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Abstract
Genetic pleiotropy is the phenomenon where a single gene or genetic variant influences
multiple traits. Numerous statistical methods exist for testing for genetic pleiotropy at
the variant level, but fewer methods are available for testing genetic pleiotropy at the
gene-level. In the current study, we derive an exact alternative to the Shen and Faraway
functional F-statistic for functional-on-scalar regression models. Through extensive sim-
ulation studies, we show that this exact alternative performs similarly to the Shen and
Faraway F-statistic in gene-based, multi-phenotype analyses and both F-statistics perform
better than existing methods in small sample, modest effect size situations. We then apply
all methods to real-world, neurodegenerative disease data and identify novel associations.

1 Introduction
Genetic pleiotropy is the phenomenon where a single gene or genetic variant influences
multiple traits [1]. A recent study estimated that more than half of the human genome
contains trait-associated loci and that nearly 90% of those loci are shared by more than
one trait [2]. A specific example of pleiotropy in neurodegenerative disease is the MAPT
gene which is a known to contribute risk for several tauopathies and also Parkinson’s dis-
ease (which is a condition not linked to tau pathology) [3]. Evidence of pleiotropy has
also been found for Alzheimer’s disease (AD) and Parkinson’s disease [4], AD and amy-
otrophic lateral sclerosis [5], early-onset AD and frontotemporal dementia (FTLD) [6],
AD-related psychosis and schizophrenia [7], and limbic-predominant age-related TDP-
43 encephalopathy (LATE) and FTLD-TDP [8].
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Simulation studies have found that statistical methods designed to test for associations
between a single variant and several phenotypes have higher power than single-phenotype
analyses, even when only one of the phenotypes is associated with the variant [9, 10]. Ex-
amples of single-variant, multi-phenotype methods include multivariate analysis of vari-
ance (MANOVA), TATES [11], mv-BIMBAM [12], SCOPA [13], and MultiPhen [14].
Additionally, gene- and region-based methods have also been shown to have improved
power over single-variant approaches [15]. Examples of region-based methods include
VEGAS [16], GATES [17], SKAT-O [18], and ACAT [19].

Few statistical methods exist for jointly analyzing multiple phenotypes over genomic
regions, though some researchers have tried combining single-variant multiple-phenotype
methods with multiple-variant single-phenotype methods with some success [20]. In the
current study, we develop a novel test statistic for performing multi-phenotype, gene-
based tests by leveraging methods from the branch of statistics known as functional data
analysis (FDA). We then compare the performance of the novel test statistic to a sim-
ilar FDA-based test statistic along with two other methods capable of testing for multi-
phenotype, gene-based associations. Finally, we apply the methods to investigate potential
pleotropic effects for several genes and two related but under-studied neurodegenerative
diseases, hippocampal sclerosis (HS) and LATE.

2 Methods

2.1 Functional F-Statistics
2.1.1 The Function-on-Scalar Regression Model

In order to utilize methods from functional data analysis (FDA), and the function-on-
scalar regression (FoSR) model in particular, a reverse regression approach was used
where the phenotypes of interest are treated as scalar predictor variables (along with any
other adjustors) and the genetic information is treated as a functional outcome. Before
creating the functional outcomes, the g minor allele counts were first flipped using the
approach of Vsevolozhskaya et al. to remove spurious noise [21]. Then the flipped minor
allele counts were smoothed for each of the n individual to create n smooth, individual-
level genotype functions, Gi(t). The FoSR model will have the following form:

Gi(t) =β0(t) + β1(t)Xi1 + · · ·+ βq−1(t)Xi(q−1)+

βq(t)Ỹi1 + · · ·+ βp−1(t)Ỹi(p−q) + εi(t)
(1)

where Ỹ1, . . . , Ỹ(p−q) are (p− q) potentially correlated phenotypes, X1, . . . , X(q−1) are
(q − 1) adjustment covariates, and βj(t) is the association function between the genetic
region and the jth scalar predictor variable. To test the association between the genotype
functions, G(t), and the phenotypes, Ỹ1, . . . , Ỹ(p−q), we can compare the full model from
Equation 1 to the following reduced model:

Gi(t) = β0(t) + β1(t)Xi1 + · · ·+ βq−1(t)Xi(q−1) + εi(t). (2)

2.1.2 The Shen and Faraway Functional F-Statistic

A functional F-statistic for FoSR models has been proposed by Shen and Faraway [22]
with the following form:
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F =
(RSSFull −RSSReduced)/(p− q)

RSSFull/(n− p)
where n is the number of observed genotype functions, p is the total number of parameters
in the full model from Equation 1, q is the number of parameters in the reduced model
from Equation 2, and RSS are the residual sums of squares of a FoSR model and are
defined as follows:

RSS =
n∑
i=1

∫
τ

(Gi(t)− Ĝi(t))2dt

=
n∑
i=1

∞∑
k=1

(Gik − Ĝik)2.

Under the null hypothesis, this F-statistic has the following distribution:

F ∼
∑∞
k=1 rkχ

2
p−q/(p− q)∑∞

k=1 rkχ
2
n−p/(n− p)

(3)

where rk is the kth ordered eigenvalue of the variance-covariance matrix of the genotype
functions, G(t). By applying Satterthwaite’s approximation, this distribution can then be
approximated by:

F ∼
χ2
f1
/f1

χ2
f2
/f2

= F (f1, f2)

where f1 = c(p− q), f2 = c(n− p), and c =
∑∞

k=1 r
2
k∑∞

k=1 rk
.

2.1.3 Newly Proposed Functional F-Statistic

Since we expect Satterthwaite’s approximation to be imprecise especially for small p-
values which are common in genetic association studies, we proposed an alternative
derivation. Instead of using Satterthwaite’s approximation to simplify the distribution of
the functional F-statistic from the ratio of two infinite weighted sums of non-independent
χ2 random variables to the ratio of two independent χ2 random variables, we propose us-
ing known properties of the distributions of quadratic forms to evaluate the infinite sums.
Specifically, we apply Davies exact method [23, 24] via the davies() function from the
CompQuadForm R package [25] to directly compute the cumulative distribution function
(CDF) values of the infinite sums in the numerator and denominator of Equation 3:

(RSSFull −RSSReduced) ∼
∞∑
k=1

r∗kχ
2
p−q = CDFNumerator

RSSFull ∼
∞∑
k=1

r∗kχ
2
n−p = CDFDenominator

where r∗k is the kth ordered eigenvalue of the correlation matrix of the genotype functions,
G(t).

The computed CDF values will be independent and uniformly distributed under the
null hypothesis and, thus, can be transformed to follow any distribution. To reflect the
traditional F-statistic from multiple linear regression, we transform the numerator and
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denominator CDF values to χ2
p−q and χ2

n−p random variables, respectively. Following
this approach, the Shen and Faraway functional F-statistic from Equation 3 will have the
following distribution under the null hypothesis:

F ∼
χ2
p−q/(p− q)

χ2
n−p/(n− p)

= F (p− q, n− p).

2.1.4 Fitting FoSR Models

Prior to analyzing genomic data with the functional F-statistics, the g minor allele counts
were first flipped using the approach of Vsevolozhskaya et al. to remove spurious noise
[21]. Then, generalized additive models were used to fit penalized cubic regression splines
to the flipped minor alleles via the gam() function from the gam and mgcv R packages
[26, 27]. See Figure 1 for a comparison of raw and flipped smooth genotype functions,
Gi(t), for a region of chromosome 17. Note that the flipped observations no longer nec-
essarily reflect minor allele counts, but the underlying associations should be preserved
regardless. To reduce the dimensionality of the FoSR models, the individual-level geno-
type functions, Gi(t), were then evaluated at g/2 equally spaced points and these values
were subsequently analyzed. This step isn’t necessary when dealing with small sample
sizes or smaller genetic regions as other simulations we conducted (not published here)
found it to have little effect on statistical power.

FoSR models were fit to the g/2 equally spaced G(t) values using linear mixed ef-
fects models via the nlme R package [28, 29]. The residual sums of squares were then
calculated for both the reduced, intercept-only model and the full model with all pheno-
types included as predictors. The empirical variance-covariance matrix of the genotype
functions, G(t), were calculated using the var.fd() function from the fda R package
[30]. Functional F-statistics were then computed as described earlier in Section 2.1.

2.2 The Gene Association with Multiple Traits Test
The gene association with multiple traits (GAMuT) test is a statistical method for cross-
phenotype analysis using a nonparametric distance-covariance approach that compares
similarity in multivariate phenotypes to similarity in genotypes across a gene [31]. Briefly,
separate similarity matrices are constructed for the phenotypes and genotypes - Y andX ,
respectively - either by projection or through the use of kernel functions. Then, each ma-
trix is centered to form Y c andXc and the GAMuT test statistic, TGAMuT , is constructed
as follows:

TGAMuT =
1

N
trace(Y cXc)

where N is the number of individuals included in the analysis. Under the null hypoth-
esis where the two matrices, Y c and Xc, are independent, TGAMuT follows the same
asymptotic distribution as

1

N2

∑
i,j

λX,iλY,iz
2
ij

where λX,i is the ith ordered non-zero eigenvalue of Xc, λY,i is the ith ordered non-
zero eigenvalue of Y c, and z2ij are independent and identically distributed χ2

1 random
variables. P-values are then derived using Davies’ exact method [23].
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FIGURE 1: The effect of the minor allele flipping algorithm on the resulting smoothed,
individual-level genotype functions, Gi(t).

All GAMuT analyses were run in R using functions provided by the authors
(https://github.com/epstein-software/GAMuT) along with their recommended ana-
lytic steps (http://genetics.emory.edu/labs/epstein/software/gamut/GAMuT-example-
analysis.html). Phenotype similarity matrices, Y , were constructed such that
Y = P (P TP )−1P T , where P is a matrix of phentypes. The raw (i.e., un-flipped
and un-smoothed) minor allele counts were used in these analyses. In the applied
analyses, where some genotype values were missing for some individuals, variants with
any missing values were excluded from the GAMuT analyses.

2.3 The Aggregated Cauchy Association Test
The aggregated Cauchy association test (ACAT) is a method that works by converting
SNP-level p-values into Cauchy-distributed random variables [19]. Since the sum of de-
pendent Cauchy random variables is identical to the sum of independent Cauchy random
variables, no additional information on the linkage disequilibrium or correlation of the
SNPs is needed making the method extremely fast [32]. While ACAT was originally
developed for the purposes of testing rare variant associations, the authors state that the
method can also be applied to common variants.

The ACAT test statistic, TACAT , has the following form:

TACAT =
k∑
i=1

wi tan{(0.5− pi)π}

where k is the number of SNP-level p-values, pi is the ith SNP-level p-value, and wi is
the non-negative weight for the ith p-value. Note that tan (0.5− pi)π will be Cauchy
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distributed if pi is from the null distribution [32]. Then, based on the cumulative density
function of the Cauchy distribution, the overall ACAT p-value can be approximated by

p-value ≈ 1/2− {arctan(TACAT /w)}/π

where w =
∑k
i=1 wi [19].

In our analyses, we first fit regression models to each SNP and phenotype using
linear regression models assuming an additive mode of inheritance via the lm() func-
tion in R. The raw (i.e., un-flipped and un-smoothed) minor allele counts were used.
Then, we applied ACAT with equal weights to combine SNP-level p-values into a sin-
gle gene-level p-value for each phenotype. The phenotype-level ACAT p-values were
then combined via the minimum-p method to obtain a single, multi-phenotype, gene-
level p-value. In the context of Equation 1, the smallest gene-level, phenotype-specific
p-value would be multiplied by the number of phenotypes analyzed, (p − q), to obtain
the final p-value. While this approach is expected to be conservative since it fails to
take into account the correlation that may exist among phenotypes, it is computationally
efficient and provides an analytic baseline for comparing the performance of other statis-
tical methods. All ACAT analyses were run in R using functions provided by the authors
(https://github.com/yaowuliu/ACAT).

2.4 Simulations
2.4.1 Data Simulation

Similar to other simulation studies [33], we utilized realistic linkage disequilibrium pat-
terns by using data from the 1000 Genomes Project [34] for a 100 Kb region of chro-
mosome 17 which included 12,735 SNPs spanning from the FGF11 gene to the NDEL1
gene. The selection of this region of the genome was arbitrary, but we expect the linkage
disequilibrium structure of this region to be representative of, and generalizable to, other
regions of the genome.

For each simulation, we randomly selected a window of width m Kb (where m ∈
{10, 25, 50}) containing g consecutive SNPs for n individuals sampled with replacement
from the 1,092 available individuals (where n ∈ {100, 250, 500}). The resulting matrix
was defined to be Gn×g and standard quality control procedures were then applied such
as removing SNPs with minor allele frequencies less than 0.01 and correlations with other
SNPs greater than 0.99.

Within each window, we then selected c SNPs (where c ∈ {1, 5, 10}) to be causally
associated with all five phenotypes. Causal effects, βg×5, were simulated for all SNPs
from a normal distribution with µ = 0 and

σ =

{
σcausal for all causal SNPs
0 for all non-causal SNPs

where σcausal ∈ {0.05, 0.10, 0.15, 0.25, 0.50, 1.00}. Continuous phenotypes, Ỹ n×5, were
then generated using the following model:

Ỹ n×5 = Gn×g × βg×5 + En×5

where En×5 is a matrix of errors that follows a multivariate normal distribution with
µ = 0 and Σ = σerrorR, σerror = 1, andR is a 5× 5 matrix of the correlations among the
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five continuous phenotypes. Multivariate normal observations were generated using the
mvrnorm() function from the MASS R package [35].

Phenotypes were simulated assuming an underlying equicorrelation structure where
all off-diagonal values of R were equal to ρ, where ρ ∈ {0, 0.5}. Disturbance was also
added to the underlying correlation matrix, R, for some simulations so that the methods
could be systematically tested in situations with unstructured correlation structures. To
create a disturbed correlation matrix, a vector was created consisting of five random values
from a continuous Uniform(−b, b) distribution, where b ∈ {0, 5}. Then, this vector was
multiplied by its transpose to create a 5 × 5 square matrix, B, of rank 1. Finally, B
was added toR and the resulting matrix was converted to a correlation matrix to create a
disturbed underlying correlation matrix,R∗, for simulating phenotypes.

For Type-I error simulations where σcausal = 0 for all SNPs, a total of 10,000 simula-
tions were run for each scenario. For all power simulations, a total of 1,000 simulations
were run for each scenario.

The performance of the functional F-statistics were compared to two other multi-
phenotype, gene-based methods: ACAT and GAMuT. For all of the comparison methods,
the raw (i.e., not flipped and not smoothed) genetic data were used. SNP-level analyses
for ACAT were performed separately for each phenotype assuming an additive mode of
inheritance using linear regression models via the lm() function in R.

3 Results

3.1 Simulations
3.1.1 Type I Error

All methods had relatively conservative Type I error rates across the simulation scenarios,
though they all tended to become more accurate as the sample size, n, and gene size,
m, increased. See Table 1 for Type-I error rates at α = 0.05 for each method stratified
by gene size, number of observations, correlation among phenotypes, and correlation
disturbance.

Under simulation scenarios with no correlation disturbance, ACAT tended to have the
best control of Type I error especially for smaller sample sizes. However, as the sample
size increased and as disturbance was added to the correlation, the functional F-statistics
tended to perform better. Interestingly, whenever disturbance was added, ACAT’s Type
I error tended to suffer while GAMuT and the functional F-statistics tended to be either
unaffected or become more accurate. Notably, the Type I error rate of the newly derived
functional F-statistic was consistently lower than that of the Shen and Faraway functional
F-statistic which made it more conservative in all but one scenario (with a gene size of
25,000 bases, sample size of 500, no correlation among phenotypes, and correlation dis-
turbance).

3.1.2 Power

No single method had the highest power across all simulation scenarios, but some general
trends were apparent. Overall, power increased for all methods as the sample size, gene
size, number of causal variants, and causal effect size increased. Additionally, all methods
tended to achieve their lowest power in scenarios where the phenotypes were independent
(ρ = 0, and b = 0) while they tended to achieve their highest power in scenarios with
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TABLE 1
Type 1 error at α = 0.05 for each method stratified by gene size, number of observations,
correlation among phenotypes, and correlation disturbance.

Gene Size No. of Obs. Phenotype Corr. Corr. Disturbance ACAT GAMuT Shen-Faraway F New F
10,000 100 0.0 0 0.052 0.034 0.030 0.022
10,000 100 0.0 5 0.034 0.038 0.028 0.019
10,000 100 0.5 0 0.048 0.035 0.031 0.021
10,000 100 0.5 5 0.037 0.034 0.032 0.024
10,000 250 0.0 0 0.049 0.047 0.038 0.030
10,000 250 0.0 5 0.040 0.041 0.039 0.031
10,000 250 0.5 0 0.050 0.042 0.036 0.027
10,000 250 0.5 5 0.037 0.043 0.040 0.030
10,000 500 0.0 0 0.054 0.049 0.044 0.036
10,000 500 0.0 5 0.037 0.046 0.040 0.034
10,000 500 0.5 0 0.051 0.046 0.040 0.034
10,000 500 0.5 5 0.035 0.050 0.041 0.035
25,000 100 0.0 0 0.051 0.032 0.045 0.035
25,000 100 0.0 5 0.041 0.027 0.045 0.038
25,000 100 0.5 0 0.047 0.028 0.040 0.035
25,000 100 0.5 5 0.037 0.029 0.045 0.038
25,000 250 0.0 0 0.053 0.041 0.044 0.037
25,000 250 0.0 5 0.041 0.043 0.047 0.040
25,000 250 0.5 0 0.050 0.039 0.049 0.043
25,000 250 0.5 5 0.037 0.040 0.044 0.039
25,000 500 0.0 0 0.053 0.045 0.048 0.044
25,000 500 0.0 5 0.039 0.045 0.054 0.051
25,000 500 0.5 0 0.050 0.044 0.048 0.042
25,000 500 0.5 5 0.034 0.045 0.048 0.045
50,000 100 0.0 0 0.054 0.023 0.049 0.042
50,000 100 0.0 5 0.038 0.022 0.047 0.041
50,000 100 0.5 0 0.048 0.026 0.047 0.039
50,000 100 0.5 5 0.036 0.026 0.050 0.043
50,000 250 0.0 0 0.053 0.037 0.050 0.046
50,000 250 0.0 5 0.037 0.034 0.053 0.048
50,000 250 0.5 0 0.051 0.035 0.051 0.045
50,000 250 0.5 5 0.037 0.035 0.049 0.045
50,000 500 0.0 0 0.049 0.042 0.050 0.048
50,000 500 0.0 5 0.037 0.038 0.048 0.042
50,000 500 0.5 0 0.048 0.041 0.050 0.045
50,000 500 0.5 5 0.040 0.040 0.052 0.046

high amounts of correlation (ρ = 0.5, and b = 5). Differences between the methods were
observed based on causal effect sizes and correlation structures.

For modest causal effect sizes (σcausal < 0.25), the functional F-statistics were the
most powerful methods regardless of gene size, number of causal variants, and correla-
tion structure (Figure 2). The performance of the functional F-statistics were similar to
one another, though the Shen and Faraway F-statistic tended to have slightly higher power
for the smallest causal effect sizes. While ACAT and GAMuT performed worse than the
functional F-statistics for modest effect sizes, especially at smaller sample sizes, their per-
formance relative to one another differed substantially based on the underlying correlation
structure. ACAT was far more powerful than GAMuT when the phenotypes were inde-
pendent (ρ = 0, and b = 0) and GAMuT was far more powerful than ACAT when there
were high amounts of correlation among the phenotypes (ρ = 0.5, and b = 5). Under
their respective most powerful correlation structures, ACAT and GAMuT were able to
match the performance of the functional F-statistics at the largest sample size (N = 500).

As the the causal effects increased (σcausal ≥ 0.25), ACAT and GAMuT began out-
performing the functional F-statistics especially at larger sample sizes (Figure 3). Similar
to the modest effect size scenarios, ACAT tended to be more powerful than GAMuT
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FIGURE 2: Statistical power for simulations assuming 5 continuous phenotypes, 5 causal
variants, and causal effect sizes simulated from a normal distribution with µ = 0 and
σcausal = 0.15.

A. ρ = 0, b = 0.

B. ρ = 0, b = 5.

C. ρ = 0.5, b = 0.

D. ρ = 0.5, b = 5.

when the phenotypes were independent (ρ = 0, and b = 0) and GAMuT tended to
be more powerful than ACAT when there were high amounts of correlation among the
phenotypes (ρ = 0.5, and b = 5). Notably, even with stronger causal effects, the func-
tional F-statistics still tended to be perform similar to, or sometimes even better than, the
most powerful method at the smallest sample size. Furthermore, while the relative per-
formances of ACAT and GAMuT varied based on the underlying correlation structure,
the functional F-statistics were more stable and tended to be the second and third most
powerful methods at larger sample sizes.

3.2 Application to Neurodegenerative Disease Data
Several genes have been implicated for hippocampal sclerosis (HS), a neurodegenerative
disease characterized by severe neuronal cell loss and gliosis in the hippocampus, in-
cluding: KCNMB2, TMEM106B, ABCC9 GRN, and APOE. Our understanding of HS has
evolved in recent years and what was once considered "HS" is now understood to include
several distinct yet related neuropathological diseases, including limbic-predominant age-
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FIGURE 3: Statistical power for simulations assuming 5 continuous phenotypes, 5 causal
variants, and causal effect sizes simulated from a normal distribution with µ = 0 and
σcausal = 0.25.

A. ρ = 0, b = 0.

B. ρ = 0, b = 5.

C. ρ = 0.5, b = 0.

D. ρ = 0.5, b = 5.

related TDP-43 encephalopathy (LATE). While genetics are known to play a role in the
development of neurodegenerative diseases, the autopsy-based data necessary to defini-
tively diagnose neuropathological changes associated with these conditions is scarce.
Therefore, to better understand the genetics underlying the original HS risk genes, we
tested for associations between these genes and the more specific autopsy-derived, HS-
related neuropathological endophenotypes. If these associations fail to replicate, then we
would be inclined to conclude that the genes are associated with some other aspect of HS
outside of its neuropathological presentation.

Phenotypic data from the National Alzheimer’s Coordinating Center (NACC) were
linked with genotype data from the Alzheimer’s Disease Genetics Consortium imputed
using the Haplotype Reference Consortium (ADGC-HRC) [36, 37, 38]. Individuals who
died at age 65 years or older were included in this analysis. Similar to other studies
of NACC participants [39], individuals were excluded if at least one of 19 rare brain
diseases were diagnosed or if they were missing any adjustment variables or all of the
neuropathological endophenotypes being analyzed. Each gene was defined based on
the canonical transcripts using the hg19 gene range list from PLINK (https://www.cog-
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genomics.org/plink/1.9/resources) and was flanked by an additional 10kb on both ends
to capture potential regulatory variants. ACAT, GAMuT, the Shen-Faraway functional
F-statistic, and our newly derived functional F-statistic were applied to the data to test
for joint associations between HS and LATE and each gene. Statistical significance was
defined to be p < 0.05. Note that variants with any missing values were excluded from
the GAMuT analyses since it requires the genetic data to have no missingness.

Several genes were found to have a joint association with both HS and LATE, in-
cluding TMEM106B, GRN, and APOE. The complete results may be found in Table 2.
GAMuT failed to detect any gene-based associations, while both functional F-statistic
methods and ACAT were able to detect gene-based associations of HS and LATE with the
TMEM106B and APOE genes. Notably, the only method to detect a gene-based associa-
tion between HS and LATE and GRN was the newly derived functional F-statistic.

4 Discussion
By leveraging known properties of quadratic forms, we were able to develop an alternative
derivation for the distribution of the functional F-statistic for FoSR models. Through
simulation studies, we showed that this functional F-statistic performs similarly to the
existing Shen and Faraway F-statistic and both F-statistics can outperform other statistical
methods designed for testing gene-level pleiotropy. While ACAT and GAMuT tended to
be more powerful in situations with stronger causal effects, the functional F-statistics
performed better in situations with more modest effect sizes which are more common for
complex human diseases.

While the performance of the F-statistics were similar in the current simulation study,
it will be important to compare the functional F-statistics in other functional data applica-
tions. We expect our newly derived F-statistic to result in more accurate tail probabilities
than the Shen and Faraway F-statistic since circumvents a degree of freedom approxima-
tion with an exact derivation. This property is important in the context of genetic associ-
ation studies where small p-values are common. Further simulation studies are needed to
determine if their performances are comparable in other contexts.

By applying the newly-derived functional F-statistic to neurodegenerative disease
data, we were able to detect a gene-based association between HS and LATE and the
GRN gene. While GRN has previously been shown to be associated with HS and, sep-
arately, other AD-related phenotypes, this is the first analysis to find a joint association
between both HS and LATE and the GRN gene. Given that sample sizes tend be relatively
small in cohorts with autopsy-derived phenotypes like NACC, the functional F-statistics
should be favored for gene-based, multi-phenotype tests in these situations going forward.

The original GAMuT paper compared GAMuT to a multivariate functional regres-
sion model and found GAMuT to have superior performance [31]. The approach taken to
fitting the functional regression models in that study differ from ours in three important
ways [40]. First, they did not use a reverse regression approach, meaning the phenotypes
were modeled as a multivariate outcome. Since most clinical phenotypes tend to be cor-
related and typical multivariate methods assume that outcome vectors are independent of
one another, we would expect a multivariate modeling approach to be sub-optimal in the
presence of correlated phenotypes. Second, since a multivariate regression approach was
used, there is no easy way to include mixtures of continuous and categorical phenotypes in
the same analysis. Third, while the minor allele counts were smoothed before modeling,
they were not flipped prior to smoothing and so there may have been some residual noise
in the genotype functions thus obscuring the genomic signals. Given these deficiencies,
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we are not surprised that the functional regression approach performed so poorly in the
context of correlated phenotypes.

The functional F-statistic approaches have several benefits over the other gene-based,
multi-phenotype methods. First, since the genomic data are smoothed prior to analyzing,
missing genomic data are implicitly imputed and so more genetic variants can included
in the analyses. While ACAT can partially circumvent this issue by taking a complete
case approach to each of the single-variant, single-phenotype analyses, GAMuT requires
all missing genomic observations to be imputed prior to analyzing. Second, once the ge-
nomic data have been smoothed, the resulting genotype functions, G(t), can be evaluated
at a smaller number of points to effectively reduce the dimensionality to the subsequent
analyses (specifically, when the number of evaluation points is less than the number of
genomic variants). Simulations showed only a marginal reduction in statistical power
when the number of evaluation points was half the number of genomic variants (see Fig-
ure A.1 in the Appendices). Third, since a reverse regression approach is used for the
functional F-statistics, they can easily test for associations with phenotypes of varying
types (numeric, categorical, ordinal, splines, etc.). Fourth, by analyzing a gene-based,
multi-phenotype association with a single regression model, no multiplicity corrections
are needed for single-gene analyses. Thus, the functional F-statistic methods provide a
flexible and scalable framework for conducting gene-based, multi-phenotype analyses.

In the derivation of our new F-statistic, we chose to transform the CDF values to F
distributions with (p − q) and (n − p) degrees of freedom so that it would align with
the F-statistic from multiple linear regression. That choice of degrees of freedom, along
with the choice to transform the CDF values to F distributions, was arbitrary. While some
limited simulations (not published) found that (p − q) and (n − p) degrees of freedom
performed as well as, if not better than, other alternatives, there likely exists more optimal
degree of freedom parameters for this F-statistic. Additionally, there may exist more
optimal distributions for transforming the CDF values. Further research is needed.

While running the simulations, we came across two novel properties of ACAT [19].
First, the gene-level ACAT p-value will never exceed the lowest SNP-level p-value. So,
unlike a p-value combination test like Fisher’s method which can produce a gene-level
p-value that’s smaller than the minimum SNP-level p-value, ACAT acts more like a mul-
tiplicity correction in that the gene-level p-value is closer to geometric mean of the SNP-
level p-values. Second, combining several ACAT p-values via ACAT without weights
does not always give the same overall p-value as just combining all of the original p-values
via ACAT in one pass. Notably, this only occurs when the first-level ACAT p-values con-
sist of varying numbers of p-values and the issue can be mitigated by modifying the
weights of the ACAT analyses.

In conclusion, we derived an alternative to the Shen and Faraway F-statistic for FoSR
models. In the context of gene-based, multi-phenotype analyses, our newly derived func-
tional F-statistic performed similarly to the Shen and Faraway F-statistic and both F-
statistics outperformed other gene-based, multi-phenotype methods specifically in the
small sample, modest effect size scenarios which are common in genetic association stud-
ies of autopsy-confirmed complex disease phenotypes like dementia. By applying the
newly-derived functional F-statistic to real-world data, we were able to identify a novel
association between two Alzheimer disease mimics (HS and LATE) and the GRN gene.
Since our newly derived functional F-statistic is expected to perform better than the Shen
and Faraway functional F-statistic with small p-values, it is a promising method for stud-
ies of gene-based genetic pleiotropy.
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Appendices
A Varying Simulation Parameters

A.1 Reducing the Number of Evaluation Points for Functional Meth-
ods

FIGURE A.1: A comparison of statistical power for the functional F-statistics when the
genotype functions, G(t), were evaluated at the locations of all of the included genomic
variants versus half that number of equally spaced points.
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