follow-up for dementia. Both studies 

recorded information from each participant on a range of demographics and vascular risk 

factors, including sex, age, ethnicity, body mass index, smoking status, diabetes status, systolic 

and diastolic blood pressure, hypertension status, and hypercholesterolemia status. Follow-up 

data on dementia incidence was available for all 121 patients from SCANS and 501 patients 

from RUN-DMC. 

Metabolomics data 

Serum samples collected at baseline from 624 participants from the SCANS and RUN-DMC 

cohorts were analysed using UPLC-MS and proton 1H NMR spectroscopy. Full analytical 

details, following previously described sample preparation, analytical, and quality control (QC) 

procedures,11–13 are provided in the Supplementary Methods. For each assay, samples were 

analysed in a randomised order demonstrating no correlation or other relationship with study 

design variables, precluding any confounding effect of analysis order. To facilitate quality 

assessment and pre-processing, a pooled QC sample was prepared by combining equal parts of 

each study sample and analysed periodically among study sample analyses. For UPLC-MS 

only, a series of QC sample dilutions was created (10 x 100%, 5 x 80%, 3 x 60%, 3 x 40%, 5 

x 20%, 10 x 1%) and analysed at the start and end of each set of sample analyses. 

NMR and UPLC-MS assays were applied to maximise coverage of a broad range of metabolite 

classes including lipophilic, hydrophilic, small and macromolecular analytes and processed to 
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include both global profiling and targeted extraction datasets (Table 1). Global profiling 

provides a comprehensive analysis of all measurable metabolites in a sample but results in 

datasets with large numbers of variables per analyte, the identities of which are typically 

unknown. In contrast, by targeted extraction of a pre-defined set of metabolites, pre-annotated 

datasets are immediately more interpretable but are limited in coverage to those metabolites in 

the pre-defined set. 

UPLC-MS was applied with two chromatographic techniques: hydrophilic interaction 

chromatography (HILIC), for the separation of hydrophilic analytes (i.e. polar and charged 

metabolites) and reverse-phase chromatography (RPC) for the separation of lipophilic analytes 

(i.e. complex and neutral lipids). When coupled to positive and/or negative mode ionisation the 

following datasets were produced: lipid positive (lipid RPC+), lipid negative (lipid RPC-) and 

HILIC positive (HILIC+). NMR assays comprised a standard one-dimensional (1D) NMR 

profile experiment with water pre-saturation using the 1D-NOESY pre-sat pulse sequence for 

characterisation of small and macro-molecular metabolites and an additional spin-echo 

experiment using the 1D Carr-Purcell-Meiboom-Gill (CPMG) pre-sat pulse sequence for 

saturation of macromolecules signals. 

For generation of global profiling UPLC-MS datasets, untargeted peak detection was 

performed using Progenesis QI (Waters Corp., Manchester, UK). For targeted extraction, an 

in-house algorithm developed at the National Phenome Centre (peakPantheR, 

github.com/phenomecentre/peakPantheR) was used to fit pre-defined UPLC-MS signals with 

semi-automated (manually validated) extraction of known chemical species across the three 

assays. For NMR, targeted extraction was performed using the in vitro diagnostics platform 

(IVDr) from Bruker Biospin (www.bruker.com) generating quantified measurements of both 

lipoprotein subclasses (BI-LISA) and small molecules (BI-QUANT). 

For all datasets, pre-processing and QC was performed using the nPYc-Toolbox14 according to 

previously published criteria.11,13 Metabolite intensity values on the lipid RPC+ and lipid RPC- 

platforms were corrected for run-order and batch-related intensity drifts by applying LOESS 

regression fitted to the pooled QC samples. Run-order and batch correction were not necessary 

for the metabolites measured on the HILIC+ platform. Only features/metabolites measured 

with high analytical quality (RSD in pooled QC<30%, dilution series Pearson correlation to 

dilution factor>0.7, RSD in study samples>1.1* RSD in pooled QC) were retained. For the 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 14, 2021. ; https://doi.org/10.1101/2021.05.13.21257190doi: medRxiv preprint 

https://github.com/phenomecentre/peakPantheR
http://www.bruker.com/
https://doi.org/10.1101/2021.05.13.21257190
http://creativecommons.org/licenses/by/4.0/


7 

 

global profiling datasets this resulted in 5,729 features for HILIC+, 4,336 features for lipid 

RPC-, and 7,407 features for lipid RPC+. For the targeted extraction UPLC-MS datasets, a 

total of 250 unique and known chemical species passed QC across the three assays (29 on 

HILIC+, 31 on lipid RPC-, and 190 on lipid RPC+). For NMR global profiling data, after 

removal of uninformative spectral regions, 18,646 features were available in both standard 1D 

and CPMG NMR datasets. Quantification using the Bruker BI-QUANT algorithm resulted in 

automated quantification of 27 small molecules, of which 14 passed the feature selection 

criteria; the remaining 13 metabolites were not detected or were not present in sufficient 

concentrations to be measured accurately. Application of the BI-LISA algorithm resulted in 

automated quantification of 105 lipoprotein subclasses. Across all assays, discrepancies in final 

sample numbers available for analysis (Table 1) result from insufficient sample volume for 

data acquisition, sample compromised during acquisition or sample exclusion owing to data 

not meeting stringent quality control criteria (Supplementary Materials). To ensure 

approximately normal distributions, a generalised log transformation was applied to all 

features/metabolites and the values were rescaled using mean-centring and dividing by the 

standard deviation of each metabolite across participants. 

MRI and clinical endpoints 

Our primary MRI endpoint was baseline mean diffusivity normalised histogram peak height 

measured within normal appearing white matter voxels (MDNPH), a diffusion tensor imaging 

(DTI) marker that has previously been shown to be correlated with, and predictive of, the 

degree of cognitive impairment.2,15 A reduction in MDNPH corresponds with increasing mean 

diffusivity. Secondary MRI endpoints that we examined were baseline cerebral microbleed 

count, lacune count, WMH (expressed as the percentage of WMH volume out of the total brain 

volume), total brain volume, and peak width of skeletonised mean diffusivity (PSMD), an 

alternative DTI marker that has been shown to be robust and highly sensitive.16 Our primary 

clinical endpoint was conversion to dementia, which was diagnosed using the 5th edition of the 

Diagnostic and Statistical Manual of Mental Disorders (DSM-5) definition for major 

neurocognitive disorder. Secondary clinical endpoints that we examined consisted of: 

cognition, assessed by a global cognition score as well as scores for the executive function and 

processing speed domains; and disability, assessed by the Barthel index, which is used to 

measure performance on Activities of Daily Living (ADL). We orientated each outcome so 

that higher values corresponded to increased cognitive decline (e.g. instead of total brain 
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volume we analysed brain atrophy as its inverse). We analysed cerebral microbleed and lacune 

counts both as continuous and binary variables (i.e. presence or absence of microbleeds or 

lacunes). A further endpoint that we included was a simple MRI score that accounted for 

presence of microbleeds, number of lacunes, and WMH volume (Fazekas score), which has 

been shown to improve prediction of dementia in SVD patients.9 To obtain comparable effect 

sizes across outcomes, values for each outcome were rescaled using mean-centring and 

dividing by the standard deviation across participants. A description of these endpoints is 

provided in Supplementary Table 1. 

Statistical analyses 

We performed cross-sectional analyses examining the association of baseline MRI markers, 

cognition, and disability data per 1-SD higher metabolite levels measured at baseline. We 

constructed linear regression models for continuous outcomes and logistic regression models 

for binary outcomes, with adjustment for cohort, baseline age, and sex. To evaluate the 

relationship of metabolites with changes in MRI parameters and cognition over time, we 

calculated an annualised change in values for each outcome, based on the difference in values 

between the baseline and latest time point divided by the amount of follow-up time that had 

elapsed. We then ran linear regression models examining the association of annualised change 

in MRI markers, cognition, and disability per 1-SD higher metabolite levels. We also 

performed longitudinal analyses to determine whether metabolites measured at baseline predict 

long-term conversion to dementia, for which we constructed Cox proportional-hazards 

regression models adjusted for cohort, age, and sex to assess the association of conversion to 

dementia per 1-SD higher metabolite levels. 

Analyses were conducted using R version 4.0.2 (R Core Team, 2020). To account for multiple 

testing comparisons, we used a false discovery rate (FDR) threshold of q < 0.05 to identify 

significant associations for each outcome measure. Two-sided P-values and 95% confidence 

intervals are presented. 

Sensitivity analyses 

As a sensitivity analysis, we conducted analyses at baseline separately within each cohort for 

significantly associated metabolites to compare the magnitude and direction of associations 

across cohorts. We also examined significantly associated metabolites to determine whether 
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the associations of metabolites with imaging markers and cognition were modified by relevant 

risk factors. We repeated the cross-sectional analyses with further adjustment for diabetes 

status, hypertension status, and hypercholesterolemia status. 

Data availability 

The raw metabolomics data described in this study were generated at the Medical Research 

Council National Institute for Health Research (MRC-NIHR) National Phenome Centre. 

Derived data supporting the findings of this study are available from the corresponding author 

on request. 
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Results  

Patient characteristics 

In this study we analysed individual participant data from 624 patients with symptomatic SVD. 

The majority of participants were male (58%) and Caucasian (91%), with a mean (SD) age of 

66.5 (9.2) years (Supplementary Table 2). Compared to participants from RUN-DMC, 

SCANS participants were on average 4.4 years older, came from more diverse ethnic 

backgrounds (23% Caribbean and 6% African in SCANS), had higher rates of hypertension 

and hypercholesteremia, and had more severe SVD as indicated by increased WMH volume. 

Associations with baseline imaging parameters 

We obtained measurements for 369 annotated metabolites and lipoprotein subclasses measured 

on five different metabolomics platforms that employed both UPLC-MS and NMR (Table 1). 

We analysed the association of these metabolites with a range of MRI markers, indicators of 

cognition and disability, and conversion to dementia (Supplementary Table 1). 

In cross-sectional analyses adjusted for cohort, baseline age, and sex, lower serum levels of 34 

sphingolipids (including sphingomyelins and ceramides) were associated with lower MDNPH, 

higher WMH volume, greater brain atrophy, and impaired cognition (Figure 1a, 

Supplementary Table 3). Lower levels of 30 glycerophospholipids (including 

phosphatidylcholines and lysophosphatidylcholines) were also associated with lower MDNPH, 

greater brain atrophy, and impaired cognition. Higher levels of 7 amino acids and nucleotides 

(N1-Acetylspermidine, N-Acetylputrescine, isoleucine, creatinine, creatine, cytosine, and 5’-

Methylthioadenosine) were associated with lower MDNPH, higher WMH volume, and greater 

brain atrophy (Figure 1b, Supplementary Table 3). Lower levels of bilirubin were associated 

with impaired cognition. Higher levels of caffeine were associated with greater brain atrophy 

but also with improved cognition. 

Longitudinal analyses of progression of MRI parameters and 

cognition and of incident dementia 

We also analysed the association of metabolites at baseline with annualised change in levels of 

imaging markers and cognition (Figure 2, Supplementary Table 4). Lower levels of four 
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carnitines and creatinine were associated with higher annualised change in PSMD, and lower 

levels of 23 lipoprotein analytes in IDL, LDL, VLDL, and total plasma were associated with 

higher annualised change in impaired executive function. Higher levels of creatine and glucose 

were associated with increased annualised change in number of lacunes. 

When accounting for long-term follow-up in time-to-event analyses, future incidence of 

dementia was associated with several metabolites, including lower levels of valine, caffeine, 

and VLDL analytes, and higher levels of urocanate, lipoprotein analytes in HDL and LDL, and 

creatine (Figure 3, Supplementary Table 5). These associations were suggestive (P < 0.05) 

but not statistically significant (FDR q < 0.05) after correcting for multiple testing. 

Sensitivity analyses 

Analyses conducted separately within each cohort showed that the directions of association 

were mostly consistent between SCANS and RUN-DMC, but there were some differences in 

the magnitudes of the associations (Supplementary Fig. 1, Supplementary Table 6). Lower 

levels of multiple glycerolipids (triglycerides and diglycerides) were associated with lower 

MDNPH and impaired cognition in SCANS participants, with no evidence of an association in 

RUN-DMC participants. Lower levels of multiple glycerophospholipids and sphingolipids 

were associated with lower MDNPH and impaired cognition in both SCANS and RUN-DMC, 

but the specific lipids that reached statistical significance within each lipid class varied. Lower 

levels of many of these sphingolipids were also associated with increased WMH volume, 

greater atrophy, and higher PSMD in RUN-DMC participants, but not in SCANS participants. 

In analyses adjusted for additional vascular risk factors (diabetes, hypertension, and 

hypercholesterolemia status), many of the associations attenuated and were no longer 

statistically significant (Figure 4, Supplementary Table 7). Only one amino acid (creatine), 

one fatty acyl [FA(18:2(OH))], five glycerophospholipids, 17 sphingolipids, one sterol lipid 

(cholesterol), one lipoprotein analyte (Apo-A2 in HDL-4), and two xenobiotics (paraxanthine 

and caffeine) remained statistically significant after this further adjustment. 

Analyses of global profiling datasets 

To provide a more global overview, in addition to analyses conducted on the targeted extraction 

datasets, analyses were also conducted on the unannotated, global profiling datasets. These 

analyses also revealed statistically significant associations with a number of features. From a 
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total of 54,764 measured features, after correcting for multiple testing using an FDR threshold 

of q < 0.05, we identified 1,362 features associated with lower MDNPH, 2,474 features 

associated with increased WMH volume, and 1,533 features associated with executive function 

(Supplementary Tables 8 and 9). Despite the larger number of features measured using NMR, 

a greater proportion of the significant associations were with features derived from UPLC-MS 

datasets, resulting from increased depth of coverage (UPLC-MS assays weighted to lipids, 

NMR weighted to small molecules) and the higher degree of redundancy in the NMR global 

profiling data (multiple features derived from the same underlying metabolite). Similar to the 

analyses conducted in the smaller set of annotated metabolites, there were no significant 

associations of features with microbleed count or conversion to dementia in the global profiling 

datasets. 
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Discussion  

In this comprehensive metabolomics profiling study of over 600 individuals with MRI-

confirmed SVD, we identified over 100 annotated metabolites that are significantly associated 

with SVD imaging markers, cognition, and progression to dementia. We found that decreased 

levels of multiple glycerophospholipids, sphingolipids, and sterol lipids are associated with 

increased SVD load as evidenced by higher WMH volume, lower MDNPH, and greater 

atrophy, as well as with impaired cognition. We also found that higher levels of several amino 

acids and nucleotides are associated with higher WMH volume, greater atrophy, and lower 

MDNPH. Several metabolites, including lower levels of valine, caffeine, and VLDL analytes, 

are associated with future dementia incidence. 

The associations with glycerophospholipids, sphingolipids, and sterol lipids were particularly 

notable. Previous metabolomics studies have shown associations of lower levels of ceramide 

ratios with fewer number of cerebral microbleeds17 and increased risk of incident dementia.18 

In the present study, lower levels of serum sphingomyelins and ceramides were associated with 

higher WMH volume, greater brain atrophy, and impaired cognition in baseline analyses 

adjusted for cohort, age, and sex. The associations for 16 sphingolipids remained significant 

even after further adjustment for diabetes, hypertension, and hypercholesterolemia status, 

suggesting that these associations are not explained by other risk factors and may have causal 

mechanisms. Only one sphingomyelin had a statistically significant association with executive 

function when assessing the annualised change in metabolite levels, suggesting that the 

absolute levels of the metabolites at baseline are more relevant in evaluating their effects on 

SVD and cognition than how those levels change over time. 

Demyelinating diseases such as multiple sclerosis cause neuroinflammation, which can result 

in damage to the myelin sheath. Inflammation has also been proposed to play a role in the 

progression of SVD,19 and metabolites could be implicated in the causal pathway. Previous 

studies have shown that patients with multiple sclerosis and other demyelinating diseases have 

increased levels of sphingomyelins and ceramides in cerebrospinal fluid.20,21 However, these 

ceramides and sphingomyelins have also been implicated in non-neurological conditions such 

as heart failure.22 

Linoleic acid [FA(18:2(OH))] is an essential omega-6 fatty acid obtained from plant sources. 

Diets rich in linoleic acid and other omega-6 fatty acids inhibit the metabolic formation of 

omega-3 polyunsaturated fatty acids, which can lead to a deficit of eicosapentaenoic acid 
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(EPA)23 and is associated with reduced brain volume, impaired cognition, and accelerated 

progression to dementia.24 Our study showed that increased levels of linoleic acid were 

associated with higher WMH volume. 

Another finding from our study was that increased caffeine consumption (i.e. higher levels of 

caffeine in serum) was associated with lower total brain volume but improved cognition, 

particularly processing speed, and decreased risk of dementia. Numerous systematic reviews 

have demonstrated the positive benefits of caffeine consumption,25 but studies have also shown 

that coffee consumption is associated with increased risk of Alzheimer’s disease,26,27 though 

there is no evidence of a causal relationship of coffee consumption with small vessel disease 

or other ischaemic stroke subtypes.28 One explanation for our findings is that caffeine can be 

associated with short-term improvement in cognitive functioning but that long-term 

consumption is associated with chronic brain atrophy. 

A previous analysis of eight prospective cohort studies found that increased levels of 

isoleucine, creatinine, and VLDL lipoprotein subclasses were associated with lower risk of 

dementia.29 In our study, increased levels of isoleucine and creatine were associated with 

increased brain atrophy, and VLDL analytes were associated with lower risk of incident 

dementia. 

Our findings have several important clinical implications. First, they may provide novel 

insights into pathogenic mechanisms underlying SVD; it is possible that modifying levels of 

specific metabolites could help reduce the risk of cognitive decline and dementia in patients 

with SVD. Dietary interventions or novel therapies could improve long-term outcomes for 

SVD patients. Second, a metabolomics panel based on these associations could be developed 

for clinicians to predict which patients are most likely to progress to more severe forms of 

dementia and offer personalised treatment. Third, exploration of the broader metabolic profiles 

derived from our investigation show promise for the discovery and identification of additional 

markers yielding greater mechanistic insight to the relevant phenotypes. 

The strengths of our study include the fact that the metabolites, indicators of cognitive function, 

and brain MRI markers were measured together at baseline, with MRI and cognitive data also 

available at multiple timepoints, and with long-term prospective follow-up of 5-14 years. 

Second, the metabolites were measured using a robust, highly accurate, validated analytical 

approach with quality control measures. Third, we conducted sensitivity analyses separately 
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within each cohort and with adjustment for additional relevant risk factors to assess potential 

mediators. 

The differences in the magnitudes of the associations between cohorts is likely because RUN-

DMC had a larger population and a wider range of disease, whereas SCANS was a much 

smaller population and was more homogeneous, with all patients having moderate or severe 

SVD on MRI. The reason for an association of triglycerides and diglycerides with lower 

MDNPH and impaired cognition in SCANS but not in RUN-DMC could be because 

participants in RUN-DMC had fasted overnight before blood samples were taken, which can 

have a significant impact on triglyceride levels.30 

Our study also has limitations. First, despite the fact that this is one of the largest metabolomics 

studies on SVD to date, the sample sizes of the studies were still modest, which reduced the 

power to detect associations. Second, the large number of statistical tests conducted meant that 

some associations may have been biologically and clinically meaningful but did not reach the 

threshold for statistical significance after correction for multiple testing. However, we applied 

an FDR correction to reduce the likelihood of identifying false positives. Third, we were unable 

to determine whether the associations that we identified were causal, as we did not have access 

to genetic instruments for the measured metabolites that could be used in a Mendelian 

randomization analysis. The metabolites could be on the causal pathway but secondary to tissue 

damage caused by demyelination.31 Patients in SCANS were not assessed for multiple sclerosis 

and myelin loss was not measured so we were unable to evaluate this, and further mechanistic 

and longitudinal studies are needed. However, even if changes in metabolite levels do not 

directly cause cognitive decline or dementia, they could still be useful predictors of these 

conditions. Fourth, the metabolites were measured in blood serum rather than cerebrospinal 

fluid, which is considered better suited for measurement of sensitive biomarkers of 

neurological and cognitive decline,32 although studies have shown similar changes in affected 

pathways for metabolites measured in blood and CSF.33 However, serum biomarkers are 

clinically useful as serum is much less invasive to collect from patients. Fifth, we did not 

examine ratios of metabolites, which can reveal additional insights into metabolic pathways34 

and should be examined in follow-up analyses. Finally, the study was conducted in patient 

populations with symptomatic SVD and may not be generalisable to other contexts. 

In conclusion, we provide consistent evidence that multiple serum metabolites are associated 

with SVD severity on MRI, cognitive decline, and incident dementia in patients with cerebral 
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SVD. Further research should be conducted to identify if these associations are causal and 

could be used to improve the ability of clinicians to predict the rate of progression and severity 

of onset of lacunar stroke and vascular dementia, and for researchers to develop novel treatment 

approaches for patients at increased risk of these conditions. 
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Tables 

Table 1 Metabolites analysed using each metabolic profiling assay 

Technology 
platform 

Metabolic 
profiling 
assay 

No. 
features 
(global 
profiling 
datasets) 

No. 
annotated 
metabolites 
(targeted 
extraction 
datasets) 

Metabolome/lipidome coverage No. participants 

UPLC-MS 

HILIC+ 5,729 29 

Hydrophilic metabolites including 
carnitine, betaine, warfarin, caffeine, 
cotinine, metform, trimethylamine-N-
oxide (TMAO), proline, creatine, 
cytosine 

SCANS: 83 
RUN-DMC: 376 
Total: 459 

Lipid RPC- 4,336 31 

Lipophilic metabolites including 
bilirubin, fatty acids, lysophosphatic 
acids, lysophosphocholines, 
lysophosphoethanolamines  

SCANS: 101 
RUN-DMC: 447 
Total: 548 

Lipid RPC+ 7,407 190 

Lipophilic metabolites including 
carnitines, cholesteryl esters, 
ceramides, cholesterol, diglycerides, 
lysophosphocholines, 
lysophosphoethanolamines, 
monoacylglycerols, phosphocholines, 
phosphethanolamines, 
sphingomyelins, triglycerides 

SCANS: 101 
RUN-DMC: 456 
Total: 557 

NMR 

Standard 
1D 

18,646 

14 (IVDr BI-
QUANT) 

Small molecule metabolites including 
creatinine, trimethylamine-N-oxide 
(TMAO), alanine, creatine, glutamine, 
histidine, isoleucine, tyrosine, valine, 
lactic acid, acetoacetic acid, glucose 

SCANS: 115 
RUN-DMC: 494 
Total: 609 

105 (IVDr BI-
LISA) 

Lipoprotein subfractions including 
subtypes of cholesterol, 
phospholipids, triglycerides, and 
apolipoproteins 

SCANS: 105 
RUN-DMC: 430 
Total: 535 

CPMG 18,646 N/A Small molecule metabolites 
SCANS: 111 
RUN-DMC: 451 
Total: 562 

Overall  54,764 369  
SCANS: 121 
RUN-DMC: 503 
Total: 624 
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Figures 

Figure 1 Association of MRI markers and cognition parameters at baseline per 1-SD 

higher metabolite levels. (A) Lipids. (B) Lipoproteins and small molecules. Beta estimates 

and P-values were obtained from linear or logistic regression models adjusted for baseline age, 

sex, and cohort. Colours show magnitude and direction of P-value for association of metabolite 

with each outcome (red indicates positive association and blue indicates inverse association). 

Asterisks indicate significance: *P < 0.05; **FDR q < 0.05.  

(A) 
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(B) 
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Figure 2 Association of annualised change in MRI markers and cognition parameters per 

1-SD higher metabolite levels. Annualised change in outcomes were calculated as difference 

in values between baseline and latest time point divided by amount of follow-up time. Beta 

estimates and P-values were obtained from linear or logistic regression models adjusted for 

baseline age, sex, and cohort. Colours show magnitude and direction of P-value for association 

of metabolite with each outcome (red indicates positive association and blue indicates inverse 

association). Asterisks indicate significance: *P < 0.05; **FDR q < 0.05. 
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Figure 3 Adjusted hazard ratios for dementia per 1-SD higher metabolite levels. Analyses 

were adjusted for baseline age, sex, and cohort. Hollow squares indicate associations that were 

not statistically significant; filled squares indicate associations significant at P < 0.05. 
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Figure 4 Association of MRI markers and cognition parameters at baseline per 1-SD 

higher metabolite levels with further adjustment for relevant risk factors. Beta estimates 

and P-values were obtained from linear or logistic regression models adjusted for cohort, 

baseline age, sex, diabetes status, hypertension status, and hypercholesterolemia status. 

Colours show magnitude and direction of P-value for association of metabolite with each 

outcome (red indicates positive association and blue indicates inverse association). Analyses 

were restricted to metabolite-outcome associations that were significant in the primary analysis 

(Figure 1). Asterisks indicate significance: *P < 0.05; **FDR q < 0.05. 
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