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Abstract

Motivation: Severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection (coronavirus disease, 2019; COVID-19) is as-
sociated with adverse outcomes in patients. It has been observed
that lethality seems to be related to the age of patients. Moreover,
it has been demonstrated that ageing causes some modifications at a
molecular level. Objective: The study aims to shed out light on a
possible link between the increased COVID-19 lethality and the molec-
ular changes that occur in elderly people. Methods: We considered
public datasets on ageing-related genes and their expression at tissue
level. We selected interactors that are known to be related to age-
ing process. Then, we performed a network-based analysis to identify
interactors significantly related to both SARS-CoV-2 and ageing. Fi-
nally, we investigated changes on the expression level of coding genes
at tissue, gender and age level.
Results We observed a significant intersection between some SARS-
CoV-2 interactors and ageing-related genes suggesting that those genes
are particularly affected by COVID-19 infection. Our analysis evi-
denced that virus infection particularly affects ageing molecular mech-
anisms centred around proteins EEF2, NPM1, HMGA1, HMGA2,
APEX1, CHEK1, PRKDC, and GPX4. We found that HMGA1, and
NPM1 have a different expression in lung of males, while HMGA1,
APEX1, CHEK1, EEF2, and NPM1 present changes in expression in
males due to aging effects.
Conclusion Our study generated a mechanistic framework to explain-
ing the correlation between COVID-19 incidence in elderly patients
and molecular mechanisms of ageing. This will provide testable hy-
potheses for future investigation and pharmacological solutions tai-
lored on specific age ranges.
Keywords: Data Science, SARS-CoV-2, COVID-19, Ageing
Genes, Interactomes
Contact: Pietro Hiram Guzzi, Department of Surgical and Medical
Sciences, University of Catanzaro hguzzi@unicz.ithguzzi@unicz.it

1 Introduction

At the end of 2019 in Wuhan (China), medical facilities reported acute
pneumonia cases with an unknown origin. Further analysis revealed
that a novel coronavirus, named severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), was responsible for that disease, subse-
quently called coronavirus disease 2019 (COVID-19) [1, 2]. The clin-
ical manifestations spanned from asymptomatic infection to severe
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pneumonia and a severe state of inflammation (molecularly charac-
terised by a cytokine storm) leading to a fatal outcome [3, 4, 5, 6, 7, 8].

Starting from China, the virus spread in almost all other countries
globally, causing infections and deaths. On 11th March 2020, the
World Health Organisation (WHO) declared SARS-CoV-2 as a pan-
demic. Current data revealed that the impact of COVID-19 presents
certain peculiar aspects in different nations that have been deeply in-
vestigated [9, 10]. Some authors hypothesised that virus mutations
were responsible for these differences [11, 12, 13, 14]. Nevertheless,
many independent studies agreed that the mutations might not have
a primary role in explaining these differences [15, 16, 17].

Despite the lack of the individuation of the causes, there was a
substantial agreement on the fact that the variation of the observed
case fatality rate (CFR), i.e. the fraction of confirmed cases leading
to fatal outcomes, ranging from 0 to 20% and beyond at country
level, needs to be deeply investigated [18, 19, 20]. Among the other
differences, we focused on observing that the infection is significantly
more lethal in older people [21, 22, 23, 24, 25]. This consideration has
also guided the optimisation of vaccination strategy [26].

Some studies have focused on the possible link between increased
mortality rate and some characteristics of older people [27, 28]. In
addition, these studies suggested the potential effect of the virus as
a trigger activating the decompensation of other chronic conditions
[29, 30, 31, 32]. Akbar et al., [33], discussed a possible link between
the increased chronic inflammatory status occurring during ageing
(termed ”inflammaging” [34, 35]), and COVID-19 manifestation that
causes the rise of inflammation.

Previous studies have also evidenced that the understanding of
modification of molecular mechanism related to the ageing process
(i.e. modification of gene expression, modulation of regulatory mecha-
nisms) may reveal important insights about ageing [36]. Many studies
contributed to identifying such ageing-related diseases despite the lack
of having experimental data [37, 38, 39, 35, 40]. Computational pre-
dictions have also been made in [36, 41] giving both candidate genes
and networks [42, 43].

Consequently, the study of the intersection between SARS-CoV-2
and ageing-related molecular alterations could augment the under-
standing of COVID-19, thus improving treatment options [44]. Bhat-
tacharyya et al. presented a first analysis based on some preliminary
public data reinforcing the rationale that such a possible link exists
[45].

Six functional open reading frames (ORFs) in the SARS-CoV-
2 genome encodes for the four main structural proteins, the Spike
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(S), Envelope (E), Membrane (M), and the Nucleocapsid (N), and
ORF1a/ORF1b, which contain information for the replicase–transcriptase
complex formed by 16 non-structural proteins (NSP1–NSP16). The
SARS-CoV-2 genome also contains 9 accessory factors from sub-genomic
ORFs (Orf3a, 3b, 6, 7a, 7b, 8, 9b, 9c and 10) [46]. We investigated
the relationships and interactions between these viral components and
age-related factors and observed a significant overlap between SARS-
CoV-2 and ageing group genes’ interactors. Furthermore, we looked
at a network-level scenario [43], by considering possible regulatory
mechanisms that may be altered [47, 48]. These observations sup-
port previous reports that SARS-CoV-2 also involves a vascular and
multiorgan failure in severe COVID-19 [49].

Starting from these considerations, we hypothesised that SARS-
CoV-2 interacting proteins (and genes) might show an overlap with
human ageing-related genes higher than chance. Therefore, the infec-
tion may deregulate these mechanisms that can be already impaired
in older adults, causing severe outcomes. We downloaded public avail-
able interaction data from Guzzi et al. [50] and Gordon et al., [51].
Then we considered the interacting partners that were annotated as
ageing genes in MSigDB [52] ad we also considered the expression at
tissue and sex levels extracting data from GTeX database [53]. We
verified a significant fraction of interacting partners of SARS-CoV-2
involved in ageing. These genes are also expressed in lung and the
expression is modulated by age and sex. We also observed that these
genes are expressed in adipose tissue (as reported in Supplementary
Material). The workflow of the experiment is depicted in Figure 1.

2 Methods

SARS-CoV-2 Interaction Map We considered the SARS-CoV-
2 protein interaction map provided by Gordon et al., [51], and by Guzzi
et al., [50]. Both works provided data about 26 of the 29 SARS-CoV-2
proteins behaviour in human cells by identifying the human proteins
that physically associated with each of the SARS-CoV-2 proteins using
affinity-purification mass spectrometry. They found high-confidence
protein-protein interactions between SARS-CoV-2 and human pro-
teins; they also provided data about possible interactions with an as-
sociated reliability score. We considered both high and low confidence
interactions.

Databases We first defined and labelled genes related to the age-
ing process as ageing. Then, we considered data provided from the
GTEx dataset containing genes positively and negatively correlated
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Figure 1: Workflow of the experiment. We downloaded public available in-
teraction data from previous studies. We built the integrated human/SARS-
CoV-2 interactome. In parallel we downloaded the list of genes annotated
with ageing keywords as in MSigDB database. Then, for each SARS-CoV-2
protein we calculated the probability that it contains human interactors an-
notated with with ageing keyword. We obtained a list of SARS-CoV-2 pro-
teins containing a significant number of interactors related to aging. Then
we calculated the intersection of these sets (core interactors) obtaining a list
of eight human proteins. For each core interactor, we also considered the
expression at tissue level extracting data from GTeX database. We verified
that there exist a significant fraction of interacting partners of SARS-CoV-2
that are involved in ageing and that are particularly expressed in lung and
in adipose tissue.
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with human age [53]. We gathered data from the GenAge dataset
that derived human genes by projecting sequence orthologs in model
organisms. We also considered the MSigDB gene set collections, which
summarized gene information associated with ageing collected from
70 different studies. We selected datasets reporting experiments from
homo sapiens since orthologs’ projection may produce not reliable re-
sults for ageing as described in [36].

We used the Search Tool for the Retrieval of Interacting Genes/Proteins
database (STRING) [54] that is a freely available repository storing
both physical and functional association among proteins. Users may
search the database through a web interface by specifying a protein
identifier or inserting the primary sequence. We queried the database
using the identifiers of the nodes of each subnetwork. We used medium
confidence as the minimum confidence score for each interaction and
all for the sources of interactions. We searched the GTeX Portal [55]
using the previously described list of gens. We obtained the expression
of those genes in a heat map that shows expression across all GTEx
tissues. Gene Ontology analysis was performed by using Gene Ontol-
ogy web portal [56] while Reactome Database was used for identifying
related pathways [57].

Bioinformatic Analysis We selected all known SARS-CoV-2 in-
teracting partners. Then, we measured the intersection between this
list of interactors and the ageing-related genes for each viral protein
and estimated the probability that this intersection is higher than
chance by Fisher’s exact test.

We also tested the significance of the difference in the expression
of EEF2, NPM1, HMGA1, HMGA2, APEX1, CHEK1, PRKDC, and
GPX4 due to age (we considered six different classes), sex, and tis-
sue. We used a Wilcoxon Test for testing difference in the expression
among classes (since the expression of genes is not gaussian as reported
by a Shapiro test). In addition, the difference among age classes is
evaluated using a Kruskal Wallis test.

3 Results

3.1 Network Analysis

For each viral protein we select the human interactors. The analysis
revealed that only ten viral proteins (M, NSP2, NSP4, NSP6, NSP11,
NSP13, Orf3a, Orf7a, Orf8, and Orf9c) have interactors with a signifi-
cant overlap with respect to ageing related proteins, as summarised in
Table 1. Then, we considered those that are enriched for ageing in a
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Table 1: P-Values of the enrichment. For each protein we report the signifi-
cance of the enrichment. A p-value lower than 0.01 means that the interactors
are significantly related to ageing. (NS stands for not significant)

Viral Protein P-Value Viral Protein P-Value
Spike NS E NS
M 6.84E-02 N NS

NSP1 NS NSP2 0.00182
NSP3 NS NSP4 8.32E-03
NSP5 NS NSP6 0.002676
NSP7 NS NSP8 0.003421
NSP9 NS NSP10 NS

NSP11 0.0001862 NSP12 NS
NSP13 0.002573 NSP14 NS
NSP15 NS NSP16 NS
Orf3a 5.06E-03 Orf3b NS
Orf6 NS Orf7a 0.0001791

Orf7b NS Orf8 0.0006913
Orf9b NS Orf9c 1.50E-02
Orf10 NS

significant way. Finally, we intersected all these sets and we obtain a
core set of eight proteins: EEF2, NPM1, HMGA1, HMGA2, APEX1,
CHEK1, PRKDC and GPX2 (core interactors hereafter) as reported
in Figure 2 (see supplementary for the list of interactors for each viral
protein, integrated with the topological characteristics of the induced
subnetwork in the human interactome).

The Gene Ontology analysis reveals that the whole network is en-
riched with the following terms: (GO:0090402) oncogene-induced cell
senescence, (GO:0035986 ) senescence-associated heterochromatin fo-
cus assembly, (GO:2000774 ) positive regulation of cellular senescence,
(GO:2000773) negative regulation of cellular senescence, (GO:2000772)
regulation of cellular senescence. The analysis of Reactome DB reveals
that the subnetwork is associated with following pathways: Formation
of Senescence Associated Heterochromatins Foci (HSA2559584), Host
interactions of HIV factors.

3.2 Expression Analysis

We searched the GTeX database for the expression (of core interactors
as reported in Figure 2 expressed as TPM (Transcripts Per Million).
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Figure 2: Figure shows tissue level analysis of this work. The Network
analysis contributed to find a set of human proteins (yellow nodes) related
to aging that interact with many SARS-CoV-2 proteins (green nodes). The
analysis of the expression of the related genes at tissue level revealed that
all these genes are expressed in lung, as well as in other human tissues.
Expression level are presented as TPMS.

We found that all the interactors are expressed in lung as well as in
other human tissues (supplementary materials contain the expression
levels of these genes in different human tissues). In order to assess the
different outcomes between male and female we focused on lung tis-
sue and we compared the expression of these core interactors in male
and female as reported in 3. Since data are not normally distributed,
(as given by Shapiro Test), we measured the difference of expression
in male/female class. We evidenced a significant difference tested by
using a Wilcoxon Test for NPM1 and HMGA1 genes that are signif-
icantly downregulated in males, without considering age as reported
in Figure [? ].

We also explored the trend of the core interactors focusing on lung
tissue and six different classes of age (20-29, 30-39, 40-49, 50-59, 60-69,
70-79). We found that there is a significant difference considering age
groups for HMGA1, APEX, CHEK1, EEF2, and NPM1 (p ≤ 0.05 as
evidenced by a Kruskal Wallis test). Figure 4 report this trend.
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Figure 3: Figure reports box plot of the expression of the eight core genes
grouped by sex in the lung tissue. The evidences a significant difference
tested by using a Wilcoxon Test for NPM1 and HMGA1 genes.

Figure 4: Figure reports the difference of the expression of the core genes in
lung tissue in different age classes. A ∗ on top of the plot means a significant
difference (p ≤ 0.05 as evidenced by a Kruskal Wallis test)
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We then subdivided these groups considering sex. We found that
that females present only the age dependent modulation of APEX1,
while in males all the previous genes are modulated considering age
groups as reported in Figures 6 (females) and 5 (males) (p ≤ 0.05 as
evidenced by a Kruskal Wallis test).

4 Discussion

As introduced before, deaths from COVID-19 occur predominantly
among older adults. COVID-19 also appears to be more lethal for
men rather than women. This characteristic has been found in China,
as well as in Europe and in the United States of America, [58].

Starting from this observation, we tried to explain the molecular
basis of this phenomenon. Next, we recall that ageing is a heteroge-
neous process that presents differences among individuals. In particu-
lar, age-related changes impact many organs producing possible multi-
organ failures even showing many inter-individual differences. Beyond
these differences, we tried to explain how the age-related changes at
the molecular level can be relevant to COVID-19 pathology.

To achieve this goal, we integrated interactomics and expression
data related to COVID-19, age and sex. We started from SARS-CoV-2
interactors, and we isolated age-related from those. Then we consid-
ered the expression value of these genes, and we further investigated
the trend of changes of these genes in age and sex groups. In sum-
mary, we identified a set of statistically significant interactors for the
aging process: EEF2, NPM1, HMGA1, HMGA2, APEX1, CHEK1,
PRKDC, and GPX4. As reported in Figure 8 we found some interest-
ing changes of these genes considering tissue, age and sex groups. We
also found that NPM1 and HMG1 are downregulated in males (statis-
tically significant regulation); while HMGA2 is slightly downregulated
in males (not significantly) (Figure 3).

We also found some statistically relevant changes in age for EEF,
NPM1, HMGA1, APEX1, and CHEK1 for males (Figure 5), and for
APEX1 in Females (Figure 6).

Our findings are coherent with the observation and the literature
related to COVID-19.

As investigated in [59] ageing is characterised by the decline of
the immune function. Older adults are not immuno-deficient, but
often the immune system’s response is not sufficient to be effective
again antigens. This effect is particularly evident when they are sub-
ject to novel antigens. For example, it is known that both responses
to influenza and vaccination are not efficient in the elderly [60, 61].
Moreover, the elderly accumulate inflammatory mediators in tissues

10

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.23.21257669doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.23.21257669
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5: Difference in the expression in lung tissue by age classes in males.
Expression is reported as TPM.A ∗ on top reveals a modulation in groups.

Figure 6: Difference in the expression in lung tissue by age classes in females.
Expression is reported as TPM. A ∗ on top reveals a modulation in groups.

Figure 7: Expression of core interactor in males and females grouped by age
class.
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(inflammageing process), that may occur by the accumulation of DNA
lesions that, in turn, triggers the increased production of inflamma-
tory mediators [62]. In parallel, the link between COVID-19 and the
suppression of the immune system has been observed in [63]. Au-
thors found that many proteins related to the immune response were
modulated, causing the possible suppression of such a system.

HMGA1 and HMGA2 genes encode four proteins (HMGA1a, HMGA1b,
HMGA1c, and HMGA2) belonging to the High-mobility group A
(HMGA) protein family [64]. All the proteins bind AT-rich regions in
DNA and modulate gene expression by acting as transcription factors.
Literature reports that HMGA1 has critical roles in tumorigenesis and
the progression of various cancers. However, the role of HMGA1 in
COVID-19 has not explored in the past. We now demonstrate that
HMGA1 is a SARS-CoV-2 interactor. It is differently regulated in
males and the elderly, so these differences in expression are associ-
ated with poor prognosis in the found classes (elderly and males). It
has been shown that HMGA1 induces inflammatory pathways early in
many cancers and pathways involved in stem cells, cell cycle progres-
sion, and its dysregulation causes aberration in pathways of stem cells,
cellular development, and hematopoiesis [65]. Our results provide in-
sight into HMGA1 function during COVID-19 pathogenesis that could
serve as therapeutic targets in human people with aberrant HMGA1
expression.

Similarly to HMGA1, the Nucleophosmin (NPM1) is also downreg-
ulated in males. NPM1 is related to DNA and cell cycle control such
as ribosome biogenesis, protein chaperoning, centrosome duplication,
histone assembly, and cell proliferation [66, 67]. Previous studies in-
vestigated the age incidence of acute myeloid leukaemia with mutated
nucleophosmin (NPM1) [68, 69], while there are no studies related to
these mutations and other diseases. In [? ] the impact of NPM1 mod-
ification in older patients has been investigated for AML, suggesting
a worse prognosis for older patients due to NPM1 changes. Therefore,
this work may stimulate further studies in such a direction. The in-
teraction between NPM1 and the nucleocapsid protein of the previous
SARS-CoV is known to affect the viral particle assembly [70, 71, 72].
The role of NPM1 and of Histone H2AX targeted by other viral pro-
teins has also been reported in other viruses such as Epstein-Barr
and KSHV as a common strategy to manipulate translation and to
promote virus latency [73, 74].

Moreover, for older men, the scenario is complicated by the down-
regulation of EEF2, APEX1 and CHEK1.

The dysregulation of EEF2 may cause the accumulation of DNA
damage or, on the protein levels accumulating errors in the down-
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stream cascade of mechanisms [75]. The role of EEF2 in severe cases
of COVID-19 has also been elucidated in [63]. Thus our study pro-
vides another evidence. Moreover, this protein is targeted together
with the Eukaryotic translation initiation factor 2 subunit 1 (EIF2S1)
by Orf3a, Orf8, NSP2, NSP6, NSP11, NSP13, indicating a possible
role of the virus to promote viral translation over cellular transla-
tion [76]. In [77] the synergistic downregulation of both APEX1 and
NPM1 has been clearly observed in oligodendrocyte cells in relation
to ageing. (APEX1) plays an essential role in the cellular response to
oxidative stress. APEX1 has a major role in DNA repair and in redox
regulation of transcription factors [69]. CHEK1 is targeted together
with CDK1 by many SARS-CoV-2 interactors (NSP2, NSP4, NSP11,
NSP13) and with CDKN2A (Orf3, NSP13), suggesting an additive
effect on the disruption of pathways of apoptosis mediated by TP53
[78] yet dis-regulated by both senescence and ageing. [79].

Differently, for females, we found only the age-dependent modula-
tion of APEX1, suggesting that females may have less factor risk than
males. This is coherent with the observation that COVID-19 has a
lower CFR rate in females.

In parallel, in supplementary material, we report that that core in-
teractors are also significantly overexpressed in adipose tissue, there-
fore suggesting a second factor of co-morbidity. Changes in adipose
tissue promote a chronic state of low-grade systemic inflammation on
a phenotypic level, thus increasing the risk of age-associated diseases
[35, 80]. We here report that core interactors are expressed in adipose
tissue, suggesting a possible role that should be further investigated.

5 Conclusion

We applied a bioinformatic analysis to perform a qualitative analysis
of mechanisms of infection by SARS-CoV-2 in elderly people.

Several studies have shown in the past the modifications of genes
and proteins that occur in elderly people. Other studies have partially
elucidated the mechanism of infections and the dysregulated pathways
in COVID-19 patients.

We detected a statistically significant overlap between SARS-CoV-
2 interacting proteins and those related to ageing, suggesting a po-
tentially different response in elderly people. Our analysis evidenced
that virus infection particularly affects ageing molecular mechanisms
centred around proteins EEF2, NPM1, HMGA1, HMGA2, APEX1,
CHEK1, PRKDC, and GPX4. We also found that these genes are
expressed in lung. Finally we found that there is a significant differ-
ence in the expression considering both age and sex. These results will
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Figure 8: Figure summarises main results of the work. Network analysis
found that there exists eight proteins related to ageing that are also all tar-
geted by ten SARS-CoV-2 proteins. The analysis of the expression of their
genes revealed that there exist difference on the expression of these genes
considering both age and sex.

provide an important molecular basis for understanding the mecha-
nism of infections and will shed light on infection progression. The
limitation of this study is that the dataset is correlative, and thus it
should be confirmed by in vivo experiments.
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6 Key Points

• A network-based analysis identified some molecular mechanisms
that could play a role in the SARS-CoV-2 molecular aetiology
and ultimately affect COVID-19 outcome.

• Our analysis evidenced that virus infection particularly affects
ageing molecular mechanisms centred around proteins EEF2,
NPM1, HMGA1, HMGA2, APEX1, CHEK1, PRKDC, and GPX4.

• We found an age dependent modulation of EEF2, NPM1, HMGA1,
APEX1 and CHEK1 in lung tissue of males.

• We found a age dependent modulation of APEX1 in females.

• Our study generated a mechanistic framework aiming at explain-
ing the correlation between COVID-19 incidence in elderly pa-
tients and molecular mechanisms of ageing considering differ-
ences by age and sex.
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Amuedo, et al. Death risk stratification in elderly patients with
covid-19. a comparative cohort study in nursing homes outbreaks.
Archives of gerontology and geriatrics, 91:104240, 2020.

[49] C. Robba, D. Battaglini, P. Pelosi, and P. R. M. Rocco. Multiple
organ dysfunction in SARS-CoV-2: MODS-CoV-2. Expert Rev
Respir Med, 14(9):865–868, 09 2020.

20

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.23.21257669doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.23.21257669
http://creativecommons.org/licenses/by-nc-nd/4.0/


[50] Pietro H Guzzi, Daniele Mercatelli, Carmine Ceraolo, and Fed-
erico M Giorgi. Master regulator analysis of the sars-cov-
2/human interactome. Journal of clinical medicine, 9(4):982,
2020.

[51] David E Gordon, Gwendolyn M Jang, Mehdi Bouhaddou, Jiewei
Xu, Kirsten Obernier, Kris M White, Matthew J O’Meara,
Veronica V Rezelj, Jeffrey Z Guo, Danielle L Swaney, et al. A
sars-cov-2 protein interaction map reveals targets for drug repur-
posing. Nature, pages 1–13, 2020.

[52] Arthur Liberzon, Aravind Subramanian, Reid Pinchback, Helga
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