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BACKGROUND & AIMS: 

It is unclear how the gut targeting medication mesalamine alters metabolic parameters 

associated with Metabolic Syndrome (MetS). We completed a retrospective analysis on 

ulcerative colitis (UC) and MetS comorbid patients receiving mesalamine to examine the 

effects of mesalamine on the metabolic risk factors associated with MetS. 

 

METHODS: 

We performed a retrospective chart review using Cerner’s Health Facts (from July 2007 

to July 2017). We identified UC patients with a MetS comorbidity and who were 

prescribed mesalamine within +/- 7 days of an encounter in which they were diagnosed 

with UC. We then collected the patient’s blood pressure, labs, and body measurement 

index (BMI) for each of these patient at the index date and the closest values to 12 

months after the index date. We used analysis of covariance (ANCOVA) to determine 

the effect of mesalamine therapy in patients with both UC and MetS on the metabolic 

parameters after 12 months of treatment compared to baseline. 

RESULTS:  

Our search of Cerner Health Facts identified 6,197 UC patients with concomitant MetS 

who were prescribed mesalamine. Of these individuals, 48% were female and 52% 

were male and within this cohort 88.3% received oral mesalamine and 11.7% received 

mesalamine via the rectal route. Oral mesalamine reduced fasting glucose levels and 

increased HDL cholesterol in these patients. C-reactive protein levels and erythrocyte 

sedimentation rate were also significantly reduced. Rectal mesalamine only reduced 

BMI. Further analysis revealed several MetS conditions risk factors were further 
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improved when mesalamine was taken in the absence of medication for hypertension, 

hyperglycemia or dyslipidemia. 

 

CONCLUSION: 

In a retrospective chart study of UC-MetS patients, we found oral mesalamine improved 

several metabolic parameters associated with MetS. Our findings suggest the PPAR 

agonist mesalamine that targets the gastrointestinal tract could prove beneficial in 

improving hypertension, hyperglycemia and dyslipidemia. 

 

 

INTRODUCTIONS 

Metabolic Syndrome (MetS) identifies a group of risk factors that increases an 

individual’s risk for several clinical conditions such as cardiovascular disease, stroke 

and cancer1-10. An individual must have at least three of the following risk factors to be 

diagnosed with MetS: abdominal (central) obesity, high blood pressure/hypertension, 

elevated blood sugar/insulin resistance (i.e., hyperglycemia), increased triglycerides and 

low high-density lipoprotein (HDL) cholesterol (i.e., dyslipidemia)11. Both hyperglycemia 

and dyslipidemia are also highly associated with non-alcoholic fatty liver disease 

(NAFLD) which may be the liver manifestation of MetS12-20. It is estimated over a quarter 

of the world’s population and up to one-third of United States adults have MetS21-23. 

Unfortunately, there are no medications approved to treat MetS nor NAFLD. 

Furthermore, the prescribed medications only control the risk factors associated with 

MetS including blood pressure, hyperglycemia and dyslipidemia. Given the current 
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incidence and prevalence of MetS, it is critical to identify the etiological factors leading 

to this disease to provide targeted interventional strategies, as changes in lifestyle alone 

may not be enough to reverse these conditions.  

Recent studies in humans and rodents have suggested a role for the gastrointestinal 

(GI) tract in contributing to numerous diseases and disorders associated with metabolic 

dysfunction such as dyslipidemia and hyperglycemia24-38. Currently, peroxisome 

proliferator–activated receptor (PPAR) agonist are therapeutically targeted to treat 

dyslipidemia and hyperglycemia 39-50. PPARs are a group of transcription factors 

involved in numerous aspects of cellular differentiation and function including the 

regulation of energy homeostasis and inflammation 51-57. In the GI tract, PPAR-γ activity 

is decreased in individuals diagnosed with inflammatory bowel disease (IBD) such as 

ulcerative colitis (UC) and Crohn’s disease58-62. Interestingly, there are some individuals 

who present with UC and have comorbid conditions that are linked with MetS such as 

dyslipidemia, insulin resistance, hypertension, and increased abdominal obesity63-69. 

NAFLD is also frequently reported in patients with IBD63, 70, 71. Mesalamine, a PPAR 

agonist, has been documented to have beneficial effects in active, mild to moderate 

UC72-74. It has also been used successfully in maintenance therapy for UC75. 

Mesalamine is an aminosalicylate compound also known as 5-aminosalicylic acid (5-

ASA). Mesalamine is only approved for IBD but is considered relatively safe for 

individuals making it a great therapeutic drug to repurpose for MetS and NAFLD. 

Therefore, we performed a retrospective analysis on individuals who were diagnosed 

with UC, received mesalamine, and had at least three of the five following MetS 

conditions13, 76-78: hypertriglyceridemia, low HDL, hypertension, hyperglycemia, and a 
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BMI over 27 to determine the beneficial effects of targeting the GI tract with a PPAR 

agonist on these metabolic parameters.  

METHODS 

Data Acquisition 

All data were collected according to our institutional review board-approved protocol 

(20-369). Our study was a retrospective chart review, involving the use of existing data 

with no or minimal risk to participants, it had an institutional review board and patient 

consent exempt status under human subject regulations. All data used in this study 

come from Cerner Health Facts database. There were 478,236,643 unique encounters 

from 68,696,329 unique patients in Health Facts. Data in Health Facts was extracted 

directly from the electronic medical records (EMR) from hospitals in which Cerner has a 

data use agreement. Encounters included pharmacy, clinical and microbiology 

laboratory, admission, and billing information from affiliated patient care locations. All 

admissions, medication orders and dispensing, laboratory orders and specimens were 

date and time stamped, providing a temporal relationship between treatment patterns 

and clinical information. Cerner Corporation has established Health Insurance 

Portability and Accountability Act-compliant operating policies to establish de-

identification for Health Facts. In all, Health Facts was used to find individuals who were 

diagnosed with UC with a MetS comorbidity that received mesalamine.  

Data Inclusion 

We found patients between July 1, 2007 and July 1, 2017 who had International 

Classification of Diseases (ICD) code for UC. All patients were age 18 or older. This 

yielded 52,676 patients. Among these patients we found patients who also had a 
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mesalamine prescription within +/- 7 days of an encounter in which they were diagnosed 

with UC. Mesalamine included sulfasalazine and 5-aminosalycyclic acid. For each 

patient with UC who also had a mesalamine prescription, we identified the mesalamine 

start date as the index date. From this, we then found all relevant diagnoses, labs, 

medications of interest, blood pressures, body mass index (BMI) measurements, 

heights and weights in the medical record within +/- 12 months of each patient’s index 

date. This information was used to calculate the five risk factors of metabolic 

syndrome. This included increased blood pressure (130/85 mmHg), high blood sugar 

levels (≥110 mg/dL), high triglycerides (≥150 mg/dL), low levels of HDL (Men <40mg/dL; 

Women <50mg/dL), and overweight status as defined by BMI (≥ 25.0 kg/m2). In 

computing factors, a diagnosis of obesity was enough to satisfy the factor of BMI 

>27. Height and weight were used to compute BMI when BMI was not available. There 

were 6,197 patients who had UC with a MetS comorbidity who were prescribed 

mesalamine within +/- 7 days of an encounter in which they were diagnosed with UC. 

For each of these patient, we looked for the closest values before the index date, and 

then the closest values to 12 months after the index date for the patient’s blood 

pressure, labs, and BMI.  

Statistical Analysis 

Paired t-test or Wilcoxon Rank Sum test were used for continuous variables, and 

McNemar's test for categorical variables. For inferential statistics, we used analysis of 

covariance (ANCOVA) to determine the effect of mesalamine therapy in patients with 

both UC and MetS on the metabolic parameters after 12 months of treatment compared 

to baseline.  
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RESULTS 

Identified Population and Use of Mesalamine 

Our search of Cerner Health Facts identified 52,676 UC patients between July 2007 and 

July 2017. Of these individuals, 6,197 UC patients with concomitant MetS and were 

prescribed mesalamine within +/- 7 days of an encounter in which they were diagnosed 

with UC. MetS complications included diabetes (19.7%), hypertension (45.6%), and 

hyperlipidemia (9.7%) (Table 1). Approximately 48% of the individuals identified were 

female and 52% were male with an overall mean age of 53.8 (±19.9) (Table 1). Within 

this cohort, 88.3% received mesalamine orally and 11.7% via the rectal route (Table 1).   

 

Influence of oral mesalamine on metabolic parameters in UC-MetS comorbid 

patients. 

For the 5,472 individuals taking oral mesalamine that had an ICD code for both UC and 

MetS risk factors, we examined specific metabolic parameters (HDL cholesterol, 

triglycerides, fasting glucose, blood pressure, and BMI) in these individuals at baseline 

and after 12 months on mesalamine. We found the levels of HDL cholesterol were 

significantly increased (P < 0.001) and fasting glucose levels were significantly 

decreased (P < 0.001) (Table 2) after 12 months on oral mesalamine. No significant 

change was observed for BMI, triglyceride levels, or systolic blood pressure; however, 

diastolic blood pressure was raised from 70.1 mmHg to 71.6 mmHg (P < 0.001) on 

mesalamine (Table 2). Oral mesalamine usage also significantly reduced C-reactive 

protein (CRP) levels (P < 0.001) as well as the erythrocyte sedimentation rate (ESR) (P 

< 0.001) in UC-MetS comorbid patients (Table 2). Comparing the different doses of oral 
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mesalamine on HDL cholesterol levels, fasting glucose, CRP and ESR 

(Supplementary Table 1), we found high dose (1200 – 1000 mg) mesalamine had an 

average increase in HDL cholesterol levels of 48.9 mg/dL while medium dose (500, 400, 

375 mg) was 43.8 mg/dL, and low dose (250 mg) was 42.7 mg/dL. Average fasting 

glucose levels were 142.0 mg/dL for high dose mesalamine, 139.3 mg/dL for medium 

dose, and 142.0 mg/dL for low dose (Supplementary Table 1). For CRP, high dose 

mesalamine had the lowest CRP average at 3.9 mg/dL, while medium dose was 4.6 

mg/dL and low dose was 6.1 mg/dL. ESR followed the same trend with high dose 

mesalamine having an average ESR at 41.8 mm/h, while medium dose was 42.2 mm/h 

and low dose was 44.8 mm/h (Supplementary Table 1). 

 

Given some UC-MetS comorbid patients were on medication (Supplementary Table 2) 

to treat hypertension, diabetes or hyperlipidemia, we assessed if the effects described 

above were dependent on these other medications. Surprisingly, we found individuals 

on oral mesalamine without hypertension medication had a significant decrease in 

systolic and diastolic blood pressure (P < 0.01) as well as BMI (P < 0.01) and fasting 

glucose levels (P < 0.01) compared to individuals taking both mesalamine and 

hypertension medication (Supplementary Table 3).  Assessing individuals taking 

mesalamine without anti-diabetic medication, we observed a significant decrease in BMI 

(P < 0.01) and fasting glucose levels (P < 0.01) as well as an increase in HDL 

cholesterol levels (P < 0.05) than individuals taking both mesalamine and anti-diabetic 

medication (Supplementary Table 4).  When individuals were taking mesalamine and 

medications to treat hyperlipidemia (Supplementary Table 5), a significant decrease in 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 29, 2021. ; https://doi.org/10.1101/2021.05.27.21257690doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.27.21257690
http://creativecommons.org/licenses/by-nc-nd/4.0/


total cholesterol (P = 0.01) and low-density lipoprotein (LDL) cholesterol levels (P = 

0.01) were observed. Significant changes were also observed for both systolic and 

diastolic blood pressure. However, triglyceride (P = 0.01) and fasting glucose (P < 0.01) 

levels were significantly lower in individuals taking mesalamine without statins or 

cholesterol lowering medication. (Supplementary Table 5). No major difference were 

observed for CRP or ESR when individuals were on mesalamine with or without 

medications to treat hypertension, diabetes or hyperlipidemia (Supplementary Table 3-

5). 

 

Influence of rectal mesalamine on metabolic parameters in UC-MetS comorbid 

patients. 

Cerner Health Facts identified 725 individuals taking mesalamine via the rectal route. 

Analysis of the various metabolic parameters (i.e., HDL cholesterol, triglycerides, fasting 

glucose, blood pressure, and BMI) in these UC-MetS comorbid patients at baseline and 

after 12 months on rectal mesalamine, we only found a statistically significant reduction 

in BMI after mesalamine treatment (Table 3).  Additionally, the average levels of CRP 

and ESR were reduced; however, these changes were not significant (Table 3). These 

parameters were also assessed for individuals taking medication for hypertension, 

diabetes or hyperlipidemia while on rectal mesalamine. Once again individuals taking 

rectal mesalamine in the absence of medication for hypertension had a significant 

reduction in systolic blood pressure (P < 0.01), BMI (P = 0.04), and fasting glucose 

levels (P = 0.01) (Supplementary Table 6). Fasting glucose levels were also 

significantly reduced in individuals taking rectal mesalamine in the absence of anti-
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diabetic medication (P < 0.01) (Supplementary Table 7). No major difference were 

observed for individuals taking rectal mesalamine and medication to treat 

hyperlipidemia (Supplementary Table 8). No major difference were observed for CRP 

or ESR when individuals were on rectal mesalamine with or without medications to treat 

hypertension, diabetes or hyperlipidemia (Supplementary Table 6-8). Lastly, alkaline 

phosphatase levels were significantly reduced when individuals were receiving rectal 

mesalamine in the absence of medication for diabetes or dyslipidemia (Supplementary 

Table 7-8). 

 

DISCUSSION 

In this retrospective study, we examined the beneficial effects of mesalamine on various 

metabolic parameters associated with MetS. Given mesalamine is only approved to 

treat mild to moderate UC, the effects of mesalamine were examined in UC patients 

who also had MetS. Using Cerner Health Facts, we identified UC-MetS comorbid 

patients receiving both oral and rectal mesalamine. In our assessment, we found oral 

mesalamine proved beneficial in improving several metabolic parameters. This included 

increasing HDL cholesterol levels and reducing fasting glucose levels (Table 2). Other 

factors that are frequently increased in MetS such as CRP levels and increased ESR 

but also associated with UC were also significantly decreased79-83. Interestingly, oral 

mesalamine proved beneficial for other metabolic parameters (BMI, blood pressure, 

triglycerides) when individuals were not on medications to treat hypertension, diabetes 

or dyslipidemia (Supplementary Table 3-5). Rectal mesalamine was associated with 

decreased BMI and appeared more impactful when taken in the absence of medications 
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for hypertension. Overall, our findings suggest targeting the gut with the PPAR agonist 

mesalamine could prove beneficial in improving metabolic parameters associated with 

MetS. 

 

While our study has several limitations including underlying chronic intestinal 

inflammation, lack of data for steroid use, and reliance on documentation and coding, it 

is the first large retrospective study that considers the effect of mesalamine on 

metabolic parameters associated with MetS. We suspect the true effect of mesalamine 

on these MetS risk factors may be underrepresented due to the chronic intestinal 

inflammation that characterizes UC. Nevertheless, mesalamine has proved beneficial in 

reducing fasting glucose levels and hepatic steatosis in an animal model of diet-induced 

obesity84. Within the last decade, numerous studies have shown the GI tract contributes 

to metabolic dysfunction24-38. Specifically, chronic consumption of a high-fat diet (HFD) 

enhances intestinal barrier defects leading to enhanced intestinal permeability (IP), 

dysbiosis (i.e. alteration/reduction in microbial diversity and metabolites), and low-level 

of inflammation38, 85-89. Dysbiosis can also increase IP as well as modulate the intestinal 

immune system90-92. Both IP and dysbiosis can result in low-grade inflammation that 

affects weight gain, hyperglycemia and insulin resistance, dyslipidemia, and 

hypertension28-30, 93-95. In addition, increased IP and dysbiosis have been observed in 

individuals who have been diagnosed with NAFLD (as well as individuals who develop 

nonalcoholic steatohepatitis, NASH), type 2 diabetes, and obesity 25-27, 93, 96-106. The 

mechanism of action of mesalamine is believed to work on three areas of the gut to 

maintain intestinal homeostasis: the microbiota, intestinal barrier, and the immune 
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system84, 107-116. Mesalamine can directly inhibit proinflammatory pathways NF-κB and 

MAPK that promote the expression of proinflammatory cytokines (e.g., TNFα, IL-6 and 

IL-1β)84, 117-123. Mesalamine also dampens COX-2 expression that leads to PGE2 and 

PGF2 production117, 120, 123-126. Recent reports have demonstrated mesalamine increases 

the diversity of the gut microbiota through metabolic changes and direct effects on the 

microbiota113, 127-129. Lastly, mesalamine has been shown to decrease IP and restore 

epithelial barrier function84, 111, 112. Therefore, targeting the gut with mesalamine in 

individuals with MetS or NAFLD could prove beneficial in treating metabolic disorders. 
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Table 1 

 
Table 1. Demographics of Cohort, Mesalamine usage and Metabolic Syndrome 

complications among the Cohort. 
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Table 2 

 
 
Table 2. Comparison of metabolic parameters in 5,472 UC-MetS Patients taking oral 

mesalamine. 

BUN, blood urea nitrogen; HDL, high-density lipoprotein; LDL, low-density lipoprotein. 
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Table 3 

 
 

Table 3. Comparison of metabolic parameters in 725 UC-MetS Patients taking rectal 

mesalamine. 

BUN, blood urea nitrogen; HDL, high-density lipoprotein; LDL, low-density lipoprotein. 
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Supplementary Table 1 

 
Supplementary Table 1. Dose effect of oral mesalamine on metabolic parameters in 

5,472 UC-MetS Patients. 
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Supplementary Table 2 

 
Supplementary Table 2. List of medications to treat hypertension, dyslipidemia or 

hyperglycemia in study cohort. 
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Supplementary Table 3 

 
Supplementary Table 3. Comparison of metabolic parameters in UC-MetS Patients 

taking oral mesalamine with or without blood pressure medication. 

BP, blood pressure medication. 
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Supplementary Table 4 

 
Supplementary Table 4. Comparison of metabolic parameters in UC-MetS Patients 

taking oral mesalamine with or without antidiabetic medication. 
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Supplementary Table 5 

 
Supplementary Table 5. Comparison of metabolic parameters in UC-MetS Patients 

taking oral mesalamine with or without medication to treat high cholesterol. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 29, 2021. ; https://doi.org/10.1101/2021.05.27.21257690doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.27.21257690
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Table 6 

 
Supplementary Table 6. Comparison of metabolic parameters in UC-MetS Patients 

taking rectal mesalamine with or without blood pressure medication. 

BP, blood pressure medication. 
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Supplementary Table 7 

 
Supplementary Table 7. Comparison of metabolic parameters in UC-MetS Patients 

taking rectal mesalamine with or without antidiabetic medication. 
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Supplementary Table 8 

 
Supplementary Table 8. Comparison of metabolic parameters in UC-MetS Patients 

taking rectal mesalamine with or without medication to treat high cholesterol. 
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