1 Rare and *de novo* variants in 827 congenital diaphragmatic hernia probands implicate

2 LONP1 and ALYREF as new candidate risk genes

Lu Qiao,^{1,2} Le Xu,³ Lan Yu,¹ Julia Wynn,¹ Rebecca Hernan,¹ Xueya Zhou,^{1,2} Christiana 3 Farkouh-Karoleski,¹ Usha S. Krishnan,¹ Julie Khlevner,¹ Aliva De,¹ Annette Zygmunt,¹ 4 5 Timothy Crombleholme, ⁴ Foong-Yen Lim,⁵ Howard Needelman,⁶ Robert A. Cusick,⁶ 6 George B. Mychaliska,⁷ Brad W. Warner,⁸ Amy J. Wagner,⁹ Melissa E. Danko,¹⁰ Dai Chung,¹⁰ Douglas Potoka,¹¹ Przemyslaw Kosiński,¹² David J. McCulley,¹³ Mahmoud 7 Elfiky,¹⁴ Kenneth Azarow,¹⁵ Elizabeth Fialkowski,¹⁵ David Schindel,¹⁶ Samuel Z. Soffer,¹⁷ 8 Jane B. Lyon,¹⁸ Jill M. Zalieckas,¹⁹ Badri N. Vardarajan,²⁰ Gudrun Aspelund,¹ Vincent P. 9 Duron,¹ Frances A. High,^{19,21,22} Xin Sun,³ Patricia K. Donahoe,^{21,23} Yufeng Shen,^{2,24,25,*} and 10 11 Wendy K. Chung^{1,26,*}

12 ¹Department of Pediatrics, Columbia University Irving Medical Center, New York, NY

13 10032, USA; ²Department of Systems Biology, Columbia University Irving Medical Center,

14 New York, NY 10032, USA; ³Department of Pediatrics, University of California, San Diego

15 Medical School, San Diego, CA 92092, USA; ⁴Medical City Children's Hospital, Dallas, TX

16 75230, USA; ⁵Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA;

⁶University of Nebraska Medical Center College of Medicine, Omaha, NE 68114, USA;

⁷University of Michigan Health System, Ann Arbor, MI 48109, USA; ⁸Washington

19 University School of Medicine, St. Louis, MO 63110, USA; ⁹Children's Hospital of

20 Wisconsin, Medical College of Wisconsin, Milwaukee, WI 53226, USA; ¹⁰Monroe Carell Jr.

- 21 Children's Hospital at Vanderbilt, Nashville, TN 37232, USA; ¹¹University of Pittsburgh,
- 22 Pittsburgh, PA 15224, USA; ¹²Medical University of Warsaw, 02-091 Warsaw, Poland;
- ¹³Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 52726, USA;
- 24 ¹⁴Cairo University, Cairo 11432, Egypt; ¹⁵Oregon Health & Science University, Portland, OR NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

25	97239, USA; ¹⁶ UT Southwestern Medical Center, Dallas, TX 75390, USA; ¹⁷ Northwell
26	Health, New York, NY 11040, USA; ¹⁸ Department of Radiology, University of Wisconsin-
27	Madison, Madison, WI 53792, USA; ¹⁹ Department of Surgery, Boston Children's Hospital,
28	Boston, MA 02115, USA; ²⁰ Department of Neurology, Taub Institute for Research on
29	Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky Center, Columbia
30	University in the City of New York, NY 10032, USA; ²¹ Pediatric Surgical Research
31	Laboratories, Massachusetts General Hospital, Boston, MA 02114, USA; ²² Department of
32	Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA; ²³ Department of
33	Surgery, Harvard Medical School, Boston, MA 02115, USA; ²⁴ Department of Biomedical
34	Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA; ²⁵ JP
35	Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New
36	York, NY 10032, USA; ²⁶ Department of Medicine, Columbia University Irving Medical
37	Center, New York, NY 10032, USA

38 *Correspondence: ys2411@cumc.columbia.edu (Y.S.), wkc15@cumc.columbia.edu
39 (W.K.C.).

40 Abstract

41 Congenital diaphragmatic hernia (CDH) is a severe congenital anomaly that is often 42 accompanied by other anomalies. Although the role of genetics in the pathogenesis of CDH has been established, only a small number of disease genes have been identified. To further 43 44 investigate the genetics of CDH, we analyzed de novo coding variants in 827 proband-parent 45 trios and confirmed an overall significant enrichment of damaging de novo variants, 46 especially in constrained genes. We identified LONP1 (Lon Peptidase 1, Mitochondrial) and 47 ALYREF (Aly/REF Export Factor) as novel candidate CDH genes based on de novo variants 48 at a false discovery rate below 0.05. We also performed ultra-rare variant association

49 analyses in 748 cases and 11,220 ancestry-matched population controls and identified 50 LONP1 as a risk gene contributing to CDH through both de novo and ultra-rare inherited 51 largely heterozygous variants clustered in the core of the domains and segregating with CDH 52 in familial cases. Approximately 3% of our CDH cohort was heterozygous with ultra-rare 53 predicted damaging variants in LONP1 who have a range of clinical phenotypes including 54 other anomalies in some individuals and higher mortality and requirement for extracorporeal 55 membrane oxygenation. Mice with lung epithelium specific deletion of Lonp1 die 56 immediately after birth and have reduced lung growth and branching that may at least 57 partially explain the high mortality in humans. Our findings of both de novo and inherited 58 rare variants in the same gene may have implications in the design and analysis for other 59 genetic studies of congenital anomalies.

60 Introduction

Congenital diaphragmatic hernia (CDH) affects approximately 3 per 10,000 neonates^{1,2}. 61 62 Approximately 40% of CDH cases occur with additional congenital anomalies besides 63 common secondary anomalies (dextrocardia and lung hypoplasia)³. The most common 64 additional anomalies^{4,5} are structural heart defects (11-15%), musculoskeletal malformations 65 (15-20%) including limb deficiency, club foot, and omphalocele⁶. However, anomalies of 66 almost every organ have been described in association with CDH. Despite advances in care 67 including improved prenatal diagnosis, fetal interventions, extracorporeal membrane 68 oxygenation (ECMO) and gentle ventilation, CDH continues to be associated with at least 69 20% mortality and significant long-term morbidity including feeding difficulties, pulmonary hypertension and other respiratory complications, and neurocognitive deficits^{3,7,8}. 70

The complexity of the phenotypes associated with CDH is mirrored by the complexity of the
genetics, which are heterogeneous with approximately 30% of CDH cases having an

3

identifiable major genetic contributor. Typically, each gene or copy number variant (CNV)
associated with CDH accounts for at most 1-2% of cases⁹. The full spectrum of genomic
variants has been associated with CDH, including chromosome aneuploidies (10%), copy
number variants (CNVs) (3-10%), monogenic conditions (10-22%), and emerging evidence
for oligogenic causes¹ (CNVs and individual genes¹⁰).

78 While familial cases have been described, CDH most commonly occurs in individuals 79 without a family history of CDH, and sibling recurrence risk in isolated cases is less than 1%¹¹. Likely due to the historically high mortality and low reproductive fitness, CDH is often 80 81 due to de novo CNVs and single gene variants. However, dominant inheritance has been 82 described with transmission of an incompletely penetrant variant from an unaffected parent or parent with a subclinical diaphragm defect¹². CDH has also been described in individuals 83 with biallelic variants such as Donnai-Barrow syndrome¹³. The occurrence of discordant 84 monogenic twins suggests a role for stochastic events after fertilization¹¹. 85

86 A genetic diagnosis for probands with CDH can inform prognosis and guide medical 87 management. Some genetic conditions associated with CDH are associated with an increased 88 risk for additional anomalies, increased mortality, and increased morbidity including 89 neurocognitive disabilities that may benefit from early intervention³. Over the past decade, 90 advances in genomic sequencing technology have helped to define the genes associated with CDH. We and others have shown that *de novo* variants with large effect size contribute to 10-91 92 22% of CDH cases with enrichment of *de novo* likely damaging variants in CDH cases with 93 an additional anomaly (complex CDH)^{9,14,15}. We also demonstrated a higher burden of de 94 novo likely damaging (LD) variants in females compared to males supporting a "female 95 protective model"9. Most recently, in a cohort with long term developmental outcome data³, 96 we demonstrated that *de novo* likely damaging (LD) variants are associated with poorer

97 neurodevelopmental outcomes as well as a higher prevalence of pulmonary hypertension

98 (PH).

- 99 To expand upon our knowledge of the diverse genetic etiologies of CDH, we performed
- 100 whole genome (WGS) or exome sequencing of 827 CDH proband-parent trios. We confirmed
- 101 an overall enrichment of damaging *de novo* variants in constrained genes, and identified
- 102 LONP1 (Lon Peptidase 1, Mitochondrial [MIM: 605490]) and ALYREF (Aly/REF Export
- 103 Factor [MIM: 604171]) as new candidate CDH genes with recurrent ultra-rare and *de novo*
- 104 variants.

105 Materials and methods

106 Participant recruitment and control datasets

107 Study participants were enrolled as fetuses, neonates, children and adults with a

108 radiologically confirmed diaphragm defect by the DHREAMS study¹⁶ (Diaphragmatic Hernia

109 Research & Exploration; Advancing Molecular Science) or Boston Children's

110 Hospital/Massachusetts General Hospital (BCH/MGH) as described previously¹⁴. Clinical

111 data were prospectively collected from medical records and entered into a central Research

112 Electronic Data Capture (REDCap) database¹⁷. Probands and both parents provided a blood,

skin biopsy, or saliva specimen for trio genetic analysis. All studies were approved by the

114 Columbia University institutional review board (IRB), serving as the central site. Each

115 participating site also procured approval from their local IRB and signed informed consent

116 was obtained. Ethical approval was obtained from the following participating institutions:

- 117 Boston Children's Hospital/Massachusetts General Hospital, Washington University,
- 118 Cincinnati Children's Hospital Medical Center, Children's Hospital & Medical Center of
- 119 Omaha, University of Michigan, Monroe Carell Jr. Children's Hospital, Northwell Health,

120	Oregon Health & Science University, Legacy Research Institute, University of Texas
121	Southwestern, Children's Hospital of Wisconsin, and Children's Hospital of Pittsburgh.
122	A total of 827 cases and their parents had whole genome (WGS) or exome sequencing in the
123	current study. A subset of trios (n=574) has been described in our previous study ^{3,9} .
124	Participants with only a diaphragm defect were classified as isolated CDH while participants
125	with at least one additional major congenital anomaly (e.g. congenital heart defect, central
126	nervous system anomaly, gastrointestinal anomaly, skeletal anomaly, genitourinary anomaly,
127	cleft lip/palate), moderate to severe developmental delay, or other neuropsychiatric
128	phenotypes at last contact were classified as complex CDH. Pulmonary hypoplasia, cardiac
129	displacement and intestinal herniation were considered to be part of the diaphragm defect
130	sequence and were not considered independent malformations. Data on the child's current
131	and past health including family history of congenital anomalies, postoperative pulmonary
132	hypertension, mortality or survival status prior to initial discharge, extracorporeal membrane
133	oxygenation (ECMO) intake were gathered as described previously ³ .
134	The control group consisted of unaffected parents from the Simons Powering Autism Research

135 for Knowledge (SPARK) study¹⁸ (exomes) and Latinx samples from Washington Heights-

- 136 Hamilton Heights-Inwood Community Aging Project (WHICAP) study¹⁹ (exomes).
- 137 WGS and exome data analysis

There are 233 CDH trios processed using whole genome sequencing (WGS) that were not included in previous studies^{3,9} (Table S1). Of these 233 previously unpublished trios, 1 trio was processed at Baylor College of Medicine Human Genome Sequencing Center and 232 trios at Broad Institute Genomic Services. The genomic libraries of 219 cases were prepared by TruSeq DNA PCR-Free Library Prep Kit (Illumina), while 14 were TruSeq DNA PCR-

143 Plus Library Prep Kit (Illumina), with average fragment length about 350 bp, and sequenced 144 as paired-end of 150-bp on Illumina HiSeq X platform. Exome sequencing was performed in 20 CDH trios that were not previously published^{3,9}. Among these, the coding exons of 9 trios 145 146 were captured using Agilent Sure Select Human All Exon Kit v2 (Agilent Technologies), 10 147 trios using NimbleGen SeqCap EZ Human Exome V3 kit (Regeneron NimbleGen), 1 trio 148 using NimbleGen SeqCap EZ Human Exome V2 kit (Roche NimbleGen). Exomes of 149 SPARK cohort were captured using a slightly modified version of the IDT xGen Exome Research Panel v.1.0 identical to the previous study²⁰. Whole-exome sequencing of the 150 151 WHICAP cohort was performed at Columbia University using the Roche SeqCap EZ Exome Probes v3.0 Target Enrichment Probes²¹. 152 Exome and WGS data of cases and controls were processed using a pipeline implementing 153 GATK Best Practice v4.0 as previously described^{9,22}. Specifically, reads of exome cases were 154 155 mapped to human genome GRCh37 reference using BWA-MEM²³, while reads of WGS 156 cases, SPARK and WHICAP controls were mapped to GRCh38; duplicated reads were marked using Picard²⁴; variants were called using GATK²⁵ (v4.0) HaplotypeCaller to 157 158 generate gVCF files for joint genotyping. All samples within the same batch (Table S1) were jointly genotyped and variant quality score recalibration (VQSR) was performed using 159 160 GATK. To combine all cases for further analysis, we lifted over the GRCh37 variants to 161 GRCh38 using CrossMap²⁶ (v0.3.0). Common SNP genotypes within exome regions were used to validate familial relationships using KING²⁷ and ancestries using peddy²⁸ (v0.4.3) in 162 163 cases, SPARK controls and WHICAP controls.

De novo variants were defined as a variant present in the offspring with homozygous
 reference genotypes in both parents. Here, we limited WGS to coding regions based on
 coding sequences and canonical splice sites of all GENCODE v27 coding genes. We took a

167	series of stringent filters to identify <i>de novo</i> variants as described previously ⁹ : VQSR tranche
168	\leq 99.8 for SNVs and \leq 99.0 for indels; GATK's Fisher Strand \leq 25, quality by depth \geq 2. We
169	required the candidate <i>de novo</i> variants in probands to have ≥ 5 reads supporting the
170	alternative allele, \geq 20% alternative allele fraction, Phred-scaled genotype likelihood \geq 60
171	(GQ), and population allele frequency $\leq 0.01\%$ in gnomAD v2.1.1; both parents to have ≥ 10
172	reference reads, $<5\%$ alternative allele fraction, and GQ ≥ 30 . We applied DeepVariant ²⁹ to all
173	candidate de novo variants for in silico confirmation and only included the ones with PASS
174	from DeepVariant for downstream analysis.

To reduce batch effects in combined datasets from different sources³⁰ in analysis of rare 175 176 variants, for non-Latinx population we targeted ultra-rare variants located in xGen-captured protein coding regions and for Latinx population in regions targeted by xGen and SeqCap EZ 177 178 v3.0. We used the following criteria to minimize technical artifacts and select ultra-rare 179 variants²²: cohort AF <0.5% and population cohort <1 \times 10⁻⁵ across all genomes in gnomAD 180 v3.0; mappability=1; >90% target region with depth \geq 10; overlapped with segmental 181 duplication regions <95%; genotype quality >30, allele balance >20% and depth >10 in 182 cases.

We used Ensembl Variant Effect Predictor³¹ (VEP, Ensemble 102) and ANNOVAR³² to 183 184 annotate variant function, variant population frequencies and in silico predictions of 185 deleteriousness. All coding SNVs and indels were classified as synonymous, missense, 186 inframe, or likely-gene-disrupting (LGD, which includes frameshift indels, canonical splice 187 site, or nonsense variants). We defined predicted damaging missense (D-mis) based on CADD³³ score v1.3. All *de novo* variants and inherited variants in candidate risk genes were 188 189 manually inspected in the Integrative Genome Viewer (IGV). A total of 179 variants were 190 selected for validation using Sanger sequencing; all of them were confirmed (Table S2). To

191	compare the clinical outcomes between cases with deleterious variants in candidate genes and
192	with likely damaging (LD) variants, we defined likely damaging variants as in our previous
193	study ³ : (a) <i>de novo</i> LGD or deleterious missense variants in genes that are constrained (ExAC
194	pLI \geq 0.9) and highly expressed in developing diaphragm ³⁴ , or (b) <i>de novo</i> LGD or
195	deleterious missense variants in known risk genes for CDH or commonly comorbid disorders
196	(congenital heart disease [CHD] and neurodevelopmental delay [NDD]), or (c) plausible
197	deleterious missense variants in known risk genes for CDH or commonly comorbid disorders
198	(CHD and NDD), or (d) deletions in constrained (ExAC pLI \geq 0.9) or haploinsufficient genes
199	from ClinGen genome dosage map ³⁵ , or (e) CNVs implicated in known syndromes. We
200	classified CDH cases into two genetic groups: (1) LD, if the case carried at least one <i>de novo</i>
201	LD variant; (2) non-LD, if the case carried no such variants.
202	De novo copy number variants (CNVs) were identified using an inhouse pipeline of read
203	depth-based algorithm based on CNVnator ³⁶ v0.3.3 in WGS trios as described in our previous
204	study ³ . The <i>de novo</i> CNV segments were validated by the additional pair-end/split-read
205	(PE/SR) evidence using Lumpy ³⁷ v0.2.13 and SVtyper ³⁸ v0.1.4. Only the CNVs supported by
206	both read depth (RD) and PE/SR were included in downstream analysis. We mapped <i>de novo</i>
207	CNVs on GENCODE v29 protein coding genes with at least 1bp in the shared interval. The
208	GENCODE genes were annotated with variant intolerance metric by ExAC pLI ³⁹ ,
209	haploinsufficiency metric by Episcore ⁴⁰ , haploinsufficiency and triplosensitivity of genes
210	from ClinGen genome dosage map ³⁵ , and CNV syndromes from DECIPHER ⁴¹ v11.1.

211 Quantitative PCR

We performed experimental validation of putative *de novo* genic CNVs using quantitative PCR (qPCR). All PCR primers were designed for the selected genes located within the *de novo* CNVs and synthesized by IdtDNA. All qPCR reactions were performed in a total of 10 µl volume, comprising 5 μ l 2x SYBR Green I Master Mix (Promega), 1 μ l 10nM of each primer and 2 μ l of 1:20 diluted cDNA in 96-well plates using CFX Connect Real-Time PCR Detection System (Bio-Rad). All reactions were performed in triplicate, and the conditions were 5 minutes at 95 °C, then 40 cycles of 95 °C at 15 seconds and 60 °C at 30 seconds. The relative copy numbers were calculated using the standard curve method relative to the β -actin housekeeping gene. Five-serial 4-fold dilutions of DNA samples were used to construct the standard curves for each primer.

222 Statistical analysis

223 Burden of de novo variants. The baseline mutation rates for different classes of de novo variants were calculated in each GENCODE coding gene using the published trinucleotide 224 225 sequence context⁴², and we calculated the rate in protein-coding regions that are uniquely mappable as previously described mutation model^{9,18}. The observed number of variants of 226 227 various types (e.g. synonymous, missense, LGD) in each gene set and case group was 228 compared with the baseline expectation using Poisson test. In all analyses, constrained genes were defined by ExAC pLI^{39} score of >0.5, and all remaining genes were treated as other 229 genes. We used a less stringent pLI threshold than previously suggested³⁹ for defining 230 231 constrained genes, because it captures more known haploinsufficient genes important for 232 heart and diaphragm development. We compared the observed number of variants in female 233 versus male cases and complex versus isolated cases using the binormal test.

extTADA analysis. To identify risk genes based on *de novo* variants, we used an empirical
 Bayesian method, extTADA⁴³ (Extended Transmission and *de novo* Association). The
 extTADA model was developed based on a previous integrated empirical Bayesian model
 TADA⁴⁴ and estimates mean effect sizes and risk-gene proportions from the genetic data
 using MCMC (Markov Chain Monte Carlo) process (details see supplemental note). To

inform the parameter estimation with prior knowledge of developmental disorders, we
stratify the genes into constrained genes (ExAC pLI score >0.5) and non-constrained genes
(other genes), followed by estimating the parameters using the extTADA model to each
group of genes. After estimating posterior probability of association (PPA) of individual
genes in each group, we combined both groups to calculate a final false discovery rate (FDR)
for each gene using extTADA's procedure.

245 Gene-based case-control association analysis of ultra-rare variants. To identify novel risk 246 genes based both on *de novo* and rare inherited variants, we performed a gene-based 247 association test comparing the frequency of ultra-rare deleterious variants in CDH cases with 248 controls, without considering *de novo* status. Samples with read depth coverage $\geq 10x$ for 249 80% in exome cases and 90% in genome cases of the targeted regions were included in the analysis (Figure S1). Relatedness was checked using KING²⁷, and only unrelated cases were 250 251 included in the association tests (Figure S2). To control for confounding from genetic 252 ancestry, we selected ancestry-matched controls using SPARK exomes and Latinx WHICAP 253 exomes to reach a fixed case/control ratio in each population ancestry inferred by peddy²⁸ 254 (Figure S3). Specifically, for a specific ancestry (i), consider x_i number of cases, y_i number of controls, n_i the fold controls to cases (y_i/x_i) . We chose the minimized n_{min} among all 255 256 ancestries. In each genetic-ancestry group controls (y_i) , we ranked the Euclidean distance 257 between each case and controls which were calculated from top 3 PCA eigenvectors and 258 selected $n_{min}x_i$ controls from y_i controls to ensure the same proportions in cases and 259 controls. After filtering to reduce the impact of false positive variants, we tested for similarity 260 of the ultra-rare synonymous variant rate among cases and controls in specific genetic-261 ancestry groups, assuming that ultra-rare synonymous variants are mostly neutral with 262 respect to disease status.

11

263 To identify CDH risk genes, we tested the burden of ultra-rare deleterious variants (AF 264 <1×10⁻⁵ across all gnomAD v3.0 genomes, LGD or D-Mis) in each protein-coding gene in 265 cases compared to controls. To improve statistical power, we searched for a gene-specific 266 CADD³³ score threshold for defining D-Mis that maximized the burden of ultra-rare 267 deleterious variants in cases compared to controls and used permutations to calculate statistical significance with the variable threshold test^{22,45}. For the binomial tests in each 268 269 permutation, we used binom.test function in R to calculate p values. We performed two 270 association tests, one with LGD and D-Mis variants combined and the other with D-Mis 271 variants alone, to account for different modes of action. We defined the threshold for 272 genome-wide significance by Bonferroni correction for multiple testing (as two tests for each 273 gene with 20,000 protein-coding genes, threshold p-value= 1.25×10^{-6}). We checked for 274 inflation using a quantile-quantile (Q-Q) plot and calculated the genomic control factor 275 (lambda $[\lambda]$) using OOperm in R. Lambda equal to 1 indicates no deviation from the 276 expected distribution.

277 **Protein modeling**

278 We searched the LONP1 canonical sequence (identifier: P36776-1) in UniProt and obtained

the structural model of the human mitochondrial LONP1 monomer (encompassing only the

residue range 413–951) using SWISS-MODEL server⁴⁶ with SMTL ID 6u5z.1 as template.

281 The 3D structure was visualized using PyMOL molecular viewer (The PyMOL Molecular

282 Graphics System, Version 1.2r3pre, Schrödinger, LLC).

283 Mice

284 All mice were housed in American Association for Accreditation of Laboratory Animal Care

accredited facilities and laboratories at University of California, San Diego. All animal

experiments were conducted under approved guidelines for the Care and Use of Laboratory
Animals. *Lonp 1^{fl}* and *Shh^{cre}* mice have all been described previously⁴⁷ (International Mouse
Strain Resource J:204812). All mice were bred on a C57BL/6J background, and littermates
were used as controls to minimize potential genetic background effects.

290 **Results**

291 Cohort characteristics

292 Participants were recruited as part of the multi-site DHREAMS study (n=748) and from the

293 Boston Children's Hospital/Massachusetts General Hospital (n=79). We performed WGS on

294 734 proband-parent trios and exome sequencing on 93 trios. In total, we analyzed 827 trios

with WGS or exome sequencing.

In the cohort, there were 486 (59%) male probands (Table 1), consistent with a higher

297 prevalence of CDH in males^{9,48,49}. The genetically determined ancestries (Figure S3A) were

European (73.4%), admixed American (hereafter referred to as Latinx; 18.5%), African

299 (3.7%), East Asian (1.8%), and South Asian (2.5%). Among the 277 (33.5%) complex cases,

- 300 the most frequent additional anomalies were congenital heart disease (n=144), NDD (n=54),
- 301 skeletal anomalies (n=46), genitourinary anomalies (n=46) and gastrointestinal anomalies
- 302 (n=42). A total of 533 (64.4%) probands had isolated CDH without additional anomalies at
- 303 the time of last follow up. The most common type of CDH was left-sided Bochdalek (Table
- 304 1).

305 Burden of *de novo* coding variants

306 We identified 1153 *de novo* protein-coding variants in 619 (74.8%) cases including 1058

307 single nucleotide variants (SNVs) and 95 indels (Table S2). The average number of *de novo*

coding variants per proband is 1.39. The number of *de novo* coding variants across probands
closely follows a Poisson distribution (Figure S4). Transition-to-transversion ratio of *de novo*SNVs was 2.75. We classified variants that were likely gene disruptive (LGD) or predicted
damaging missense ("D-mis" with CADD score≥25) as damaging variants. A total of 418
damaging variants (126 LGD and 292 D-mis) were identified in 318 (38.4%) cases, including
83 (10%) cases harboring two or more such variants.

314 We analyzed the burden of *de novo* variants in CDH cases by comparing the observed

315 number of variants to the expected number based on the background mutation rate.

316 Consistent with previous studies on CDH⁹ and other developmental disorders⁵⁰⁻⁵², both *de*

317 novo LGD (0.15 per case) and D-mis variants (0.35 per case) were significantly enriched in

318 cases (relative risk [RR]=1.5, P= 3.6×10^{-5} for LGD; RR=1.3, P= 3.1×10^{-6} ; Figures 1A and B;

Table S3) while the frequency of synonymous variants (0.30 per case) closely matches the

320 expectation (RR=0.9, P=0.12; Table S3). The burden of LGD variants is mostly located in

321 constrained (ExAC³⁹ pLI >0.5) genes (RR=2.2, P= 1.8×10^{-8}). It is marginally higher in

322 female cases than male cases (RR=3.0 vs 1.36, P=0.012) and marginally higher in complex

323 cases than isolated cases (RR=3.1 vs 1.75, P=0.024; Figure 1C; Table S3).

To identify new CDH risk genes by *de novo* variants, we applied extTADA⁴³ to the data of 324 827 CDH trios. ExtTADA assumes a model of genetic architecture compatible with the 325 326 observed burden and recurrence of *de novo* damaging variants and estimates a false discovery 327 rate (FDR) for each gene using MCMC. From the burden analysis of *de novo* variants in CDH and previous studies⁵², we reasoned that the constrained genes (ExAC pLI >0.5) drive 328 329 the higher burden of *de novo* damaging variants and are more likely to be plausible risk 330 genes. We stratified the data into the constrained gene set and the non-constrained gene set 331 (Table S4) and estimated extTADA priors (mean relative risk and prior probability of being a

332 risk gene) in these two gene sets separately. Constrained genes had a higher prior of risk 333 genes than non-constrained genes (0.037 vs 0.006). Meanwhile, both LGD and D-mis had 334 higher relative risks in constrained genes than non-constrained gene (18.30 vs 5.24 for LGD; 335 10.01 vs 3.81 for D-mis). We estimated Bayes Factor of individual genes within each gene 336 group and then combined the genes from two groups together to calculate FDR. We 337 identified 3 genes with FDR <0.05: MYRF (Myelin Regulatory Factor [MIM: 608329]), 338 LONP1, and ALYREF. Five of 6 MYRF de novo variants were described in our previous 339 study⁹. We identified 3 participants harboring *de novo* D-mis variants in *LONP1* and 2 340 participants for de novo LGD variants in ALYREF. Of two participants with an ALYREF LGD 341 variant, one had an isolated left-side CDH and the other had right-side CDH and ventricular 342 septal defect. There were nine additional genes with $\geq 2 de novo$ predicted deleterious 343 variants (HSD17B10 [MIM: 300256], GATA4 [MIM: 600576], SYMPK [MIM: 602388], 344 PTPN11 [MIM: 176876], WT1 [MIM: 607102], FAM83H [MIM: 611927], CACNA1H 345 [MIM: 607904], SEPSECS [MIM: 613009], and ZFYVE26 [MIM: 612012]) (Table 2). Of these, three are known CDH genes (MYRF, GATA4, WTI). All de novo variants in these 346

348 Recurrent genes in *de novo* CNVs

genes are heterozygous.

347

We applied CNVnator to call CNVs from WGS data and used customized filters to identify *de novo* CNVs. We performed experimental validation of 25 putative *de novo* genic CNVs including all 9 small CNVs (<5kb) using quantitative PCR (qPCR). 22 of 25 (88%) reported *de novo* CNV in cases were confirmed by qPCR. Removing the 3 false positive CNVs, there were 87 *de novo* CNVs identified in 734 CDH cases with WGS with an average of 0.12 per case (Table S5). Among them, there were 54 (62%) deletions ranging from 2,096 bp to 33.7 Mb and 33 (38%) duplications ranging from 1,165 bp to 24.9 Mb. Seven samples carried

356	known syndromic CNVs in DECIPHER ⁴¹ dataset, one of which was heterozygous for a
357	16p13.11 microduplication, two heterozygous for a 17q12 deletion associated with renal
358	cysts and diabetes (RCAD), three heterozygous for 21q22 duplication in the critical region
359	for Down syndrome, and one heterozygous for 22q11 deletion associated with DiGeorge
360	syndrome. No recurrent genes were identified between de novo SNVs and CNVs. Four CNVs
361	were recurrent (Table 3), two of which encompass single genes CSMD1 (CUB And Sushi
362	Multiple Domains 1 [MIM: 608397]) and GPHN (Gephyrin [MIM: 603930]).

363 Candidate gene LONP1 contributes to CDH risk through both de novo and rare

364 inherited variants

365 To identify additional risk genes that may contribute through rare inherited variants, we 366 performed a gene-based, case-control association analysis of ultra-rare variants. Specifically, 367 we used exome data from the SPARK (unaffected parents) and Latinx WHICAP samples as 368 controls. Quality control procedures included at least 10x depth of sequence coverage across 369 the target regions (Figure S1) and detection of cryptic relatedness amongst all CDH 370 participants and controls (Figure S2). To prevent confounding by genetic ancestry, we 371 performed principal component analysis (PCA) by peddy to infer genetic ancestry of all cases 372 and controls and selected matching controls (15-fold of cases numbers in each specific 373 genetic-ancestry group) to reach a fixed case/control ratio. With the same genetic-ancestry 374 proportion in cases and controls (77% Europeans, 14.8% Latinx, 4.1% Africans, 2% East 375 Asians, 2.1% South Asians; Figure S3; Table S6), we selected 748 cases and 11,220 controls 376 for downstream analysis. We filtered the ultra-rare variant call sets of cases and controls in 377 each genetic-ancestry group by empirical filters to reduce false positive calls and minimize 378 technical batch effects across data sets. After filtering, the average numbers of ultra-rare (AF<1×10⁻⁵ across all gnomAD v3.0 genomes) synonymous variants per subject in cases and 379

380	controls are nearly identical in everyone (enrichment rate=1, P=1) and specific ancestral
381	groups (Table S7). Furthermore, a gene-level burden test confined to ultra-rare synonymous
382	variants was consistent with a global null model in Q-Q plot (Figure S5), indicating that
383	technical batch effects would likely have minimal impact on genetic analyses. We then
384	performed a variable threshold association test ^{22,45} to identify new risk genes based on
385	enrichment of ultra-rare damaging variants in individual genes. For each gene, we tested
386	enrichment of LGD and D-mis variants together or just D-mis variants, in order to account
387	for potential different biological modes of action. In the variable threshold test, we
388	determined a gene-specific optimal CADD score threshold to define D-mis in order to
389	maximize the power of the association test and then estimated type I error rate by
390	permutations. The overall result from the case-control association did not show inflation from
391	the null model (λ =1.09; Figure 2A). The association of <i>LONP1</i> (P=1×10 ⁻⁷ ; Figure 2)
392	exceeded the Bonferroni-corrected significance threshold $(1.25 \times 10^{-6}, \text{ account for two tests in})$
393	each gene). Three of the 24 ultra-rare deleterious variants in LONP1 were known de novo
394	variants. Two known CDH risk genes, ZFPM2 (Zinc Finger Protein, FOG Family Member 2
395	[MIM: 603693]) and MYRF, fell just below the cutoff for genome wide significance.
396	The association of LONP1 is due to both LGD and D-mis variants. We screened the whole
397	cohort (Figure 3 and Table 4), including CDH relatives (n=1) and exome sequencing
398	singletons (n=2), for ultra-rare damaging missense (CADD \geq 25) and LGD in <i>LONP1</i>
399	(NM_004793.3). A total of 23 CDH cases in 829 cases (2.8%) carry 24 LONP1 variants,
400	including 10 LGD and 14 D-mis variants. Among 22 LONP1 variants excluding 2 of
401	unknown inheritance variants in singletons, there are 3 (13.6%) de novo variants (all D-mis)
402	and 19 (86.4%) inherited variants, 36.8% of which are from mothers (n=7). Of 19 inherited
403	variants, 8 parents carrying LONP1 variants have a family history of CDH or diaphragm
404	eventration (n=4) or other congenital anomaly (n=4; brain abnormality, cerebral palsy, cleft

405 palate, skeletal abnormality) segregating with the LONP1 variant. Three inherited variants 406 (c.1913C>T [p.638M], c.2122G>A [p.G708S] and c.2263C>G [p.R755G]) are each observed 407 twice in the cohort on different probands. Familial segregation was established in six familial 408 CDH cases for c.398C>G (p.P133R), c.6391G>T (p.X213 splice), c.1262delG 409 (p.F421Lfs*87), c.1574C>T (p.P525L), c.1913C>T (p.T638M) and c.2719dupG 410 (p.V907Gfs*73). One case (01-1279) carries biallelic heterozygous variants with c.1574C>T 411 (p.P525L) inherited from one parent and c.2263C>G (p.R755G) inherited from another 412 parent. The participant with biallelic heterozygous variants required ECMO and died at 8-9 413 hours after birth with severe bilateral CDH with near complete diaphragm agenesis, bilateral 414 lung hypoplasia, and no additional anomalies (Figure 4). All other cases are heterozygous 415 variants. 416 Previous studies reported biallelic variants in LONP1 in cerebral, ocular, dental, auricular, 417 and skeletal (CODAS) syndrome^{53,54} (MIM: 600373). We compared the locations of the 418 predicted-damaging missense positions in CDH cases and CODAS syndrome cases (Figures 419 3 and 5). No variants overlap between CDH cases and CODAS syndrome. LONP1 contains 420 three functional domains. CDH damaging variants are concentrated at the core of the 421 domains. Biallelic variants in CODAS syndrome are located on the junction of ATP-binding 422 and proteolytic domains (Figures 3 and 5). The 23 CDH cases with LONP1 variants didn't

423 have features of CODAS syndrome.

424 Phenotype of CDH probands with LONP1 variants

425 We identified 24 ultra-rare heterozygous variants in 23 sporadic or familial CDH participants

426 (Table 4). The majority (n=17; 73.9%) are of European ancestry and 13 (56.5%) are female

427 (Table 4). Sixteen (70%) were enrolled as neonates. Fourteen of the 23 have a family history

428 of congenital anomalies (Table 4), 6 of whom had a family history of CDH. Nine (39.1%) are

429	complex cases. Six of 9 complex cases have CHD in addition to CDH. We compared the
430	clinical outcomes or phenotypes in CDH cases with LONP1 damaging variants and other
431	CDH cases (Table 5). Compared to CDH cases without LONP1 ultra-rare damaging variants
432	LONP1 damaging variant carriers are associated with higher neonatal mortality rate prior to
433	initial hospital discharge (69% vs 16%, P= 6.4×10^{-6}) and greater need for ECMO (56% vs
434	28%, P= 2.3×10^{-2}). Compared to CDH cases with other likely damaging variants defined in
435	our previous study ³ , LONP1 damaging variant carriers had higher neonatal mortality rate
436	prior to discharge (69% vs 24%, P= 1.8×10^{-3}) and trended towards greater need for ECMO
437	(56% vs 30%, P=0.077).

438 Inactivation of *Lonp1* in mouse embryonic lung epithelium leads to disrupted lung 439 development and full lethality at birth

440 The high rate of mortality and need for ECMO in cases with CDH is predominantly due to 441 abnormal lung and pulmonary vascular development causing lung hypoplasia and pulmonary hypertension. Our hypothesis was that impaired or partial loss of LONP1 function in cases 442 443 with CDH might contribute directly to abnormal lung development, independent of its role in 444 diaphragm formation. To test this hypothesis, we inactivated *Lonp1* in the embryonic lung epithelium in mice. This was achieved by generating *Shh^{cre/+}*: Lonp 1^{fl/fl} (hereafter Lonp1 cKO 445 446 for conditional knockout) embryos using existing alleles⁴⁷ (International Mouse Strain 447 Resource J:204812). In the mutant the cre recombinase expressed specifically in the 448 epithelium drove *Lonp1* inactivation at the onset of lung initiation (Figure 6A). This led to 449 100% lethality of the mutants at birth with normal body size (Figures 6B and C). Upon 450 dissection, the mutant lung was composed of large fluid-filled sacs, unlike the controls with 451 normal airways and alveoli (Figure 6D). The lung defect likely contributed to embryonic 452 lethality at birth in these mutant mice.

453 **Discussion**

In the current study of 827 CDH trios, we confirmed there is an overall enrichment of 454 455 damaging de novo variants, particularly in constrained genes. We identified LONP1 and 456 ALYREF as novel candidate genes based on enrichment of de novo variants. By case-control 457 association, we also confirmed LONP1 as a genome-wide significant candidate gene 458 contributing to CDH risk through both *de novo* and inherited damaging variants. We 459 demonstrated segregation of the LONP1 variant with diaphragm defect in five families. We 460 found that CDH individuals with heterozygous ultra-rare damaging variants in LONP1 have clinical phenotypes frequently including CHD or skeletal anomalies, frequently requiring 461 462 ECMO, and having a higher mortality than the rest of our CDH cohort. In addition, we confirmed *MYRF* and *ZFPM2* as genes previously associated with CDH^{9,14,55,56}. In a mouse 463 464 model with knock out of *Lonp1* only in the embryonic lung epithelium with an intact 465 diaphragm, we demonstrated reduced pulmonary growth and branching, resulting in perinatal 466 lethality that suggests that the higher mortality rate and need for ECMO in human is due to a primary effect of LONP1 on pulmonary development in addition to diaphragm development. 467 The burden of damaging *de novo* variants in CDH is consistent with previous studies^{9,14,15}, 468 469 and damaging de novo variants are more frequent in complex CDH compared to isolated 470 CDH cases. Similar patterns have been observed in complex congenital heart disease with 471 other congenital anomalies or neurodevelopmental disorders compared with isolated congenital heart disease⁵⁰ and autism with/without intellectual disability⁵⁷. Deleterious de 472 novo variants are more frequent in many severe early-onset diseases with reduced 473 reproductive fitness compared to the general population⁵⁸. The higher frequency of *de novo* 474 475 LGD variants in female relative to male CDH cases supports the "female protective model" similar to autism^{52,59,60}, which means that risk variants have larger effects in males than in 476

20

477 females so that females require a higher burden to reach the same diagnostic threshold as478 males.

479	Both de novo and rare inherited variant analyses highlight LONP1 as a novel CDH candidate
480	gene. Approximately 3% of individuals in our CDH cohort are heterozygous for LONP1 rare
481	variants. Three variants (p. T638M, p.G708S and p.R755G) are recurrently and
482	independently found in unrelated families. CDH cases with LONP1 variants had higher
483	mortality in the neonatal period compared with other CDH cases. Biallelic variants in LONP1
484	have been reported in CODAS, a multi-system developmental disorder characterized by
485	cerebral, ocular, dental, auricular, and skeletal anomalies ⁶¹ . The Lonp1 holoenzyme is a
486	homohexamer with six identical subunits. Each subunit consists of a mitochondrial-targeting
487	sequence (MTS), a substrate recognition and binding (N) domain, an ATPase (AAA+)
488	domain, and a proteolytic (P) domain. Biallelic missense variants reported in CODAS
489	individuals are mostly located in the junction of ATP-binding and proteolytic domains of
490	LONP1 while the heterozygous variants identified in CDH individuals are located in the main
491	domains of LONP1. Notably, there are no overlapping variants between CDH and CODAS
492	individuals. Most of the variants in CODAS are located in the alpha-helix and may affect the
493	interactions of subunits ⁶¹ . Variants in CDH may interrupt the proteolytic and ATP binding
494	domains, resulting in the dysfunction of LONP1. Homozygous deletion of LONP1 in mice is
495	embryonic lethal, due to progressive loss of mtDNA with subsequent failure to meet energy
496	requirements for embryonic development ⁶² . Heterozygous $Lonp1^{+/-}$ mice develop normally
497	without obvious abnormalities, but lonp1 expression decreased in both RNA and protein
498	levels ⁶² . Analysis of Lonp1 expression in heterozygous mice indicated a 50% reduction at
499	both RNA and protein levels in these animals. These data suggest different mechanisms of
500	LONP1 in diseases with biallelic and monoallelic variants. Of note, one CDH individual

501	carried biallelic variants (p.P525L and p.R755G). No additional phenotypes were noted,
502	perhaps because the baby died at 8-9 hours after birth with severe bilateral CDH (Figure 4).
503	Lonp1 is a nuclear-encoded mitochondrial protease. Besides binding of mtDNA ⁶³ , Lonp1 was
504	discovered as an ATP-dependent protease involved in the degradation of misfolded or
505	damaged proteins ⁶⁴⁻⁶⁶ . Accumulation of misfolded proteins has been observed in the impaired
506	lungs of developing mice with deletion of other ATP-dependent proteins ⁶⁷ . The immature
507	lung development and neonatal respiratory failure of our Lonp1 cKO mice could be due to
508	the inactivation of Lon protease, which results in the accumulation of misfolded proteins and
509	activation of the unfolded protein response (UPR) pathway ⁶⁸ . UPR activation during
510	development could lead to reduced cell proliferation and cause other congenital anomalies
511	including congenital heart disease ⁶⁹ .

512 Lonp1 also acts as a chaperone that interacts with other mitochondrial proteins to regulate several cellular processes⁷⁰. Lon expression may stimulate cell proliferation⁷¹ and Lon 513 514 downregulation may impair mitochondrial structure and function and cause apoptosis^{72,73}. Alterations in cell proliferation, differentiation and migration can all lead to CDH. Myogenic 515 516 cell differentiation and migration are essential during formation of the diaphragm⁷⁴. 517 Myogenic differentiation requires increased expression of mitochondrial biogenesis-related genes including Lon⁷⁵. The variants could cause an increased probability of failure of 518 519 myogenesis during embryonic development, consequently resulting in the hernia. 520 The neonatal mortality of probands with LONP1 deleterious variants is much higher than 521 CDH neonates without LONP1 deleterious variants or CDH neonates with likely damaging 522 variants in genes other than LONP1. CDH neonates with LONP1 deleterious variants

523 frequently required ECMO. In mice with *Lonp1* knock out at the onset of lung development,

524 100% newborn pups died shortly after birth, with severe pulmonary defects. Thus, LONP1

525 could represent a class of CDH genes with high mortality due to primary developmental 526 effects on the lung, resulting in more severe pulmonary defects than would occur secondary 527 to lung compression by herniated abdominal viscera alone. This suggests that we should try 528 to differentiate primary from secondary developmental effects on the lung as we phenotype 529 newborns with CDH and as we investigate the mechanisms action of CDH candidate genes.

530 The RNA-binding protein ALYREF plays a key role in nuclear export through binding to the 5' and the 3' regions of mRNA^{76,77}. It acts as an RNA 5-methylcytosine (m⁵C) adaptor to 531 regulate the m⁵C modification^{78,79}. Disruption of ALYREF could affect the m⁵C 532 modification, resulting in abnormal cell proliferation and migration⁷⁹. Previous studies⁵⁰ 533 534 identified several RNA binding proteins (RBPs) playing essential roles in autism and congenital birth defects including CHD. RBFOX2, an RBP that regulates alternative splicing, 535 is critical for zebrafish heart development⁸⁰ and *de novo* variants in *RBFOX2* are associated 536 537 with congenital heart defects⁵⁰. Dozens of RBPs have established roles in autism spectrum disorder. RBFOX1^{81,82}, an RNA splicing factor, regulates expression of large genetic 538 539 networks during early neuronal development including autism. The other RBPs such as 540 FMRP⁸³, CELF4, CELF6⁸⁴, have also been implicated in autism. As an RBP, ALYREF may 541 play a similar role in congenital anomalies and neurodevelopmental disorders. Two de novo 542 LGDs in ALYREF were identified in our CDH cohort. One had an isolated CDH and the other 543 had CDH and a ventricular septal defect. Similarly, two CDH cases carried de novo variants 544 in SYMPK, another RBP identified with FDR<0.1 in extTADA. One had a de novo predicted 545 deleterious missense variant and isolated CDH and the other had a *de novo* LGD with complex CDH with congenital heart disease, central nervous system anomaly, and 546 547 genitourinary anomaly.

We found further support for the previously reported CDH genes ZFPM2 and MYRF. We 548 549 have identified six ultra-rare LGD variants in ZFPM2 in our CDH cohort, accounting for 550 0.7% of our cases (Figure S6). Three were complex cases, all with minor cardiac 551 malformations. Specifically, two females had atrial septal defects and 1 male had an 552 enlarged aortic root. The other three heterozygotes had isolated CDH. ZFPM2 is expressed in the septum transversum of the diaphragm during early development, and Fog2^{-/-} mice 553 554 generated through chemical mutagenesis have been shown to have diaphragmatic eventration and pulmonary hypoplasia⁵⁵. ZFPM2 physically interacts with NR2F2⁸⁵ and 555 GATA4⁸⁶, two other components of the retinoid signaling pathway implicated in diaphragm 556 and lung development⁸⁷. Our results further support the pleiotropic role of ZFPM2 in the 557 558 development of CDH.

MYRF was implicated in our previous *de novo* variant report⁹ as a gene for cardiac-urogenital 559 560 syndrome (MIM: 618280), and we identified one more additional de novo variant in this 561 cohort (Figure S7). There are now more than 10 variants implicated in CDH with additional 562 anomalies (HGMD® professional 2021.1). MYRF is highly expressed in epithelial cells. Diaphragm is composed of epithelial-like mesothelial cells derived from the mesoderm of the 563 564 pleuroperitoneal folds (PPFs) through cell proliferation, migration, and epithelial-tomesenchymal transition⁸⁸. Single cell analysis⁸⁹ in fetal gonads suggests the cells that highly 565 566 express MYRF also express WT1 and NR2F2, two genes associated with diaphragmatic 567 hernia. Previously, we also demonstrated⁹ that individuals with pathogenic variants in MYRF 568 have decreased expression of GATA4. WT1, NR2F2 and GATA4 are all important in RA 569 signaling in the developing diaphragm¹. Therefore, the damaging variants in *MYRF* may 570 affect the RA signaling pathway, leading to diaphragmatic hernia and other anomalies.

Among the 734 CDH trios with WGS data, we identified a total of 87 *de novo* CNVs and 4 of them are recurrent genes or CNVs. Given the rarity of *de novo* CNVs and small sample size, there were limited data to analyze the differential burden between cases and controls in this study. Future studies with larger sample sizes will improve the power to analyze CNVs and structural variants in CDH.

576 In summary, our analysis of *de novo* and ultra-rare inherited variants identified two new CDH candidate genes LONP1 and ALYREF and confirmed previous associations of MYRF and 577 578 ZFPM2 with CDH. The identification of specific highly risk genes would enhance prenatal or 579 early postnatal counseling and decision making, especially with rapid turnaround of WGS or 580 exome sequencing results. It is likely that transmitted rare variants also contribute to other 581 cases in our cohort, but we require a larger sample size to identify these genes confidently. 582 Future studies will also leverage data from other developmental disorders and integrating 583 genomic data during development.

584 Supplemental Data

585 Supplemental Data include notes, 7 figures and 7 tables.

586 Acknowledgements

587 We would like to thank the patients and their families for their generous contribution. We are

588 grateful for the technical assistance provided by Na Zhu, Patricia Lanzano, Jiangyuan Hu,

589 Jiancheng Guo, Suying Bao, Charles LeDuc, Liyong Deng, Donna Garey, and Anketil Abreu

590 from Columbia University, Jennifer Lyu at Boston Children's Hospital, and Caroline Coletti

591 at Massachusetts General Hospital. We thank our clinical coordinators across the DHREAMS

- 592 centers: Jessica Conway at Washington University School of Medicine, Melissa Reed,
- 593 Elizabeth Erickson, and Madeline Peters at Cincinnati Children's Hospital, Sheila Horak and

594	Evan Roberts at Children's Hospital & Medical Center of Omaha, Jeannie Kreutzman and
595	Irene St. Charles at CS Mott Children's Hospital, Tracy Perry at Monroe Carell Jr. Children's
596	Hospital, Dr. Michelle Kallis at Northwell Health, Andrew Mason and Alicia McIntire at
597	Oregon Health and Science University, Gentry Wools and Lorrie Burkhalter at Children's
598	Medical Center Dallas, Elizabeth Jehle at Hassenfeld Children's Hospital, Michelle
599	Knezevich and Cheryl Kornberg at Medical College of Wisconsin, Min Shi at Children's
600	Hospital of Pittsburgh. We would also like to acknowledge Terry Buchmiller at Boston
601	Children's Hospital, and the other pediatric surgeons and clinicians who referred patients to
602	our studies.
(0)	
603	The whole genome sequencing data were generated through NIH Gabriella Miller Kids First
604	Pediatric Research Program (X01HL132366, X01HL136998, X01HL155060). This work
605	was supported by NIH grants R01HD057036 (L.Y., J.W., W.K.C.), R03HL138352 (A.K.,
606	W.K.C., Y.S.), R01GM120609 (H.Q., Y.S.), UL1 RR024156 (W.K.C.) 1P01HD068250
607	(P.K.D, F.A.H., J.M.W., W.K.C., Y.S., J.M.Z, D.J.M, X.S.) and NSFC81501295 (L.Y.).
608	Additional funding support was provided by grants from CHERUBS, CDHUK, and the
609	National Greek Orthodox Ladies Philoptochos Society, Inc. and generous donations from the
610	Williams Family, Wheeler Foundation, Vanech Family Foundation, Larsen Family, Wilke
611	Family and many other families. Whole genome sequencing data can be obtained from
612	dbGAP through accession phs001110. WHICAP study is supported by funding from NIA
613	RF1AG054023 (B.N.V.). Biogen Inc provided support for whole-exome sequencing for the
614	WHICAP cohort.

615 **Declaration of Interests**

616 The authors declare no competing interests.

617 Web Resources

- 618 DHREAMS study, http://www.cdhgenetics.com/
- 619 Integrative Genome Viewer (IGV), http://software.broadinstitute.org/software/igv
- 620 ClinGen genome dosage map, https://dosage.clinicalgenome.org
- 621 DECIPHER, https://www.deciphergenomics.org
- 622 Combined Annotation Dependent Depletion (CADD), https://cadd.gs.washington.edu/
- 623 GenBank, https://www.ncbi.nlm.nih.gov/genbank/
- 624 Genome Aggregation Database (gnomAD), https://gnomad.broadinstitute.org/
- 625 Online Mendelian Inheritance in Man (OMIM), https://www.omim.org/
- 626 PyMOL molecular viewer, https://pymol.org/2/
- 627 Mouse Genome Informatics (MGI), http://www.informatics.jax.org
- 628 The Human Protein Atlas, https://www.proteinatlas.org/

629 Reference

- K. Yu, L., Hernan, R.R., Wynn, J., and Chung, W.K. (2020). The influence of genetics in congenital diaphragmatic hernia. Semin Perinatol 44, 151169.
 10 1052/ annuari 2010 07 008
- 632 10.1053/j.semperi.2019.07.008.
- Kardon, G., Ackerman, K.G., McCulley, D.J., Shen, Y., Wynn, J., Shang, L.,
 Bogenschutz, E., Sun, X., and Chung, W.K. (2017). Congenital diaphragmatic
 hernias: from genes to mechanisms to therapies. Dis Model Mech *10*, 955-970.
 10.1242/dmm.028365.
- Gao, L., Wynn, J., Yu, L., Hernan, R., Zhou, X., Duron, V., Aspelund, G., FarkouhKaroleski, C., Zygumunt, A., Krishnan, U.S., et al. (2020). Likely damaging de novo
 variants in congenital diaphragmatic hernia patients are associated with worse clinical
 outcomes. Genet Med 22, 2020-2028. 10.1038/s41436-020-0908-0.

641 4. Montalva, L., Lauriti, G., and Zani, A. (2019). Congenital heart disease associated 642 with congenital diaphragmatic hernia: A systematic review on incidence, prenatal 643 diagnosis, management, and outcome. J Pediatr Surg 54, 909-919. 644 10.1016/j.jpedsurg.2019.01.018. 645 5. Lin, A.E., Pober, B.R., and Adatia, I. (2007). Congenital diaphragmatic hernia and 646 associated cardiovascular malformations: type, frequency, and impact on 647 management. Am J Med Genet C Semin Med Genet 145C, 201-216. 648 10.1002/ajmg.c.30131. 649 Kosinski, P., and Wielgos, M. (2017). Congenital diaphragmatic hernia: pathogenesis, 6. 650 prenatal diagnosis and management - literature review. Ginekol Pol 88, 24-30. 651 10.5603/GP.a2017.0005. Wynn, J., Aspelund, G., Zygmunt, A., Stolar, C.J., Mychaliska, G., Butcher, J., Lim, 652 7. 653 F.Y., Gratton, T., Potoka, D., Brennan, K., et al. (2013). Developmental outcomes of 654 children with congenital diaphragmatic hernia: a multicenter prospective study. J 655 Pediatr Surg 48, 1995-2004. 10.1016/j.jpedsurg.2013.02.041. 656 8. Wynn, J., Krishnan, U., Aspelund, G., Zhang, Y., Duong, J., Stolar, C.J., Hahn, E., 657 Pietsch, J., Chung, D., Moore, D., et al. (2013). Outcomes of congenital 658 diaphragmatic hernia in the modern era of management. J Pediatr 163, 114-119 e111. 659 10.1016/j.jpeds.2012.12.036. Qi, H., Yu, L., Zhou, X., Wynn, J., Zhao, H., Guo, Y., Zhu, N., Kitaygorodsky, A., 660 9. 661 Hernan, R., Aspelund, G., et al. (2018). De novo variants in congenital diaphragmatic 662 hernia identify MYRF as a new syndrome and reveal genetic overlaps with other 663 developmental disorders. PLoS Genet 14, e1007822. 10.1371/journal.pgen.1007822. 664 10. Bogenschutz, E.L., Fox, Z.D., Farrell, A., Wynn, J., Moore, B., Yu, L., Aspelund, G., Marth, G., Yandell, M., Shen, Y., et al. (2020). Deep whole-genome sequencing of 665 666 multiple proband tissues and parental blood reveals the complex genetic etiology of congenital diaphragmatic hernias. HGG Adv 1. 10.1016/j.xhgg.2020.100008. 667 Pober, B.R., Lin, A., Russell, M., Ackerman, K.G., Chakravorty, S., Strauss, B., 668 11. 669 Westgate, M.N., Wilson, J., Donahoe, P.K., and Holmes, L.B. (2005). Infants with Bochdalek diaphragmatic hernia: sibling precurrence and monozygotic twin 670 671 discordance in a hospital-based malformation surveillance program. Am J Med Genet 672 A 138A, 81-88. 10.1002/ajmg.a.30904. 673 12. Yu, L., Wynn, J., Cheung, Y.H., Shen, Y., Mychaliska, G.B., Crombleholme, T.M., 674 Azarow, K.S., Lim, F.Y., Chung, D.H., Potoka, D., et al. (2013). Variants in GATA4 675 are a rare cause of familial and sporadic congenital diaphragmatic hernia. Hum Genet 676 132, 285-292. 10.1007/s00439-012-1249-0. Kantarci, S., Al-Gazali, L., Hill, R.S., Donnai, D., Black, G.C., Bieth, E., Chassaing, 677 13. 678 N., Lacombe, D., Devriendt, K., Teebi, A., et al. (2007). Mutations in LRP2, which 679 encodes the multiligand receptor megalin, cause Donnai-Barrow and facio-oculo-680 acoustico-renal syndromes. Nat Genet 39, 957-959. 10.1038/ng2063. 681 14. Longoni, M., High, F.A., Qi, H., Joy, M.P., Hila, R., Coletti, C.M., Wynn, J., 682 Loscertales, M., Shan, L., Bult, C.J., et al. (2017). Genome-wide enrichment of damaging de novo variants in patients with isolated and complex congenital 683 684 diaphragmatic hernia. Hum Genet 136, 679-691. 10.1007/s00439-017-1774-y. Yu, L., Sawle, A.D., Wynn, J., Aspelund, G., Stolar, C.J., Arkovitz, M.S., Potoka, D., 685 15. Azarow, K.S., Mychaliska, G.B., Shen, Y., and Chung, W.K. (2015). Increased 686 burden of de novo predicted deleterious variants in complex congenital diaphragmatic 687 688 hernia. Hum Mol Genet 24, 4764-4773. 10.1093/hmg/ddv196. 689 16. Yu, L., Wynn, J., Ma, L., Guha, S., Mychaliska, G.B., Crombleholme, T.M., Azarow, 690 K.S., Lim, F.Y., Chung, D.H., Potoka, D., et al. (2012). De novo copy number

691 variants are associated with congenital diaphragmatic hernia. J Med Genet 49, 650-692 659. 10.1136/jmedgenet-2012-101135. Harris, P.A., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., and Conde, J.G. (2009). 693 17. 694 Research electronic data capture (REDCap)--a metadata-driven methodology and 695 workflow process for providing translational research informatics support. J Biomed 696 Inform 42, 377-381. 10.1016/j.jbi.2008.08.010. 697 18. Feliciano, P., Zhou, X., Astrovskaya, I., Turner, T.N., Wang, T., Brueggeman, L., 698 Barnard, R., Hsieh, A., Snyder, L.G., Muzny, D.M., et al. (2019). Exome sequencing 699 of 457 autism families recruited online provides evidence for autism risk genes. NPJ 700 Genom Med, 4-19. 10.1038/s41525-019-0093-8. 701 Tang, M.X., Cross, P., Andrews, H., Jacobs, D.M., Small, S., Bell, K., Merchant, C., 19. 702 Lantigua, R., Costa, R., Stern, Y., and Mayeux, R. (2001). Incidence of AD in 703 African-Americans, Caribbean Hispanics, and Caucasians in northern Manhattan. 704 Neurology 56, 49-56. 10.1212/wnl.56.1.49. 705 20. Van Hout, C.V., Tachmazidou, I., Backman, J.D., Hoffman, J.D., Liu, D., Pandey, 706 A.K., Gonzaga-Jauregui, C., Khalid, S., Ye, B., Banerjee, N., et al. (2020). Exome 707 sequencing and characterization of 49,960 individuals in the UK Biobank. Nature 708 586, 749-756. 10.1038/s41586-020-2853-0. 709 Raghavan, N.S., Brickman, A.M., Andrews, H., Manly, J.J., Schupf, N., Lantigua, R., 21. 710 Wolock, C.J., Kamalakaran, S., Petrovski, S., Tosto, G., et al. (2018). Whole-exome 711 sequencing in 20,197 persons for rare variants in Alzheimer's disease. Ann Clin 712 Transl Neurol 5, 832-842. 10.1002/acn3.582. Zhu, N., Swietlik, E.M., Welch, C.L., Pauciulo, M.W., Hagen, J.J., Zhou, X., Guo, Y., 713 22. 714 Karten, J., Pandya, D., Tilly, T., et al. (2021). Rare variant analysis of 4241 715 pulmonary arterial hypertension cases from an international consortium implicates 716 FBLN2, PDGFD, and rare de novo variants in PAH. Genome Med 13, 80. 717 10.1186/s13073-021-00891-1. 718 Li, H., Ruan, J., and Durbin, R. (2008). Mapping short DNA sequencing reads and 23. 719 calling variants using mapping quality scores. Genome Res 18, 1851-1858. 720 10.1101/gr.078212.108. 721 DePristo, M.A., Banks, E., Poplin, R., Garimella, K.V., Maguire, J.R., Hartl, C., 24. 722 Philippakis, A.A., del Angel, G., Rivas, M.A., Hanna, M., et al. (2011). A framework 723 for variation discovery and genotyping using next-generation DNA sequencing data. 724 Nat Genet 43, 491-498. 10.1038/ng.806. 725 25. Van der Auwera, G.A., Carneiro, M.O., Hartl, C., Poplin, R., Del Angel, G., Levy-726 Moonshine, A., Jordan, T., Shakir, K., Roazen, D., Thibault, J., et al. (2013). From 727 FastO data to high confidence variant calls: the Genome Analysis Toolkit best 728 practices pipeline. Curr Protoc Bioinformatics 43, 11.10.11-11.10.33. 10.1002/0471250953.bi1110s43. 729 730 26. Zhao, H., Sun, Z., Wang, J., Huang, H., Kocher, J.P., and Wang, L. (2014). 731 CrossMap: a versatile tool for coordinate conversion between genome assemblies. 732 Bioinformatics 30, 1006-1007. 10.1093/bioinformatics/btt730. Manichaikul, A., Mychaleckyj, J.C., Rich, S.S., Daly, K., Sale, M., and Chen, W.M. 733 27. 734 (2010). Robust relationship inference in genome-wide association studies. 735 Bioinformatics 26, 2867-2873. 10.1093/bioinformatics/btq559. 736 Pedersen, B.S., and Quinlan, A.R. (2017). Who's Who? Detecting and Resolving 28. 737 Sample Anomalies in Human DNA Sequencing Studies with Peddy. Am J Hum 738 Genet 100, 406-413. 10.1016/j.ajhg.2017.01.017. 739 Poplin, R., Chang, P.C., Alexander, D., Schwartz, S., Colthurst, T., Ku, A., 29. 740 Newburger, D., Dijamco, J., Nguyen, N., Afshar, P.T., et al. (2018). A universal SNP

741		and small-indel variant caller using deep neural networks. Nat Biotechnol 36, 983-
742	• •	987. 10.1038/nbt.4235.
743	30.	Tom, J.A., Reeder, J., Forrest, W.F., Graham, R.R., Hunkapiller, J., Behrens, T.W.,
744		and Bhangale, T.R. (2017). Identifying and mitigating batch effects in whole genome
745		sequencing data. BMC Bioinformatics 18, 351. 10.1186/s12859-017-1756-z.
746	31.	McLaren, W., Gil, L., Hunt, S.E., Riat, H.S., Ritchie, G.R., Thormann, A., Flicek, P.,
747		and Cunningham, F. (2016). The Ensembl Variant Effect Predictor. Genome Biol 17,
748		122. 10.1186/s13059-016-0974-4.
749	32.	Wang, K., Li, M., and Hakonarson, H. (2010). ANNOVAR: functional annotation of
750		genetic variants from high-throughput sequencing data. Nucleic Acids Res 38, e164.
751		10.1093/nar/gkq603.
752	33.	Kircher, M., Witten, D.M., Jain, P., O'Roak, B.J., Cooper, G.M., and Shendure, J.
753		(2014). A general framework for estimating the relative pathogenicity of human
754		genetic variants. Nat Genet 46, 310-315. 10.1038/ng.2892.
755	34.	Russell, M.K., Longoni, M., Wells, J., Maalouf, F.I., Tracy, A.A., Loscertales, M.,
756		Ackerman, K.G., Pober, B.R., Lage, K., Bult, C.J., and Donahoe, P.K. (2012).
757		Congenital diaphragmatic hernia candidate genes derived from embryonic
758		transcriptomes. Proc Natl Acad Sci U S A 109, 2978-2983.
759		10.1073/pnas.1121621109.
760	35.	Rehm, H.L., Berg, J.S., Brooks, L.D., Bustamante, C.D., Evans, J.P., Landrum, M.J.,
761		Ledbetter, D.H., Maglott, D.R., Martin, C.L., Nussbaum, R.L., et al. (2015). ClinGen-
762		-the Clinical Genome Resource. N Engl J Med 372, 2235-2242.
763		10.1056/NEJMsr1406261.
764	36.	Abyzov, A., Urban, A.E., Snyder, M., and Gerstein, M. (2011). CNVnator: an
765		approach to discover, genotype, and characterize typical and atypical CNVs from
766		family and population genome sequencing. Genome Res 21, 974-984.
767		10.1101/gr.114876.110.
768	37.	Layer, R.M., Chiang, C., Quinlan, A.R., and Hall, I.M. (2014). LUMPY: a
769		probabilistic framework for structural variant discovery. Genome Biol 15, R84.
770		10.1186/gb-2014-15-6-r84.
771	38.	Chiang, C., Layer, R.M., Faust, G.G., Lindberg, M.R., Rose, D.B., Garrison, E.P.,
772		Marth, G.T., Quinlan, A.R., and Hall, I.M. (2015). SpeedSeq: ultra-fast personal
773		genome analysis and interpretation. Nat Methods 12, 966-968. 10.1038/nmeth.3505.
774	39.	Lek, M., Karczewski, K.J., Minikel, E.V., Samocha, K.E., Banks, E., Fennell, T.,
775		O'Donnell-Luria, A.H., Ware, J.S., Hill, A.J., Cummings, B.B., et al. (2016). Analysis
776		of protein-coding genetic variation in 60,706 humans. Nature 536, 285-291.
777		10.1038/nature19057.
778	40.	Teschendorff, A.E., Zhu, T., Breeze, C.E., and Beck, S. (2020). EPISCORE: cell type
779		deconvolution of bulk tissue DNA methylomes from single-cell RNA-Seq data.
780		Genome Biol 21, 221. 10.1186/s13059-020-02126-9.
781	41.	Firth, H.V., Richards, S.M., Bevan, A.P., Clayton, S., Corpas, M., Rajan, D., Van
782		Vooren, S., Moreau, Y., Pettett, R.M., and Carter, N.P. (2009). DECIPHER: Database
783		of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources.
784		Am J Hum Genet 84, 524-533. 10.1016/j.ajhg.2009.03.010.
785	42.	Samocha, K.E., Robinson, E.B., Sanders, S.J., Stevens, C., Sabo, A., McGrath, L.M.,
786		Kosmicki, J.A., Rehnstrom, K., Mallick, S., Kirby, A., et al. (2014). A framework for
787		the interpretation of de novo mutation in human disease. Nat Genet 46, 944-950.
788		10.1038/ng.3050.
789	43.	Nguyen, H.T., Bryois, J., Kim, A., Dobbyn, A., Huckins, L.M., Munoz-Manchado,
790		A.B., Ruderfer, D.M., Genovese, G., Fromer, M., Xu, X., et al. (2017). Integrated

791 Bayesian analysis of rare exonic variants to identify risk genes for schizophrenia and 792 neurodevelopmental disorders. Genome Med 9, 114. 10.1186/s13073-017-0497-y. 793 He, X., Sanders, S.J., Liu, L., De Rubeis, S., Lim, E.T., Sutcliffe, J.S., Schellenberg, 44. 794 G.D., Gibbs, R.A., Daly, M.J., Buxbaum, J.D., et al. (2013). Integrated model of de 795 novo and inherited genetic variants yields greater power to identify risk genes. PLoS 796 Genet 9, e1003671. 10.1371/journal.pgen.1003671. 797 45. Price, A.L., Kryukov, G.V., de Bakker, P.I., Purcell, S.M., Staples, J., Wei, L.J., and 798 Sunyaev, S.R. (2010). Pooled association tests for rare variants in exon-resequencing 799 studies. Am J Hum Genet 86, 832-838. 10.1016/j.ajhg.2010.04.005. 800 46. Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., 801 Heer, F.T., de Beer, T.A.P., Rempfer, C., Bordoli, L., et al. (2018). SWISS-MODEL: 802 homology modelling of protein structures and complexes. Nucleic Acids Res 46, 803 W296-W303. 10.1093/nar/gky427. Harris, K.S., Zhang, Z., McManus, M.T., Harfe, B.D., and Sun, X. (2006). Dicer 804 47. 805 function is essential for lung epithelium morphogenesis. Proc Natl Acad Sci U S A 806 103, 2208-2213. 10.1073/pnas.0510839103. 807 48. Hinton, C.F., Siffel, C., Correa, A., and Shapira, S.K. (2017). Survival Disparities 808 Associated with Congenital Diaphragmatic Hernia. Birth Defects Res 109, 816-823. 809 10.1002/bdr2.1015. 810 49. Leeuwen, L., Mous, D.S., van Rosmalen, J., Olieman, J.F., Andriessen, L., Gischler, 811 S.J., Joosten, K.F.M., Wijnen, R.M.H., Tibboel, D., H, I.J., and Spoel, M. (2017). 812 Congenital Diaphragmatic Hernia and Growth to 12 Years. Pediatrics 140. 813 10.1542/peds.2016-3659. 814 50. Homsy, J., Zaidi, S., Shen, Y., Ware, J.S., Samocha, K.E., Karczewski, K.J., 815 DePalma, S.R., McKean, D., Wakimoto, H., Gorham, J., et al. (2015). De novo 816 mutations in congenital heart disease with neurodevelopmental and other congenital 817 anomalies. Science 350, 1262-1266. 10.1126/science.aac9396. Jin, S.C., Homsy, J., Zaidi, S., Lu, Q., Morton, S., DePalma, S.R., Zeng, X., Qi, H., 818 51. 819 Chang, W., Sierant, M.C., et al. (2017). Contribution of rare inherited and de novo 820 variants in 2,871 congenital heart disease probands. Nat Genet 49, 1593-1601. 821 10.1038/ng.3970. 822 52. Satterstrom, F.K., Kosmicki, J.A., Wang, J., Breen, M.S., De Rubeis, S., An, J.Y., 823 Peng, M., Collins, R., Grove, J., Klei, L., et al. (2020). Large-Scale Exome 824 Sequencing Study Implicates Both Developmental and Functional Changes in the 825 Neurobiology of Autism. Cell 180, 568-584 e523. 10.1016/j.cell.2019.12.036. 826 53. Strauss, K.A., Jinks, R.N., Puffenberger, E.G., Venkatesh, S., Singh, K., Cheng, I., 827 Mikita, N., Thilagavathi, J., Lee, J., Sarafianos, S., et al. (2015). CODAS syndrome is 828 associated with mutations of LONP1, encoding mitochondrial AAA+ Lon protease. 829 Am J Hum Genet 96, 121-135. 10.1016/j.ajhg.2014.12.003. 830 54. Shebib, S.M., Reed, M.H., Shuckett, E.P., Cross, H.G., Perry, J.B., and Chudley, A.E. 831 (1991). Newly recognized syndrome of cerebral, ocular, dental, auricular, skeletal 832 anomalies: CODAS syndrome--a case report. Am J Med Genet 40, 88-93. 10.1002/ajmg.1320400118. 833 834 55. Ackerman, K.G., Herron, B.J., Vargas, S.O., Huang, H., Tevosian, S.G., Kochilas, L., 835 Rao, C., Pober, B.R., Babiuk, R.P., Epstein, J.A., et al. (2005). Fog2 is required for 836 normal diaphragm and lung development in mice and humans. PLoS Genet 1, 58-65. 837 10.1371/journal.pgen.0010010. Bleyl, S.B., Moshrefi, A., Shaw, G.M., Saijoh, Y., Schoenwolf, G.C., Pennacchio, 838 56. 839 L.A., and Slavotinek, A.M. (2007). Candidate genes for congenital diaphragmatic 840 hernia from animal models: sequencing of FOG2 and PDGFRalpha reveals rare

~		
841		variants in diaphragmatic hernia patients. Eur J Hum Genet 15, 950-958.
842		10.1038/sj.ejhg.5201872.
843	57.	Iossifov, I., O'Roak, B.J., Sanders, S.J., Ronemus, M., Krumm, N., Levy, D.,
844		Stessman, H.A., Witherspoon, K.T., Vives, L., Patterson, K.E., et al. (2014). The
845		contribution of de novo coding mutations to autism spectrum disorder. Nature 515,
846		216-221. 10.1038/nature13908.
847	58.	Kosmicki, J.A., Samocha, K.E., Howrigan, D.P., Sanders, S.J., Slowikowski, K., Lek,
848		M., Karczewski, K.J., Cutler, D.J., Devlin, B., Roeder, K., et al. (2017). Refining the
849		role of de novo protein-truncating variants in neurodevelopmental disorders by using
850		population reference samples. Nat Genet 49, 504-510. 10.1038/ng.3789.
851	59.	Jacquemont, S., Coe, B.P., Hersch, M., Duyzend, M.H., Krumm, N., Bergmann, S.,
852	0.2.1	Beckmann, J.S., Rosenfeld, J.A., and Eichler, F.E. (2014). A higher mutational
853		burden in females supports a "female protective model" in neurodevelopmental
854		disorders Am I Hum Genet 94 415-425 10 1016/j aibg 2014 02 001
855	60	Wang B Ii T Zhou Y Wang I Wang Y Wang I Zhu D Zhang Y Sham
856	00.	P.C. Zhang, Y. at al. (2016) CNV analysis in Chinasa shildren of montal retardation
050 057		highlights a say differentiation in generated contribution to do nove and inherited
050		mightights a sex differentiation in parental contribution to de novo and innerited
838	(1	mutational burdens. Sci Rep 0, 23954. $10.1038/srep23954$.
839	61.	Gibellini, L., De Gaetano, A., Mandrioli, M., Van Tongeren, E., Bortolotti, C.A.,
860		Cossarizza, A., and Pinti, M. (2020). The biology of Lonp1: More than a
861		mitochondrial protease. Int Rev Cell Mol Biol 354, 1-61.
862		10.1016/bs.ircmb.2020.02.005.
863	62.	Quiros, P.M., Espanol, Y., Acin-Perez, R., Rodriguez, F., Barcena, C., Watanabe, K.,
864		Calvo, E., Loureiro, M., Fernandez-Garcia, M.S., Fueyo, A., et al. (2014). ATP-
865		dependent Lon protease controls tumor bioenergetics by reprogramming
866		mitochondrial activity. Cell Rep 8, 542-556. 10.1016/j.celrep.2014.06.018.
867	63.	Matsushima, Y., Goto, Y., and Kaguni, L.S. (2010). Mitochondrial Lon protease
868		regulates mitochondrial DNA copy number and transcription by selective degradation
869		of mitochondrial transcription factor A (TFAM). Proc Natl Acad Sci U S A 107,
870		18410-18415. 10.1073/pnas.1008924107.
871	64.	Gur, E., and Sauer, R.T. (2008). Recognition of misfolded proteins by Lon, a AAA(+)
872		protease. Genes Dev 22, 2267-2277. 10.1101/gad.1670908.
873	65.	He, L., Luo, D., Yang, F., Li, C., Zhang, X., Deng, H., and Zhang, J.R. (2018).
874		Multiple domains of bacterial and human Lon proteases define substrate selectivity.
875		Emerg Microbes Infect 7, 149, 10,1038/s41426-018-0148-4.
876	66	Mikita N Cheng I Fishovitz I Huang I and Lee I (2013) Processive
877	00.	degradation of unstructured protein by Escherichia coli Lon occurs via the slow
878		sequential delivery of multiple scissile sites followed by rapid and synchronized
879		nentide hond cleavage events. Biochemistry 52, 5629-5644, 10, 1021/bi4008319
880	67	Flodby P. Li C. Liu V. Wang H. Marconett C.N. Laird Offrings I.A. Minoo
000 991	07.	P. Los A S. and Thou P. (2016). The 78 kD Chucose Degulated Protein Pagulates
001		F., Lee, A.S., and Zhou, B. (2010). The 76-KD Olucose-Regulated Floteni Regulates
002		Endoptasmic Reticulum Homeostasis and Distal Epithenial Cell Survival during Lung
883	(0	Development. Am J Respir Cell Mol Biol 55, 135-149. 10.1165/rcmb.2015-032/OC.
884	68.	Pareek, G., and Pallanck, L.J. (2018). Inactivation of Lon protease reveals a link
883		between mitochondrial unfolded protein stress and mitochondrial translation
886	60	inhibition. Cell Death Dis 9, 1168. 10.1038/s41419-018-1213-6.
887	69.	Shi, H., O'Reilly, V.C., Moreau, J.L., Bewes, T.R., Yam, M.X., Chapman, B.E.,
888		Grieve, S.M., Stocker, R., Graham, R.M., Chapman, G., et al. (2016). Gestational
889		stress induces the unfolded protein response, resulting in heart defects. Development
890		143, 2561-2572. 10.1242/dev.136820.

891	70.	Kao, T.Y., Chiu, Y.C., Fang, W.C., Cheng, C.W., Kuo, C.Y., Juan, H.F., Wu, S.H.,
892		and Lee, A.Y. (2015). Mitochondrial Lon regulates apoptosis through the association
893		with Hsp60-mtHsp70 complex. Cell Death Dis 6, e1642. 10.1038/cddis.2015.9.
894	71.	Luciakova, K., Sokolikova, B., Chloupkova, M., and Nelson, B.D. (1999). Enhanced
895		mitochondrial biogenesis is associated with increased expression of the mitochondrial
896		ATP-dependent Lon protease. FEBS Letters 444, 186-188. 10.1016/s0014-
897		5793(99)00058-7.
898	72.	Gibellini, L., Pinti, M., Boraldi, F., Giorgio, V., Bernardi, P., Bartolomeo, R., Nasi,
899		M., De Biasi, S., Missiroli, S., Carnevale, G., et al. (2014). Silencing of mitochondrial
900		Lon protease deeply impairs mitochondrial proteome and function in colon cancer
901		cells. FASEB J 28, 5122-5135. 10.1096/fj.14-255869.
902	73.	Bota, D.A., Ngo, J.K., and Davies, K.J. (2005). Downregulation of the human Lon
903		protease impairs mitochondrial structure and function and causes cell death. Free
904		Radic Biol Med 38, 665-677. 10.1016/j.freeradbiomed.2004.11.017.
905	74.	Babiuk, R.P., Zhang, W., Clugston, R., Allan, D.W., and Greer, J.J. (2003).
906		Embryological origins and development of the rat diaphragm. J Comp Neurol 455,
907		477-487. 10.1002/cne.10503.
908	75.	Bota, D.A., and Davies, K.J. (2016). Mitochondrial Lon protease in human disease
909		and aging: Including an etiologic classification of Lon-related diseases and disorders.
910		Free Radic Biol Med 100, 188-198. 10.1016/j.freeradbiomed.2016.06.031.
911	76.	Shi, M., Zhang, H., Wu, X., He, Z., Wang, L., Yin, S., Tian, B., Li, G., and Cheng, H.
912		(2017). ALYREF mainly binds to the 5' and the 3' regions of the mRNA in vivo.
913		Nucleic Acids Res 45, 9640-9653. 10.1093/nar/gkx597.
914	77.	Fan, J., Wang, K., Du, X., Wang, J., Chen, S., Wang, Y., Shi, M., Zhang, L., Wu, X.,
915		Zheng, D., et al. (2019). ALYREF links 3'-end processing to nuclear export of non-
916		polyadenylated mRNAs. EMBO J 38. 10.15252/embj.201899910.
917	78.	Yang, X., Yang, Y., Sun, B.F., Chen, Y.S., Xu, J.W., Lai, W.Y., Li, A., Wang, X.,
918		Bhattarai, D.P., Xiao, W., et al. (2017). 5-methylcytosine promotes mRNA export -
919		NSUN2 as the methyltransferase and ALYREF as an m(5)C reader. Cell Res 27, 606-
920	- 0	625. 10.1038/cr.2017.55.
921	79.	Chen, Y.S., Yang, W.L., Zhao, Y.L., and Yang, Y.G. (2021). Dynamic transcriptomic
922		m(5) C and its regulatory role in RNA processing. Wiley Interdiscip Rev RNA,
923	0.0	e1639. 10.1002/wrna.1639.
924	80.	Gallagher, T.L., Arribere, J.A., Geurts, P.A., Exner, C.R., McDonald, K.L., Dill,
925		K.K., Marr, H.L., Adkar, S.S., Garnett, A.T., Amacher, S.L., and Conboy, J.G.
926		(2011). Rotox-regulated alternative splicing is critical for zebrafish cardiac and
927	0.1	skeletal muscle functions. Dev Biol 339 , $251-261$. 10.1016/j.ydbio.2011.08.025.
928	81.	Bill, B.R., Lowe, J.K., Dybuncio, C.I., and Fogel, B.L. (2013). Orchestration of
929		neurodevelopmental programs by RBFOX1: implications for autism spectrum
930	00	disorder. Int Rev Neurobiol 113, 251-267. 10.1016/B9/8-0-12-418/00-9.00008-3.
931	82.	Lee, J.A., Damianov, A., Lin, C.H., Fontes, M., Parikshak, N.N., Anderson, E.S.,
932		Geschwind, D.H., Black, D.L., and Martin, K.C. (2016). Cytoplasmic Rotox1
933		Regulates the Expression of Synaptic and Autism-Related Genes. Neuron 89, 113-
934	0.7	128. 10.1016/j.neuron.2015.11.025.
933 026	83.	remanuez, E., Kajan, N., and Bagni, C. (2013). The FMRP regulon: from targets to
930 027	04	alsease convergence. Front Neurosci /, 191. 10.3389/Inins.2013.00191.
75/ 020	ð4.	Dougnerry, J.D., Maioney, S.E., Wozniak, D.F., Kieger, M.A., Sonnenblick, L.,
738 020		Coppoia, G., Ivianieu, N.G., Zhang, J., Cai, J., Paul, G.J., et al. (2013). The disruption
737		or cento, a gene identified by translational profiling of serotonergic neurons, results in

	autism-related behaviors. J Neurosci 33, 2732-2753. 10.1523/JNEUROSCI.4762-
	12.2013.
85.	Huggins, G.S., Bacani, C.J., Boltax, J., Aikawa, R., and Leiden, J.M. (2001). Friend
	of GATA 2 physically interacts with chicken ovalbumin upstream promoter-TF2
	(COUP-TF2) and COUP-TF3 and represses COUP-TF2-dependent activation of the
	atrial natriuretic factor promoter. J Biol Chem 276, 28029-28036.
	10.1074/jbc.M103577200.
86.	Svensson, E.C., Tufts, R.L., Polk, C.E., and Leiden, J.M. (1999). Molecular cloning
	of FOG-2: a modulator of transcription factor GATA-4 in cardiomyocytes. Proc Natl
	Acad Sci U S A 96, 956-961. 10.1073/pnas.96.3.956.
87.	Goumy, C., Gouas, L., Marceau, G., Coste, K., Veronese, L., Gallot, D., Sapin, V.,
	Vago, P., and Tchirkov, A. (2010). Retinoid pathway and congenital diaphragmatic
	hernia: hypothesis from the analysis of chromosomal abnormalities. Fetal Diagn Ther
	28, 129-139. 10.1159/000313331.
88.	Carmona, R., Canete, A., Cano, E., Ariza, L., Rojas, A., and Munoz-Chapuli, R.
	(2016). Conditional deletion of WT1 in the septum transversum mesenchyme causes
	congenital diaphragmatic hernia in mice. Elife 5. 10.7554/eLife.16009.
89.	Hamanaka, K., Takata, A., Uchiyama, Y., Miyatake, S., Miyake, N., Mitsuhashi, S.,
	Iwama, K., Fujita, A., Imagawa, E., Alkanaq, A.N., et al. (2019). MYRF
	haploinsufficiency causes 46,XY and 46,XX disorders of sex development:
	bioinformatics consideration. Hum Mol Genet 28, 2319-2329. 10.1093/hmg/ddz066.
	 85. 86. 87. 88. 89.

961

962 Tables

963 Table 1. Clinical summary of 827 CDH probands

		Number	Percent
G	Male	486	58.8%
Sex	Female	341	41.2%
	African	31	3.7%
	Latinx	153	18.5%
Genetic ancestry	Number P Male 486 5 Female 341 4 African 31 3 Latinx 153 1 European 607 7 East Asian 15 1 South Asian 21 2 Isolated 533 6 Complex 277 3 Unknown 17 2 Left 645 7 Right 119 1 Bilateral/Center/Eventration/Other 38 4 Unknown 25 3 Fetal 53 6 Neonatal 464 5 Child 285 3 Adult 2 0 Not specified 23 2 Cardiovascular 144 5 Neurodevelopmental ^a 54 1 Skeletal 46 1 Genitourinary 46 1	73.4%	
	East Asian	15	1.8%
	South Asian	21	2.5%
	Isolated	533	64.4%
CDH classification	Complex	277	33.5%
	Unknown	17	2.1%
	Left	645	78.0%
CDU	Male 486 58.8 Female 341 41.2 African 31 3.79 Latinx 153 18.5 European 607 73.4 East Asian 15 1.89 South Asian 21 2.59 Isolated 533 64.4 Complex 277 33.5 Unknown 17 2.19 Left 645 78.0 Right 119 14.4 Bilateral/Center/Eventration/Other 38 4.69 Unknown 25 3.09 Fetal 53 6.49 Neonatal 464 56.1 Child 285 34.5 Adult 2 0.29 Not specified 23 2.89 Cardiovascular 144 52.0 Neurodevelopmental ^a 54 19.5 Skeletal 46 16.6 Gastrointestinal 42 15.2 <td>14.4%</td>	14.4%	
CDH side	Bilateral/Center/Eventration/Other	38	4.6%
	Unknown	25	3.0%
	Fetal	53	6.4%
	Neonatal	464	56.1%
Timing of enrollment	Male 486 58.8 Female 341 41.2 African 31 3.79 Latinx 153 18.5 European 607 73.4 East Asian 15 1.89 South Asian 21 2.59 Isolated 533 64.4 Complex 277 33.5 Unknown 17 2.19 Left 645 78.0 Right 119 14.4 Bilateral/Center/Eventration/Other 38 4.69 Unknown 25 3.09 Fetal 53 6.49 Neonatal 464 56.1 Child 285 34.5 Adult 2 0.29 Not specified 23 2.89 Cardiovascular 144 52.0 Neurodevelopmental ^a 54 19.5 Skeletal 46 16.6 Gastrointestinal 42 15.2 <td>34.5%</td>	34.5%	
	Adult	2	0.2%
	Not specified	23	2.8%
	Cardiovascular	144	52.0%
	Neurodevelopmental ^a	54	19.5%
	tic ancestry European 607 East Asian 15 South Asian 21 Isolated 533 Complex 277 Unknown 17 Left 645 Right 119 Bilateral/Center/Eventration/Other 38 Unknown 25 Fetal 53 Neonatal 464 Child 285 Adult 2 Not specified 23 Cardiovascular 144 Neurodevelopmental ^a 54 Skeletal 46 Genitourinary 46 Gastrointestinal 422 Pulmonary defects ^b 18 Cleft lip or palate and/or micrognathia 11	46	16.6%
ConclusionEuropeanEast AsianSouth AsianIsolatedCDH classificationComplexUnknownLeftRightBilateral/Center/Eventration/OtherUnknownFetalNeonatalChildAdultNot specifiedCardiovascularNeurodevelopmentalaSkeletalGastrointestinalPulmonary defectsbCleft lip or palate and/or micrognathia	46	16.6%	
(1-2/7)	Gastrointestinal	42	15.2%
	Pulmonary defects ^b	18	6.5%
	Cleft lip or palate and/or micrognathia	11	4.0%

964 ^aNeurodevelopmental conditions include congenital abnormalities in central nervous system, and developmental

965 delay or neuropsychiatric disorders based on the follow-up developmental evaluations.

966 ^bdoes not include pulmonary hypoplasia or hypertension

967 Table 2. Top CDH associated genes predicted by pLI-stratified extTADA with $\geq 2 de$

968 *novo* predicted deleterious variant.

Gene	Gene name	#D-mis	#LGD	PPA	FDR	pLI
MYRF ^a	Myelin Regulatory Factor	3	3	1.00	3.97E-06	1
LONP1	Lon Peptidase 1, Mitochondrial	3	0	0.97	0.014	1
ALYREF	Aly/REF Export Factor	0	2	0.93	0.033	0.83
HSD17B10	Hydroxysteroid 17-Beta Dehydrogenase 10	1	1	0.87	0.056	0.89
GATA4 ^a	GATA Binding Protein 4	1	1	0.86	0.072	0.8
SYMPK	Symplekin	1	1	0.82	0.090	1
PTPN11	Protein Tyrosine Phosphatase Non-Receptor Type 11	2	0	0.79	0.11	1
WT1 ^a	WT1 Transcription Factor	2	0	0.78	0.12	1
FAM83H	Family With Sequence Similarity 83 Member H	2	0	0.75	0.13	0.89
CACNA1H	Calcium Voltage-Gated Channel Subunit Alpha1 H	2	0	0.63	0.16	0
SEPSECS	Sep (O-Phosphoserine) TRNA:Sec (Selenocysteine) TRNA Synthase	0	2	0.23	0.66	0
ZFYVE26	Zinc Finger FYVE-Type Containing 26	2	0	0.09	0.72	0

969 #D-mis: number of *de novo* D-mis; #LGD: number of *de novo* LGD; PPA: posterior probability of association; FDR: false discovery rate

970 ^a: known CDH risk genes

971 Table 3. Recurrent genes or regions in *de novo* CNVs

Recurrent	ID	Cytoband	Start	End	Size(kb)	Туре	Known risk CDH/CHD/NDD genes	qPCR confirm
CSMD1 (CUB	CDH1162	8p23.2	3846934	4073105	226	DEL	-	Yes
And Sushi Multiple Domains	CDH12-0009	8p23.3p23.1	191301	7355200	7164	DEL	FBX025	Yes
1)	CDH863	8p23.3p23.1	200601	7155000	6954	DUP	FBXO25	Yes
CDIDI (Comburin)	C1235FSL_169	14q23.3	66559001	66630200	71	DEL	GPHN	-
GPHN (Gepnyrin)	CDH14-0009	14q23.3	66636783	66668074	31	DEL	GPHN	Yes
17.10	h1237LPLa1	17q12	36441801	37892100	1450	DEL	GGNBP2	Yes
1/q12	CDH05-0040	17q12	36442521	37963800	1521	DEL	GGNBP2	Yes
	CDH10-0022	21q	13000000	46700000	33700	DUP	SIM2;SON;HMGN1;SIK1;COL6A1;DYRK1A;DSCAM;DIP2A;KCNJ6	-
21q	CDH10-0038	21q	13188001	46700000	33512	DUP	SIM2;SON;HMGN1;SIK1;COL6A1;DYRK1A;DSCAM;DIP2A;KCNJ6	-
	CDH10-0042	21q	13192901	46684100	33492	DUP	SIM2;SON;HMGN1;SIK1;COL6A1;DYRK1A;DSCAM;DIP2A;KCNJ6	-

972

973 Table 4. Phenotypes of CDH cases with ultra-rare deleterious variants in *LONP1*. Deleterious heterozygous variants include LGD and missense with CADD ≥ 25 with minor allele frequency (MAF) <1e-5 across

974 all the gnomAD v3.0 genomes.

cDNA change	Protein Change	Sample ID	Sex	Genetic ancestry	Inheritance	Family history of other birth defects	Familial CDH	1M PH	3M PH	Vital status	ЕСМО	Complex	Neuro-related	Other Congenital Anomalies/medical problems
c.296dup	p.S100Qfs*46	01-0794	Female	EUR	paternal	No	No	-	-	Deceased	No	No		No
c.398C>G	p.P133R	01-0672	Female	AFR	paternal	No	Affected sibling (+)	Unk	Unk	Alive	Yes	Yes	No	congenital cataracts
c.398C>G	p.P133R	01-0670	Male	AFR	paternal	No	Affected sibling (+)	-	-	Deceased	Yes	Yes		GI anomaly, GU anomaly
c.629G>A	p.G210E	01-0070	Male	EUR	de novo	No	No	-	-	Deceased	Yes	No		No
c.639-1G>T	p.X213_splice	04-0022	Female	EUR	paternal	Paternal half-brother with idiopathic PH (N/T)	Affected sibling (N/T), Affected paternal grandmother (+, <i>de novo</i>)	Severe	-	Deceased	Yes	No		No
c.792del	p.P264Rfs*5	09-0003	Female	EUR	maternal	Maternal great uncle with suspected cerebral palsy	No	Severe	-	Deceased	Yes	No	Seizures	No
c.851del	p.Q284Hfs*61	1428	Female	EUR	maternal	No	No	Mild	Mild	Alive	No	No	No	short stature
c.1123C>A	p.L375M	04-0045	Male	EUR	paternal	Paternal uncle: neonatal death due to brain abnormality (hydrocephalus?)	No	None	None	Alive	No	No	No	No
c.1262del	p.F421Lfs*87	1733	Female	EUR	maternal	No	Maternal uncle with suspected CDH (N/T)	-	-	Deceased	Yes	Yes	global encephalopathy, seizures	CHD
c.1574C>T	p.P525L	01-1279	Male	EUR	maternal ^a	No	Affected sibling (+)	-	-	Deceased	Yes	No		No, bilateral CDH
c.1624C>T	p.R542*	01-0113	Male	EUR	paternal	Mother with Klippel Feil syndrome, Sprengel deformity of scapula, crossed fused ectopia (kidneys), Arnold Chiari malformation I	No	Severe	Severe	Deceased	Yes	Yes	No	Pyloric stenosis
c.1629delT	p.E543del	04-0077	Female	EUR	maternal	Unknown	Unknown	Severe	-	Deceased	Yes	Yes		CHD
c.1709C>T	p.P570L	04-0031	Female	EUR	unknown (singleton)	Father with residual post axial polydactyly	No	Severe	-	Deceased	Yes	No		No
c.1773G>C	p.E591D	1511	Male	EUR	de novo	No	No	Mild	None	Alive	No	No	No	No
c.1789C>T	p.R597*	01-0582	Male	AMR	unknown (singleton)	No	No	None	None	Deceased	No	Yes		CHD
c.1895-1G>T	p.X632_splice	1449	Female	EUR	maternal	Unknown	Unknown	-	-	Deceased	No	No		
c.1913C>T	p.T638M	01-0057	Female	AMR	de novo	Unknown	Unknown	Severe	Moderate	Alive	No	Yes	No	CHD, PH
c.1913C>T	p.T638M	01-0513	Female	EUR	paternal	No	Affected sibling (N/T), Father with R eventration (+), paternal grandfather with R eventration (+)	-	-	Alive	No	No	No	No
c.2122G>A	p.G708S	04-0025	Male	EUR	paternal	Father with cleft palate	No	Severe	-	Deceased	Yes	No	Seizures	No
c.2122G>A	p.G708S	m1021LEMa	Female	EUR	maternal	No	No	-	-	Deceased	Yes	Yes		CHD
c.2263C>G	p.R755G	01-1279	Male	EUR	paternal ^a	No	Affected sibling (-)	-	-	Deceased	No	No		No, bilateral CDH
c.2263C>G	p.R755G	09-0028	Male	EUR	paternal	Maternal great-aunt with CHD	No	Unk	Unk	Alive	No	Yes	No	CHD
c.2461G>C	p.A821P	03-0008	Male	EUR	maternal	>3rd degree maternal history: unilateral arm agenesis	No	-	-	Deceased	Yes	No		No
c.2719dup	p.V907Gfs*73	01-0732	Female	EUR	paternal	No	Paternal aunt with possible CDH (N/T)	Unk	Unk	Alive	Yes	No	No	No

ECMO = extracorporeal membrane oxygenation, PH = pulmonary hypertension, CHD = congenital heart disease, GU = genitourinary, GI = gastrointestinal

1M PH = pulmonary hypertension status at 1 month, 3M PH = pulmonary hypertension status at third month, - in 1PH and 3PH = deceased before 1 or 3 months

+ positive for familial LONP1 variant

- negative for familial LONP1 variant

N/T = not tested for familial *LONP1* variant ^a cases carried biallelic heterozygous variants

976 Table 5. LONP1 deleterious rare variants carriers are associated with higher mortality and

977 **need for ECMO.**

	CDH w/ <i>LONP1</i> deleterious variants (n=23)			CDH w/o <i>LONP1</i> deleterious variants (n=806)			w/ <i>LONP1</i> vs. w/o <i>LONP1</i> deleterious variants	CDH w/ likely damaging variants (n=98)			w/ <i>LONP1</i> deleterious variants vs. w/ likely damaging variants
	Case N	n	%	Control N	n	%	P value	Control N	n	%	P value
Male	23	10	43%	806	477	59%	0.14	98	47	48%	0.82
Complex	23	9	39%	789	269	34%	0.66	96	50	52%	0.35
Familial CDH	19	6	32%	806	61	8%	2.7E-02	98	4	4%	1.2E-03
Neonatal death prior to discharge	16	11	69%	450	72	16%	6.4E-06	55	13	24%	1.8E-03
ЕСМО	16	9	56%	442	124	28%	2.3E-02	53	16	30%	0.077
PH at 1m	11	7	64%	340	188	55%	0.76	41	29	71%	0.72
PH at 3m	6	2	33%	260	100	39%	1	29	16	55%	0.4

978

The bold p-values highlight significance. ECMO: extracorporeal membrane oxygenation; PH: pulmonary hypertension

979 Figures

980 Figure 1. Burden of *de novo* coding variants in CDH compared to expectation. (A) LGD

among all genes; (B) D-mis among all genes; (C) LGD among constrained genes; (D) D-mis
among constrained genes. P values between cases and expectation by Poisson test are labeled for
each bar. P values between females and males, complex and isolated cases by binormal test are
labeled for each pair. Significant P values are highlighted in bold.

986Figure 2. Gene-based association analysis using 748 CDH cases and 11,220 controls across987all populations. (A) Results of a binomial test confined to ultra-rare LGD and D-Mis variants or988D-Mis only variants in 18,939 protein-coding genes. Horizontal blue line indicates the989Bonferroni-corrected threshold for significance. (B) Complete list of top association genes with990permutation P values $<1 \times 10^{-4}$. *: a gene-specific CADD score threshold for defining D-Mis that991maximized the burden of ultra-rare deleterious variants in cases compared to controls; #:992numbers of deleterious variants; a: MIM 600539; b: no MIM number.

Gene		CADD	Case (n=	748)	Controls (n=11,220)		Original	Permutation	Permutation	
	Gene name	cut-off*	# variants	Rate	# variants	Rate	P	times	Р	variant type
LONP1	Lon Peptidase 1, Mitochondrial	23	24	0.032	28	0.0025	9.5E-16	10,000,000	1.00E-07	LGD+D-mis
ZFPM2	Zinc Finger Protein, FOG Family Member 2	33	6	0.008	2	0.0002	1.50E-06	10,000,000	9.30E-06	LGD+D-mis
MYRF	Myelin Regulatory Factor	27	6	0.008	4	0.0004	1.00E-05	10,000,000	2.30E-05	LGD+D-mis
PRKCI®	Protein Kinase C lota	19	7	0.009	12	0.0011	9.59E-05	1,000,000	8.60E-05	LGD+D-mis
ZNF830 ^b	Zinc Finger Protein 830	21	4	0.005	1	0.0001	7.25E-05	1,000,000	9.60E-05	D-mis

[■] MTS ■ Lon N-terminal domain ■ ATP-binding domain ■ proteolytic domain

Figure 4. Fetal MRI images of bilateral CDH. (A) Sagittal view shows dorsal herniation of the
stomach, ventral herniation of the liver, and anterior displacement of lung remnant. (B) Coronal
view shows bilateral herniation of the fetal liver filling both the right and left hemithorax and no
lung tissue.

Figure 5. Predicted 3D structure of *LONP1* protein using SWISS-Model. (A) Variants in
ATPase domain (gray) of CDH (red) and CODAS (blue). CODAS variants (p.A670-pA724) are
clustered at alpha-helix in ATPase domain. (B) Variants in Protease domain (yellow) of CDH
(red) and CODAS (blue). CDH variants p.A821, S866 and CODAS variants p.A927 are located
at alpha-helix.

