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ABSTRACT 

Objectives We have developed a deep learning model that provides predictions of 

the COVID-19 related number of cases and mortality in the upcoming 5 weeks and 

simulates the effect of policy changes targeting COVID-19 spread.  

Methods We developed a Deep Recurrent Reinforced Learning (DRRL) based 

model. The data used to train the DRRL model was based on various available 

datasets that have the potential to influence the trend in the number of COVID-19 

cases and mortality. Analyses were performed based on the simulation of policy 

changes targeting COVID-19 spread, and the geographical representation of these 

effects. 

Results  Model predictions of the number of cases and mortality of COVID-19 in the 

upcoming 5 weeks closely matched the actual values. Local lockdown with social 

distancing (LD_SD) was found to be ineffective compared to national lockdown. The 

ranking of effectiveness of supplementary measures for LD_SD were found to be 

consistent across national hotspots and local areas. Measure effectiveness were 

ranked from most effective to least effective: 1) full lockdown; 2) LD_SD with 

international travel -50%; 3) LD_SD with 100% quarantine; 4) LD_SD with closing 

school -50%; 5) LD_SD with closing pubs -50%. There were negligible differences 

observed between LD_SD, LD_SD with -50% food & Accommodation and LD_SD 

with -50% Retail.  

Conclusions The second national lockdown should be followed by measures which 

are more effective than LD_SD alone. Our model suggests the importance of 

restrictions on international travel and travel quarantines, thus suggesting that follow-

up policies should consist of the combination of LD_SD and a reduction in the 

number of open airports within close proximity of the hotspot regions. Stricter 
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measures should be placed in terms travel quarantine to increase the impact of this 

measure. It is also recommended that restrictions should be placed on the number of 

schools and pubs open. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Strengths and limitations of this study 

- The proposed Deep Recurrent Reinforced Learning (DRRL)-based model takes 

into account of both relationships of variables across local authorities and across 

time, using ideas from reinforcement learning to improve predictions.  

- Whilst, predicting the geographical trend in COVID-19 cases based on the 

simulation of different measures in the UK at both the national and local levels in 

the UK has proved challenging, this study has provided a methodology by which 

useful predictions and simulations can be obtained.  

- The Office for National Statistics only released data on UK international travel up 

to March 2019 at the time of this study, and therefore this study used the amount 

of UK tourists in Spain as a reference variable for understanding the effect of 

international travel on COVID-19 spread. 
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INTRODUCTION 

COVID-19 is a highly infectious disease that resulted in a global pandemic in just 

under a month. This pandemic has caused global disruptions to individuals, 

businesses and governments worldwide. The number of cases have continued to 

rise exponentially, from 80,239 in February 2020 rising to 69 million as of December 

2020.[1] Recent cases of a new variants of COVID-19 have also been found [2].This 

is despite global efforts to control this virus. Thus, novel strategies are necessary to 

monitor and control the spread of this virus.  

Whilst there have been studies of the geographical distribution of actual 

COVID-19 cases[3], to the best of our knowledge, there have not been any studies 

predicting the geographical trend in COVID-19 cases based on the simulation of 

different interventions at both the national and local authority(LA) levels in the UK. It 

is vital to have a detailed understanding of the factors that presently affect the 

spread of COVID-19 at both a national and local level as well as the potential impact 

of future policy measures. This knowledge would allow the government, LAs and 

individual citizens to make informed decisions about regional policies and personal 

exposure risks. 

To this end, we have developed a deep learning model that provides the 

predictions of the incidence and mortality related to COVID-19 in the upcoming 5 

weeks and simulates the effect of policy changes targeting the COVID-19 spread i.e. 

number of facilities available for accommodation and food, pubs, retail shops, 

education, transport and storage, art, entertainment and recreational services, within 

each local authority region. The model also accounts for international migration 

inflow, internal migration inflow and outflow within the UK thus simulating policy 
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changes that affect travel. This model may also inform planning for similar scenarios 

in the future.  

 

 

METHODS 

Patient and public involvement  

This research was done without patient and public involvement. 

 

Model Development  

We developed a Deep Recurrent Reinforced Learning (DRRL)-based model 

(supplementary material Part I) that combines the synergistic properties of Gated 

Recurrent Units (GRU),[4] and reinforcement deep learning.[5] We have chosen 

GRU as an element of our model because of its ability to model non-linear and 

temporal relationships between and within high dimensions of variables. The 

reinforcement learning element of DRRL enables it to adapt to newly inputted data 

and make more accurate forecasts. 

All available LA data was split 80:20 into training and validation data subsets. 

Data was pre-processed using scaling - subtracting their corresponding mean and 

dividing by the standard deviation values.  Following the completion of predictions, 

the prediction outputs are then scaled back to their original scale.  

The DRRL neural network model utilised an input layer, numerous hidden 

layers, and an output layer. A complex series of non-linear matrix computations are 

applied to the input data to relate the target output (i.e. cases and mortality) to the 

other data columns (e.g. amount of international migration inflow or internal migration 
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inflow and outflow within UK, number of retail shops etc.). The model is first Trained 

using the existing data subsets.  Each column of the data is assigned a specific 

weight at each of the nodes in the hidden layers and these weights are progressively 

updated to minimize the the mean absolute error (MAE) between the predicted and 

actual values, using the rmsprop optimisation algorithm.[6] During the Prediction 

process, an input data matrix of the same dimension as the training data is then 

passed into the input layer. The neural network’s hidden layers then use the weights 

learned during training process to predict the most likely incidence and mortality 

based on the values of the other variables from each corresponding week.   

The final model consists of two components, model-M (master model) and 

model-R (reinforced model) that serve different purposes. Model-M accounts for the 

relationships of variables across different LAs, whilst model-R provides improved 

forecasting performance for each individual LA that are selected for analysis (see 

Supplementary Material, Part I). This model is particularly apt at generalisation and 

is capable of forecasting a wide range of LA simultaneously. The model uses model-

R to increase forecast performance for the individual LA that are selected for 

analysis. Model-M is updated with several additional epochs of training data from the 

selected LA to reinforce and optimise the predictions.  

 

Data Linkage  

The data used to train the deep learning model is based on various datasets that 

have the potential to influence the trend in the number of COVID-19 cases and 

mortality at the national and local level (refer to Supplementary Materials, Part IV. for 

more details), including domains of deprivation, number of bars and pubs, business 

size, population estimate (male, female, by age, overall), etc. We use the R 
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language and the R SDK for COVID-19, i.e. a set of software commands to retrieve 

data remotely, as published by Public Health England, to automatically extract the 

latest daily cases and mortality figures for all LA within the UK. Using this approach, 

we are able to automate and dynamically predict the cases and mortality as new 

data is generated by GOV.UK.   We use R to convert these data from daily figures 

into weekly counts and link this data to the data described in Supplementary 

Materials, Part IV.  

Specifically, we have created a manually curated datasheet containing three 

indices that together we name the COVID-19 General Policy (CvdGPlc) indices: 

LockdownScore, QuarantineMeasures and SchoolOpening. These index scores are 

linked to the main dataset based on the weeks each of the corresponding policies 

were implemented and the relative effects at each time period.  

Furthermore, we obtained the number of tourists arriving in Spain from Jan 

2020 to July 2020 and adjusted the number by the proportion of UK tourists in Spain 

from the year 2019. As data on international travel is not readily available for the 

period affected by COVID-19, the rationale is to use the amount of UK travel to 

Spain as an indicator for the impact of international travel on the spread of COVID-

19, since Spain is a frequent UK tourist destination. Our GRU model is not only 

trained on the above data, but also includes the longitude and latitude of each local 

authority as part of the model. 

In this study, we have explored the effects of various containing measures at 

specific time periods to investigate their effects on virus spread and mortality rates. 

Only the variables that we have found most relevant as measures for policy making 

have been reported. The reader is encouraged to explore the adjustment effects of 
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other variables on the prediction results of the model via our online web app 

(http://137.222.198.54:8081/).  

Whilst the LA boundaries data is not included in the training process, the main 

dataset is also linked to this data following forecast generation, so the deep learning 

model will also provide the prediction of the incidence or mortality in the next five 

weeks in a geographical map view. Furthermore, the model has the capability to 

toggle the map view by local authority or Public Health England regions. These 

views will not only be useful for the government to see the future effects of different 

policy changes, but also for the individual citizens to understand their risk of 

movement within and between local regions in the upcoming future.  

For analysis in the map view, the geographical regions from the top to bottom 

of England is divided into four equidistant slices, which we shall name slice n2, n1, 

s1, s2, respectively. These categories will be applied to all other geographical plots 

hereafter to facilitate discussion.  The areas with higher number of cases are shown 

in darker colours with 6 grades of severity (I – VI) covering the ranges 0-250 (I); 250-

500 (II); 500-750 (III); 750-1000 (IV); 1000-1250 (V); 1250-1500 (VI). Any number 

outside of this range is shown in grey and is classed as grade VII. 

 

Model Validation  

The model is validated for the whole of England, whereby the model is trained using 

the same approach as described in the Model Development section but excluding 

data from weeks 41 to 46. The data from this interval serves as Validation data for 

determining the performance of the model on unseen data. Ten iterations of 

reinforced training are performed over the dataset. At the time of this work, only data 

up to week 46 are available. The variable values are set from week 40 onwards to 
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enable predictions to simulate a full/national lockdown (FLD) from week 45 onwards. 

This is because it is known that a FLD had been applied in the UK from week 45 

(00.01 on Thursday 5 November) and prior to that, local lockdown with social 

distancing (LD_SD) had been implemented.  

 

Model Simulation   

Simulations are performed using the final model that is trained using the approach 

described in the Model Development section. All data i.e. from week 1 to 46 are 

included for training this model. The model is used to simulate the effects of numerous 

different COVID-19 prevention measures on the number of cases at week 51 i.e. 5 

weeks ahead of the latest available data. The values of the variables that model the 

corresponding measures are set from week 40 onwards to enable predictions to 

simulate the implementation of those measures from week 45 onwards, rather than 

FLD, which was what the government actually implemented. The measures simulated 

are: (a) No lockdown vs. local lockdown with social distancing (LD_SD); b) LD_SD vs. 

full/national lockdown (FLD); c) LD_SD vs. LD_SD with international travel -50%;  d) 

LD_SD vs. LD_SD  with closing school -50% e) LD_SD with travel quarantine 5.5 (see 

Supplementary Material, Part IV., 11) vs. LD_SD with full travel quarantine 10; f) 

LD_SD with 100% pubs open vs. LD_SD with -50% pubs;   (g) LD_SD with 100% food 

& accommodation services open vs. LD_SD with -50% food & accommodation 

services open;  (h) LD_SD with -50% retail services open vs. LD_SD with 100% retail 

services open. For details on the implementation of these measures, please refer to 

Supplementary Materials, Part IV.  

 These measures are simulated firstly for individual LA by selecting a baseline 

LA with a relatively low case count and comparing the effect of the measures when 
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applied to a LA with a very high number of cases i.e. a hotspot area. The measures 

are then ranked by order of effectiveness. This is so that the relative effectiveness of 

each measure can be understood at the local level. Secondly, the measures are 

simulated for all the LA in England to visualise the relative effectiveness of each 

measure at a national level. For the 21 LA with the highest cases when using a 

LD_SD measure, the predicted cases counts at week 51 are extracted and plotted to 

analyse the efficacy of each measure across these nationally “hard” to tackle areas. 

This comparison also enabled the ranking of the relative effectiveness of each 

measure at these hotspots.    

 

RESULTS 

Model validation of predictions against actual results for week 46 showed a good 

match between the simulation and actual number of cases across all the LA concerned 

(fig 1). The model was able to distinguish LA with high cases from areas with low 

number of cases (fig 2a, b). The model performs especially well for low grade LA 

(Table 1). The tendency towards better performance in low degree LA, may be 

because data from week 41 to 46 containing sharp changes in the trend have not been 

included. Therefore, the simulation of cases and mortality up to week 51 was 

performed by including data from week 41 to 46 in the model training.   
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Fig 1 Validation of cases for week 46 with weeks 41 to 46 excluded from data 

The effects of different measures were first observed at a local level. 

Southampton was selected as baseline for observing the effects of measure changes. 

As Southampton is a grade I LA with a low case number of 187 in week 46, the effects 

of measure changes were readily perceived with effectiveness ranked from most 

effective to least effective (Supplementary Materials, Part II fig. S5): b) full lockdown; 

c) LD_SD & international travel -50%; e) LD_SD & 100% quarantine; d) LD_SD & 

closing school -50%; f) LD_SD & closing pubs -50%. There were negligible differences 

observed between LD_SD, g) LD_SD & -50% food & Accommodation and h) LD_SD 

& -50% Retail.  

As Leeds was in the highest grade (VII) for both week 46 (actual) and week 51 

(predicted), it was selected for observing the effects of different measures on ‘hard’ to 

tackle areas. As the number of cases for Leeds were approximately 5 times higher 

than Southampton, the effect of measures relative to the number of cases in any week 

were much smaller in the former compared to the latter. For Leeds, no difference was 

observed for predicted cases at week 51 between no lockdown and LD_SD. Full 

lockdown (Supplementary Materials, Part II. fig. S6b) was most effective followed by 

LD_SD with a reduction in international travel by 50%, although the effects were much 
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less in proportion to the number of cases than Southampton. There was negligible 

impact on the number of cases at week 51 for the remaining measures (fig. S6e-h).  

 

 

Fig 2 Geographical level of cases for actual and predicted results based on different 

measures. a) exemplifies the use of geographical slices n2, n1, s1, s2. Additional 

results are available in Supplementary Materials, Part III. 

 

Figure 2c shows the predicted cases in week 51 using LD_SD. At a national 

level, it can be seen that there would be a rapid rise in the number of cases, especially 

in the horizontal “belt” along the n1 region. In addition, there is at least one LA in each 

of the other slices n2, s1 and s2 that are expected to rise to grade VI or above. The 

majority of LA locations elsewhere, which were mostly at grade I in week 46, are 

expected to rise to grade II or III. The top 21 hotspots at week 51 using LD_SD were 

selected for subsequent analysis (Table 2).  
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LD_SD was shown (fig 3) to be effective in suppressing the increase in cases 

for Birmingham (-17%), Bradford (+0.98%), Kirklees (-6.6%) and Leicester (-1.3%). 

LD_SD was shown to be ineffective for suppressing the increase in cases for the 

remaining 17 LA, with the highest predicted rises for Wirral (325%), Stockport (163%), 

Tameside (188%), Rotherham (158%), Derby (130%). 

 

Fig 3 For the top 21 LA with the highest predicted cases observed at wk 51 using 

LD_SD, plots were generated to compare the effects of full lockdown against LD_SD 

in terms of cases a) and mortalities b). 

 

Table 1 Validation model: Number of actual and predicted cases and 
mortalities. The results show that there is a close match between actual and 
predicted number of cases, especially for LA at grade III or below.  

Local Authority 
Number of Actual 
Cases for week 46 

Cases Forecast for 
week 46 

Number of Actual 
Mortalities for week 

46 

Mortality Forecast for 
week 46 

Intervention Full Lockdown 

Wolverhampton 438 482 4 5 

Gedling 179 196 6 2 

Welwyn Hatfield 119 130 0 2 

Wiltshire 201 219 1 4 

Portsmouth 220 239 0 3 
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Bromley 217 232 2 3 

Stockton-on-Tees 467 498 7 7 

Stockport 517 550 13 8 

South Kesteven 153 162 6 1 

Hammersmith and Fulham 166 175 1 2 

Kingston upon Thames 150 158 4 2 

Ribble Valley 93 98 4 2 

East Cambridgeshire 34 36 1 1 

Redcar and Cleveland 380 396 7 4 

Sedgemoor 55 57 3 1 

Cheshire East 496 514 6 7 

Wealden 76 79 1 2 

Charnwood 371 382 3 3 

South Somerset 72 74 1 1 

Southend-on-Sea 137 140 0 3 

Chelmsford 110 112 2 2 

Rushcliffe 124 126 4 2 

Merton 146 148 0 2 

Shropshire 426 428 6 6 

Harrogate 253 253 1 2 

Central Bedfordshire 226 225 5 4 

Sutton 155 154 5 3 

Oldham 735 732 15 8 

Hillingdon 325 323 3 3 

Basildon 168 167 4 3 

Plymouth 196 192 2 3 

Test Valley 59 58 1 1 

Walsall 605 590 15 6 

Southampton 187 182 0 2 

Selby 129 124 2 1 

South Holland 105 100 2 1 

Chiltern 57 54 0 1 

Derbyshire Dales 82 78 1 2 

Chichester 58 54 0 1 

Barnet 378 354 5 4 

Tameside 447 417 18 12 

Salford 577 537 17 7 

Havant 77 71 1 1 

Waverley 97 89 0 1 

Nuneaton and Bedworth 247 226 4 3 

New Forest 92 84 6 1 

Ryedale 67 61 1 1 

Peterborough 224 204 2 4 

North Hertfordshire 89 81 1 1 

Epping Forest 130 118 2 1 

           Note: only 50 LA are displayed. For validation data on all LA, please contact the authors. 
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Table 2 Final model: number of actual and predicted cases and mortalities. 
Results are shown for the top 21 LA with the highest predicted cases observed 
at wk 51 using LD_SD. 

Local Authority 
Number of Actual 
Cases for week 46 

Number of Actual 
Mortalities for week 46 

Cases Forecast          
for week 51 

Mortality Forecast   
for week 51 

Cases Forecast          
for week 51 

Mortality Forecast   
for week 51 

Intervention Full Lockdown  

 
Local lockdown with social distancing 

 
Full lockdown  

Leeds  1801 17 1881 21 499 17 

Sheffield 948 36 1784 32 275 14 

Birmingham 1957 35 1627 25 537 17 

Wigan 759 34 1554 24 346 10 

Manchester 1067 13 1550 20 427 13 

Bradford 1534 24 1549 20 722 17 

Stockport  517 13 1529 17 218 7 

Liverpool 750 29 1509 22 234 8 

Rotherham 561 20 1448 22 257 7 

Kingston upon 
Hull 

1011 21 1368 18 584 12 

Oldham 735 15 1336 17 509 11 

Wirral 311 13 1324 19 65 4 

Bolton 635 18 1299 17 447 11 

Bristol 763 8 1296 14 444 13 

Tameside 447 18 1288 20 255 7 

County Durham 1161 23 1252 26 377 7 

Derby  537 11 1234 15 335 8 

Walsall 605 15 1233 21 288 7 

Kirklees 1292 25 1207 29 557 14 

Leicester  1006 7 993 15 581 11 

Sandwell 762 21 969 25 398 10 

 

LD_SD with -50% international travel was the most effective measure after full 

lockdown (blue vs. brown, fig 4). 100% quarantine (pink) was the next most effective 

supplementary measure, with similar effectiveness to international travel -50% except 

for three LA. Notably, LD_SD with 100% quarantine resulted in higher cases than 

LD_SD with international travel -50% for Bradford (+9.1%), Leicester (+7.6%). As an 

exception, Manchester had -41% less cases when using the quarantine measure 

compared to international travel restrictions.   
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Fig 4  For the top 21 LA with the highest predicted cases observed at wk 51 using 

LD_SD, a plot is generated to compare the effect on the number of cases using a 

combination of LD_SD with other “supplementary“ measures.  

 

The supplementary effect of school closing -50% was less than international 

travel restrictions for all 21 LA, with the number of cases being (+9.2%) higher on 

average using the former measure. Closing pubs -50% had a similar, albeit slightly 

lower level of effectiveness compared to school closing, with a higher number of cases 

(+2.2%) on average using the former measure compared to the latter. Again, reducing 

the number of food & accommodation services -50% had a similar, but slightly lower 

level of effectiveness compared to pubs closing, with the number of cases (+2.0%) 

being higher on average using the former measure. In addition, a reduction in the 

number of retail services -50% resulted in a similar effect to food & accommodation 

services -50%, with on average a minimal increase in the number of cases (+0.29%) 
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using the former measure. It can be seen that on average, the ranking of measure 

effectiveness for the national hotspots are the same as the local baseline, i.e. 

Southampton.  

 

DISCUSSION 

We have developed a deep learning model that investigates the impact of local 

versus national measures on COVID-19 spread in England as well as the associated 

mortality rates and allows forecasting based on simulation of different scenarios 

(http://137.222.198.54:8081/). This model can be regularly updated as the new 

information on actual numbers becomes available.    

The temporal based deep learning model can be used to make inferences into 

the effectiveness of different measures at both the national and local level. The model 

suggests that there is variation in the effect of each measure across different regions. 

Notably, our results suggest that the protective effects of lockdown measures benefit 

some local authorities more than others (Supplementary Material, Part II. fig S5 and 

S6) and that local lockdown with social distancing is ineffective compared to national 

lockdown in suppressing the increase in cases for most of the local authority areas. 

That is, if the government had kept the same local lockdown with social distancing 

policies, which they had implemented from week 40 onwards rather than switching to 

a national lockdown policy at week 45, then we would have seen a rapid rise in cases 

not only in the n1 belt region, but also in areas such as County Durham (n2), Bristol 

(s2) and Birmingham (s1), as well as in many other areas across England.  

Local lockdown with social distancing may be inefficient in stopping rapid rise 

of hotpot regions due to geographical properties of hotspot regions. Hotspots along 

the middle of the n1 geographical slice constitute a tight cluster of large metropolitan 
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cities, and the high number of cases may be partly attributed to the high number of 

services such as pubs and schools available as well as the amount of travel in these 

areas. We also expect that LA areas where there are many boundary connections to 

other hotspots are likely to develop a higher number of cases when LD_SD measures 

are implemented. This is because, if one of an LA’s neighbours is locked down, 

citizens from that LA can still travel to its other neighbours given that it has many 

neighbouring connections. We expect this could allow the continuation of the spread 

of COVID-19 within these tight cluster regions.  

 Since the government is only able to impose a national lockdown for a limited 

period, follow-up measures should improve upon LD_SD as this is likely not to be 

sufficient. The introduction of additional measures on top of local lockdown with social 

distancing can help to suppress the increase of or even decrease the number of cases 

in national hotspots as well as local areas where cases are not very high. Our model 

shows that the ranking of the average effectiveness of each supplementary measure 

is consistent across the national hotspots and local baseline, and this ranking can be 

used to prioritise those interventions according to an order of effectiveness. 

Nonetheless, it was also observed that certain measures are more effective for some 

LA compared to others. In these cases, it is necessary to adjust the priorities of the 

measures implemented accordingly.   

The model has highlighted the importance of reducing the amount of 

international travel, the number of open schools and pubs as well as the 

implementation of travel quarantine procedures in controlling the spread of COVID-

19 over other measures, such as reducing the number of food & accommodation and 

retail services, which seemed less relevant on the virus spread (fig 4 and fig S5).  

One explanation for the importance of international travel on the spread of the 
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disease is that whilst the UK government has a certain level of control over the 

restriction of activities in the UK, it has little control over the activities of travelling 

individuals once they arrive at their destinations as well as the level of health 

preventative measures at those destinations. Furthermore, the travelling individuals 

are more likely to encounter hotels, resorts, trains, planes and other places of 

gathering whilst abroad. These factors can contribute to the increased spread of 

COVID-19. Whilst travel quarantine measures provide the government to some 

degree the selection of which countries to enforce a 14-day self-isolation on the 

traveller’s return, there are possible explanations why this would not be as effective 

as directly reducing the amount of international travel. Firstly, the restrictions do not 

prevent travellers (e.g. pre-university gap year students, those not working) not wary 

of self-isolation to travel to high risk countries. Secondly, although a penalty is 

imposed if self-isolation is violated, the act of self-isolation is largely dependent on 

the level of cooperation from the individual. Finally, even with COVID-19 testing in 

place, the journey from the airport back to the home of the traveller allows an 

increased opportunity of spreading the virus, particularly if public transport such as 

taxis or buses are taken.  

Whilst closing schools were not as effective as international travel and 

quarantine restrictions, it was found to be more effective than closing pubs. One 

potential explanation for this is that schools are more crowded places and are subject 

to more frequent number of close contact scenarios in comparison to the pub. The 

view that schools contribute to the spread of COVID-19 have been supported by the 

literature.[7,8] Whilst the virus may pose low risk of mortality to the children themselves, 

these frequently asymptomatic carriers can also lead to the spread of the virus to their 

households, teachers and communities.  
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The reason why minimal effects were found for food & accommodation and 

retail restrictions may be due to the possibility that in these sectors people generally 

associate with others that they are closely associated with. For example, families are 

more likely to sit with each other in restaurants or walk together with each other when 

shopping rather than people they are less familiar with. This is not the case in pubs as 

anyone from the communal area can be present.   

It is unexpected that in the s2 slice that Bristol has higher predicted cases than 

the LA in the London area as one would have thought the latter comprising a total 

population of 9 million (2019) and a high traffic volume owing to its large underground 

network system would result in much higher case numbers. We expect that this may 

be because the LA in the London region generally have less health and disability 

deprivation (Deciles: Wandworth: 7; Barnet: 8.9; Brent: 7.3; Waltham Forest: 6.1) 

compared to Bristol (Decile: 4.4). This is supported by the finds which suggest that 

existing comorbidities are associated with an increased likelihood of COVID-19 

hospital admission.[9]  

In light of evidence given by the comparison between the LA within the London 

region and Bristol, we expect the effect of LA boundary connections to be adjusted by 

the degree of health and disability deprivation. Indeed, we found that regions with high 

number of cases along the horizontal “belt” in the n1 region had a high degree of health 

and disability deprivation (Decile: Manchester: 1.9; Leeds: 4.1; Bradford: 3.3; Liverpool: 

1.8; Sheffield: 3.9; Wigan: 3.4). This also applies to County Durham (n2), which has a 

high degree of health and disability deprivation (decile: 2.9) and was seen to have a 

significant increase in cases at week 51 using a LD_SD measure. 
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CONCLUSION 

The present analysis found that the national lockdown was more effective than 

targeted local lockdown measures and its implementation from week 45 to 49 by the 

government was justified, albeit not sufficient to fully control the spread of COVID-19. 

In addition, given the limited governmental resources and timespan of the national 

lockdown, a rapid rise would be inevitable in health deprived and geographically 

vulnerable areas with a high degree of boundary connection, if only local lockdown 

with social distancing is used as a followed-up measure.   

Our model suggests the importance of restrictions on international travel and 

travel quarantines, thus suggesting that follow-up policies should be comprised of the 

combination of local lockdown with social distancing and a  reduction in the number of 

open airports within close proximity of the hotspot regions. Stricter measures should 

be placed in terms travel quarantine to increase the impact of this measure. In addition, 

it is recommended that where possible, education should be provided remotely, and 

pubs should be closed.  
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