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Abstract 

A genetic etiology accounts for unexplained primary ovarian insufficiency (POI; amenorrhea with 

an elevated FSH level). Subjects with POI (n=291) and controls recruited for health in old age or 

1000 Genomes (n=233) underwent whole exome or whole genome sequencing. Data were 

analyzed using a rare variant scoring method and a Bayes factor-based framework for 

identifying genes harboring pathogenic variants. Candidate heterozygous variants were 

identified in known genes and genes with functional evidence. Gene sets with increased burden 

of deleterious alleles included the categories transcription and translation, DNA damage and 

repair, meiosis and cell division. Variants were found in novel genes from the enhanced 

categories. Functional evidence supported 7 new risk genes for POI (USP36, VCP, WDR33, 

PIWIL3, NPM2, LLGL1 and BOD1L1).  Aggregating clinical data and genetic risk with a 

categorical approach may expand the genetic architecture of heterozygous rare gene variants 

causing risk for POI. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2021. ; https://doi.org/10.1101/2021.06.02.21258048doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.02.21258048
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 

 Primary ovarian insufficiency (POI) encompasses a continuum from infertility in women 

with ovarian dysfunction to early menopause1. The cause of POI remains unknown in the 

majority of women, making intervention impossible to initiate until it is too late1.  

Data overwhelmingly support a genetic cause in women with POI2-4. Twin studies 

estimate heritability from 53-71%2-4. There is a strong relationship between age at menopause 

in mothers and daughters, with an odds ratio of 6 (95% confidence intervals 3.4, 10.7) for early 

menopause in daughters whose mothers had early menopause5. In small studies it has been 

estimated that up to 30% of POI cases are familial6. The most common known genetic causes 

include X chromosome defects, FMR1 premutations and autoimmune causes1. Nevertheless, 

the additive effect of these and known iatrogenic causes explain less than 30% of POI. A 

remarkable number of new POI-associated genes have been discovered, facilitated by whole 

exome sequencing (WES) in consanguineous and large families7-15. The women in these 

families typically develop POI before puberty, also termed ovarian dysgenesis. Mutations in the 

DNA of these women have been identified in genes important for mitochondrial function, 

meiosis, homologous recombination and DNA damage repair7,8,10,12,16.  

The inheritance pattern for POI is not recessive in all cases. Heterozygous mutations in 

genes such as eIF4ENIF1 cause POI in women in the mid reproductive years9. Recessive gene 

mutations found to cause POI and primary amenorrhea also cause POI or earlier menopause in 

heterozygous mothers, demonstrating that dominant and semi-dominant mutations may be 

causal17,18, with heterozygous damaging variants in known genes or in two or more candidate 

genes causing POI19,20. One study of POI suggested an additive effect from common variants 

contributing to age at menopause, with a recent study suggesting that common variation may 

explain a portion of earlier age at menopause, as low as age 34 years21,22. 

Most previous WES analyses in large numbers of women with sporadic POI used a 

candidate gene approach to identify gene mutations most likely to cause POI. However, a 
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variant-centric approach has identified novel POI candidate genes19,23. We used an unbiased 

approach and a new prioritization algorithm (GEM)24-26 to identify damaging gene variants in 

known POI genes. We then used a category-wide association approach to test the hypothesis 

that additional candidate mutations could be found in clustered gene sets created using known 

genes and gene candidates from model organisms27,28. We demonstrated a significant 

enhancement in identified gene sets in women with POI compared to controls. These gene sets 

revealed additional candidate genes in POI, with seven genes confirmed by functional studies to 

play a role in oocyte or ovary development. These findings improve our understanding of the 

genetic architecture of POI, an extremely heterogeneous disorder. 
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Subjects 

 All subjects were diagnosed with POI as defined by at least 4 months of amenorrhea 

and an FSH level in the menopausal range. All women were 18 years or older, and had a 46XX 

karyotype, and normal FMR1 repeat number. Subjects (n=35) were recruited in Boston. 

Additional subjects were recruited from the Partners Biobank (n=63). A second cohort (n=98) 

was recruited at the National Institute of Health (NIH) for a study of non-syndromic POI29. These 

subjects were re-consented to have their DNA undergo WES at Washington University (LMN, 

ARC and ERM). A third cohort was recruited from Pittsburgh (n=20), Italy (n=43) and France 

(n=32)(AR and PT). All Boston subjects underwent a medical history and physical exam and 

family history. Subjects from the NIH, Pittsburgh, Italy and France had limited phenotypic data. 

 Control subjects for category-wide association using GEM24 included 96 unrelated, 

unaffected subjects recruited for health in old age and 137 CEU, FIN and GBR samples from 

the 1000 Genomes Project (total n=233 controls)30,31. The majority of CEU samples are from 

Utah families recruited for large family size (n=47 of 61)32. The control subjects underwent 

whole genome sequencing, as previously described33. All subjects provided written, informed 

consent from the University of Utah, Washington University, University of Pittsburgh or the 

Sorbonne Universite IRB. 

 

Methods 

 DNA samples were extracted (Qiagen) and subjected to WES. The Boston cohort was 

sequenced using the Illumina HiSeq 2000 (Illumina). All candidate susceptibility variants in the 

Boston cohort were Sanger sequenced for verification. Sequencing of the NIH/Washington 

University cohort was performed using the Roche NimbleGen VCRome 2.1 (HGSC design) 

exome capture and the Illumina HiSeq 2500 for sequencing at the McDonnell Genome Institute 

at Washington University. The dataset was accessed through dbGAP (NIH approved request 

#47895-1, Project #11971). The Pittsburgh, French and Italian cohorts were sequenced at the 
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Pittsburgh Clinical Genomics Laboratory using the Haloplex Exome Target Enrichment System 

or the Agilent SureSelect V5 Capture Kit (Agilent Technologies, Santa Clara, CA), and 2× 100 

bp paired-end WES was performed on an Illumina HiSeq 2500 (San Diego, CA, USA).  

 The control subjects’ DNA underwent whole genome sequencing (WGS) using the 

Illumina X Ten sequencing platform (Nantomics, Culver City, CA). The comparison of variants in 

cases using WES versus controls using WGS would result in a conservative estimate of variants 

in cases based on the higher coverage expected from WGS. 

   

Alignment and Variant Calling  

Alignment and variant calling were performed by the Utah Center for Genetic Discovery 

(UCGD) core services. Fastq files were downloaded from the Pittsburgh Clinical Genomics 

Laboratory and dbGAP. Variants were called through the UCGD pipeline using the Sentieon 

software package (https://www.sentieon.com) 34. Reads were aligned to the human reference 

build GRCh37 using BWA-MEM (Burrows-Wheeler Aligner). SAMBLASTER was used to mark 

duplicate reads and de-duplicate aligned BAM files. Aligned BAM files underwent INDEL 

realignment and base recalibration using Realigner and QualCal algorithms from the Sentieon 

software package3 to produce polished BAM files. Each polished BAM file was processed using 

the Sentieon’s Haplotyper algorithm to produce gVCF files35. Sample gVCF files were combined 

and jointly genotyped with 728 samples comprised of the 1000 genomes project (CEU) samples 

and samples unrelated to reproduction or cancer phenotypes to produce a multi-sample VCF 

file. To produce the final VCF variant quality scores, VCF files were recalibrated using 

Sentieon’s VarCal algorithm to estimate the accuracy of variant calls and reduce potential false 

positive calls.  

 

Quality Control  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2021. ; https://doi.org/10.1101/2021.06.02.21258048doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.02.21258048
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Quality control algorithms were applied to sequence reads (Fastq files), aligned reads 

(BAM files) and variants (VCF files)36. Fastp was used to evaluate read quality, read duplication 

rate, presence of adapter and overrepresented sequences in Fastq files37. Indexcov was used 

to estimate depth and coverage of aligned sequence data using BAM indexes. Further 

alignment quality metrics were calculated on BAM files with samtools stats. The 291 cases were 

sequenced using different exome capture kits, we therefore standardized QC analysis regions 

with a bed file made up of exonic regions from coding gene models from RefSeq and Ensemble 

gene sets. These regions were used to obtain the total number of reads, percentage aligned 

reads and mean and median coverage for all samples.  

Variant quality metrics were calculated by running bcftools stats38-40. The overall quality 

of VCF callsets were evaluated using Peddy to confirm sex, relatedness, heterozygosity and 

ancestry of each individual and identifying potential sample-level data quality issues41.  

 

Identification of Damaging Gene Variants 

For each case, the uploaded VCF file was scored with VAAST Variant Prioritizer (VVP) 

and Variant Annotation Analysis and Search Tool (VAAST) to prioritize potentially deleterious 

variants and damaged genes25,42. VVP and VAAST use a likelihood ratio test (LRT) to score 

each variant and the aggregate burden of variants for each gene in affected individuals relative 

to a set of 2,492 control genomes of healthy individuals from the 1000 Genomes Project43. The 

LRT incorporates three components of each variant; the severity of amino acid substitution, 

phylogenetic conservation of the variant, and the frequency of the variant relative to the control 

population. The sum of the top scoring variant(s) based (one variant for dominant inheritance 

and two variants for recessive inheritance) represents the cumulative likelihood ratio (CLR) for a 

given gene. The significance of each gene’s VAAST CLRT score is evaluated by a permutation 

test that randomizes the case/control status of individuals in each of 1e6 permutations and 
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generates a permutation p value for the gene. The output from VAAST is an ordered gene list 

ranked for the probability of being damaged relative to the control genomes.  

Variants identified in the VAAST analysis above were further refined by selecting only 

variants found at a minor allele frequency (MAF) <0.001 and with no homozygotes found in 

gnomAD44,45. The choice of a MAF <0.001 cutoff was based on the frequency of the fragile X 

premutation. The prevalence of the premutation in the population is 0.004 and it is the most 

common single gene cause of POI identified to date. A fragile X premutation accounts for only 

6% of sporadic POI cases46, making 0.001 a conservative upper bound for the risk attributable 

to any one gene. We also removed variants in genes known to tolerate a large burden of 

genetic variation such as olfactory receptors, snoRNAs, mucins and T cell receptors47. Finally, 

we required an Omicia score of >0.7; a meta-classifier that combines scores from SIFT, 

PolyPhen, MutationTaster and PhyloP to predict pathogenicity48-53. A range of 4-25 damaging 

gene variants were found per person.   

 

GEM Analysis 

We also used GEM to identify gene variants in each subject that were most likely to be 

pathogenic24. GEM is an Electronic Clinical Decision Support System (eCDSS) framework that 

aggregates and adjudicates data from multiple algorithms and clinical datasets to provide rapid 

and accurate diagnosis of individual genomes24. GEM generates a Bayes Factor-based score 

that calculates the degree of support for and against a given model (a gene allele is pathogenic 

vs. benign) considering multiple lines of evidence from the following variant analysis tools and 

data sources: VVP, VAAST, Phevor, mode of inheritance for disease genes from Online 

Mendelian Inheritance in Man (OMIM), pathogenicity of variants (ClinVar), population specific 

allele frequencies (gnomAD), quality of variants and the overall genome (data) and quality of the 

genomic location (gnomAD)25,26,42,44,54-56. Using this data, GEM identifies potentially pathogenic 

genotypes and evaluates support for their association with disease. Gene variants for each 
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subject were considered candidates if they had a GEM score ≥ 1 (strong support for the model 

of pathogenicity)57, together with genes having a GEM score ≥ 0.69 (substantial support for the 

model of pathogenicity), and a Phevor Bayes factor ≥ 0.9 (genes with a strong association with 

POI)54. One to twenty-four gene variants were identified for each subject. 

 

Creating Categories for Enrichment Analysis 

We used the Database for Annotation, Visualization and Integrated Discovery (DAVID) 

to functionally annotate known POI genes and candidate genes identified in model organisms 

14,58. The analysis yielded 47 clusters with one removed for too few genes (<20; Cluster 

37)(Supplementary Table 1). Cluster 37 contained mismatch repair genes, but the genes were 

also found in other clusters and was therefore redundant.  

 

Calculating Gene Burden on Resampled Gene Lists and Housekeeping Genes 

We randomly selected 146 genes from a list of housekeeping genes that are 

constitutively expressed over many developmental time points in 16 tissue types 

(Supplementary Table 2). We ensured that none of the housekeeping genes were found in our 

gene sets identified in the GEM analysis. In addition, we created a burden-matched set of 

genes. For this, we created a burden ratio for every gene by summing the number of rare 

variants (MAF ≤ 0.005)59 in the longest coding transcript of each gene and dividing by transcript 

length. For each decile in the distribution of this burden ratio, we determined the mean and 

standard deviation of the burden ratio. We then used these mean and standard deviations to 

generate randomly sampled gene sets for each decile that had matched mean and standard 

deviation for burden ratio. These burden matched gene sets were used to test the significance 

of gene set enrichment in the subjects. 

 

Permutation Tests and Case/Control Comparison  
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For the permutation tests and analysis, we used the GEM results with a GEM score ≥ 1 

generated from the POI cases and control individuals to test for enrichment in individuals with 

POI compared to controls. Both sets of data generated GEM results using two different HPO 

terms: POI (HP:0008209) and phenotypic abnormality (HP:0000118) to create 4 sets of data: 

Cases POI, Cases Phenotypic Abnormality (root), Controls POI, Controls Phenotypic 

Abnormality (root). The reason we ran GEM using the root of the HPO ontology (Phenotypic 

Abnormality) was to control for overly connected genes that might have inflated Phevor scores, 

thus reducing biases due to the nature of the ontology.  We then determined the number of 

damaged genes found in GEM results (number of successes) from genes listed in the individual 

pathways, a burden-matched gene list and a housekeeping gene list.  

Permutation analyses were performed using a random sampling strategy to evaluate 

enrichment of the POI dataset against gene lists related to functional aspects of the disease. A 

gene list containing 18,876 RefSeq genes was first created, excluding mucins and olfactory 

receptor genes. For each functional gene list of size N, random samples of equal size were 

drawn from the 18,876 genes. This process was repeated 100,000 times, each time with an 

independently generated random gene list, to create an empirical distribution of the number of 

damaged genes (GEM score ≥ 1) for each functional gene list. To test whether the probands 

show enrichment in the functional gene lists, the actual number of damaged genes found for 

each list was compared to the distribution of damaged genes found using burden-matched gene 

lists and the housekeeping genes list. To test for statistical significance, we used Fisher’s exact 

test to calculate a p value using the 2x2 contingency table testing the hypothesis that the 

number of damaging genes that matched the functional list was significantly larger in the POI 

GEM runs than in the root Phenotypic Abnormality GEM runs. All p values were adjusted for 

multiple testing (False Discovery Rate, FDR). To generate a final score depicting the most 

significantly enriched pathways, adjusted POI p values were divided by Phenotypic Abnormality 

p values to generate a normalized score that represents enrichment. The higher the ratio, the 
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more enriched the pathway. Pathways with a corrected p value <0.05 and a log2 ratio of greater 

than 2 for the POI p value/Phenotypic Abnormality p value were considered significant 

pathways. 

 

Oocyte Expression 

 To determine whether candidate genes are expressed in mammalian oocytes, 35 day-

old female mice were treated with an intraperitoneal injection of 5 IU PMSG to initiate follicular 

development and 5 IU hCG 48 hours later to induce ovulation60. Eighteen hours later, mice were 

sacrificed, oviducts dissected to remove oocytes and cumulus cells manually removed. RNA 

was isolated from oocytes using RNeasy (Qiagen, Valencia, CA)9. Reverse transcription was 

performed with SuperScript Master Mix (Life Technologies, Carlsbad, CA) using SuperScript III 

RT and random primers. Quantitative real-time polymerase chain reaction was performed for 

the expression of candidate genes and glyceraldehyde-3-phosphate dehydrogenase (Gapdh) as 

an endogenous control using PowerUp SYBR Green Master Mix (Applied Biosystems, Foster 

City, CA). Primers were designed to span two exons to avoid amplifying genomic DNA. Primer 

sequences are provided (Supplementary Table 3). Samples were examined in triplicate and at 

three dilutions. mRNA levels were determined using the 2-ΔΔCT method to calculate relative 

quantification and to correct for expression of endogenous controls. 

 

Functional Analysis 

 Flies were raised at 25º C on standard diet based on the Bloomington Drosophila Stock 

Center standard medium with malt. We obtained 20 RNAi lines from the Bloomington 

Drosophila Stock Center. Ovary/germline specific RNAi knockdowns were performed using Gal4 

DNA-binding protein and Upstream Activator Sequence (GAL4/UAS) technology, as previously 

described61. We crossed flies carrying the Maternal Triple Driver-GAL4 (MTD-GAL4; BDSC 

31777) transgene to flies carrying each respective UAS-RNAi transgene to generate female flies 
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with ovary specific knockdown of each gene. Control flies were generated by crossing flies 

carrying the MTD-GAL4 transgene to the appropriate AttP RNAi background strain (does not 

carry UAS-RNAi transgene). Virgin female RNAi knockdown (and control) flies were collected 

on CO2 anesthesia and aged 3-5 days on standard media supplemented with dry yeast.  

Female knockdown flies were singly mated with a 3-5 day old Canton S male. Individual mating 

pairs were observed to ensure successful mating. Males were removed after mating. We 

measured four female reproductive phenotypes: 1) egg number: number of eggs laid in first 8 

hrs post mating; 2) hatchability: number of adults that hatched from those eggs; 3) total fertility 

over 10 days post mating; 4) overall ovary appearance and morphology62. For egg number, 

newly mated females were place in vials for 8 hrs and egg number was counted. For 

hatchability, all the progeny that eclosed from the egg number vial were counted (progeny #/egg 

#). To measure total fertility, mated females were transferred to new vials every two days for ten 

days and all the progeny were summed over the entire period. For ovary images, adult females 

were collected under CO2 anesthesia, dissected and immediately imaged. Ovaries were imaged 

at 3X magnification using a Leica EC3 camera. We assayed at 8-10 females per RNAi 

knockdown. Statistical analysis was performed using R software. P-values were determined 

using ANOVA. A p value < 0.05 was used for significance. 
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Results 

Whole exome sequencing produced a mean of 96 million reads per individual (range 31-

186 million) and an average of 99.6% mapped/aligned reads to the GRCh37 human reference 

genome with an average duplication rate of 8.4% (Supplementary Figure 1A-C) for the 280 

samples that passed QC metric cutoffs. Fastp identified read quality and insert sizes within the 

normal ranges. Variant calling produced an average of 21,923 SNVs and 576 indels per sample, 

with an average depth of 55x per sample (Supplementary Figure 1G-I). Peddy was used to infer 

the sex, heterozygosity, ancestry, and relatedness of subjects, and compared to known 

metadata about samples (Supplementary Figure 2A-D)41. From these quality control metrics we 

identified and removed four samples (Supplementary Table 4) that had very low heterozygosity 

and low coverage. Three samples were removed due to high duplication rates. One sample was 

removed due to excess heterozygosity. We also discovered a previously unidentified deletion of 

the long arm of the X chromosome (93.7% homozygous X:130678467-X:155171537) in sample 

IPOF32. In total, we removed 9 samples from analysis for the quality issues described above 

leaving 282 samples for the analysis. Peddy confirmed the sex of the POI subjects 

(Supplementary Figure 2A), and the known relatedness of a few individuals (Supplementary 

Table 5, Supplementary Figure 2D-E). An additional four sib pairs were identified in the cohort 

and one family with dominant inheritance was included (Supplementary Figure 2E). For these 

related individuals, only one subject was included in the joint analyses. PCA projection of the 

samples together with data from the 1000 genomes identified individuals of European descent 

(n=235), admixed American (n=18), African (n=10), South Asian (n=4), East Asian (n=3), and 

unknown (n=12) ancestry (Supplementary Table 6, Supplementary Figure 2C).  

In 19 subjects, we identified variants in genes previously determined to cause POI, 

including confirmation of previously identified variants in 12 subjects with primary amenorrhea 

(6.7%; Table 1)19,63-66. Five of these variants were found as heterozygous genotypes in the 

genes NR5A1, PTPN22 and eIF4ENIF19,17,67.  
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  Sixty-four subjects (23%) carried at least one variant in a previously identified POI gene 

that was determined to cause ovarian dysgenesis or primary amenorrhea with autosomal 

recessive inheritance (Table 2). Twenty-seven subjects (10%) carried a heterozygous variant in 

a gene for which there was a previously identified functional model (Table 3)68,69. Variants at 

genomic loci that were not conserved across species were not considered for analysis, although 

variants impacting conserved amino acids that were found only in mammalian species were 

included. One subject carried two variants in FANCM and one subject carried two variants in 

RECQL4, however, it was not possible to confirm whether these variants were in cis or trans. 

Fourteen subjects carried 2, one subject carried 3 and one subject carried 4 candidate POI risk 

variants in different genes.  

 We next determined gene clusters for known genes for POI in women and candidates 

from animal models. DAVID analysis identified 47 gene list clusters with enrichment >2 

(Supplementary Table 1). We then examined enrichment of these 47 gene sets in women with 

POI compared to controls and found 13 significant gene sets. These gene sets encompassed 

GO term biological processes including transcription/translation, DNA damage and repair, 

oogenesis, cell proliferation, hormone regulation, growth factors, regulation of gene expression, 

embryogenesis, cytoplasmic signaling, male gonad development, chromatin binding, cell 

division and protein phosphorylation (Table 4, Figure 1). Further, there was significant 

enhancement compared to housekeeping genes and burden-matched gene lists in POI cases 

compared to controls (Figure 1A-C and Supplementary Table 2). The majority of the causal or 

candidate genes were found in the enriched gene sets (Tables 1-3). The two genes that were 

not found in the gene lists are important for meiosis (MARF1 and ANKRD31).   

We examined the remaining candidate genes that had not yet been implicated in a 

woman with POI or in an animal model. We identified several deleterious variants in genes 

found in the implicated gene sets (Table 5)70-77. None of these gene variants was identified in 

the control groups that we assessed. Additional candidates were identified in these and other 
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gene sets, although their pathogenicity was not as strong based on conservation, allele 

frequency or gene constraint (Supplementary Table 7). 

 

Functional Studies 

 The potential pathogenicity of the variants not previously identified is outlined in the 

Supplementary Data (Supplementary Information). For genes with variants not previously 

identified in POI or in animal models of POI or not previously examined in oocytes (Table 5), 

RTPCR in mouse oocytes that have resumed and/or completed meiosis I was performed to 

ensure that the candidate gene was expressed. Of the 24 genes tested, four were present but 

not highly expressed in the oocyte (Table 5 and Supplementary Tables 3 and 8).  

 D. melanogaster orthologues were identified for 20 of 35 candidate genes queried 

(Supplemental Table 9). Thirteen candidates could not be obtained based on availability or 

could not be tested based on lack of orthology or absence of ovarian expression. Two of the 

candidates had multiple weak orthologues and were not pursued (POLK and ANKRD31).  

 Five knockdowns (USP36, VCP, WDR33, PIWIL3 and NPM2) were completely infertile 

with atrophic ovaries (Table 6 and Supplementary Figures 18 and 19). Two gene knockdowns 

demonstrated decreased hatchability and fertility, with abnormal (LLGL1) or normal ovaries 

(BOD1L1). Two gene knockdowns had variable or mild ovarian defects that were not statistically 

significant (CDK7 and BRIP1). One gene knockdown was lethal (RUVBL2). 
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Discussion 

 We performed WES in 291 subjects with POI from three cohorts. Using two methods, a 

broad and unbiased discovery method and a more robust prioritization algorithm (GEM), we 

identified the most likely pathogenic variants in these women with POI. Our data suggest that 

the candidate genes for POI in individual women are highly heterogeneous.  However, when the 

most likely candidate genes were categorized into functionally related groups, the genes aligned 

into 13 clusters that were enriched in cases compared to controls after correcting for multiple 

testing, gene size and pathogenic specificity for POI. New candidate genes were found in 

enhanced gene sets that included genes important for transcription/translation, DNA damage 

and repair, meiosis and cell division. Functional analysis in D. melanogaster supported a role in 

oocyte or ovary development for seven genes not previously associated with POI. Taken 

together, the data support a categorical approach to understanding the genetic architecture for 

POI.  

 After an initial broad search for damaging variants, we used an AI-based eCDSS tool, 

GEM, that employs variant impact (VAAST and VVP), patient phenotypes (Phevor), known 

Mendelian and pathogenic variants (OMIM, ClinVar) and ancestry to identify disease-causing 

genotypes15,24,25,42,54. Using GEM, we supplemented our data with previously analyzed WESs 

and have replicated genetic findings in 11 out of 12 subjects with primary amenorrhea, 

demonstrating the utility of the new software. The only gene variant that was not identified was 

in MARF1, which has not yet been associated with POI in OMIM. GEM identified additional 

homozygous or compound heterozygous mutations (HFM1, DCAF17) or heterozygous 

mutations (NR5A1) in previously identified genes78-80.  

 GEM also identified heterozygous deleterious variants in known genes, particularly in 

women with POI and secondary amenorrhea. GEM uncovered variants in 28 genes previously 

demonstrated to cause POI with recessive inheritance, out of 42 gene variants total (67%). 

GEM also identified 13 of 20 candidate variants in genes with evidence for ovarian insufficiency 
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in an animal or other experimental species model (65%). The results are not surprising based 

on the use of HPO POI terms in the algorithm, which emphasizes phenotype in GEM54. Further 

tool development will encompass gene pathways for discovery. 

 With the exception of subjects with POI and primary amenorrhea, the majority of 

candidate variants identified in the current study are heterozygous, arguing for a dominant, 

semi-dominant, or complex inheritance pattern for POI that occurs later in the reproductive 

years. Genome-wide association studies (GWASs) of age at natural menopause support the 

concept that menopause has a complex inheritance pattern68. Further, the largest GWAS of 

early menopause, defined as menopause before the age of 45 years, replicated 4 common 

variants associated with age at natural menopause and demonstrated that menopause risk 

alleles have an additive contribution to age at menopause21. Recent data also suggest that 

common variants contribute to menopause occurring as early as 34 years22. However, the 

contribution of common variation explains only a small portion of the genetic risk for menopause 

under age 40 years22. The current study using WES was not able to assess common variants, 

but did demonstrate overlap between common GWA variants and rare, deleterious variants in 

the same candidate genes. For example, nonsynonymous variants in BRCA1 are associated 

with earlier menopause by approximately 6 months68. In the current study, we identified a 

frameshift mutation, expected to result in early protein termination, possibly causative for POI. 

Additional genes with deleterious variants (MSH6, CHD7) and some with rare missense variants 

(RAD54L, HELQ, POLG) also overlap with candidate genes associated with age at natural 

menopause (Table 2). The apparent overlap of common variants associated with menopause 

age and deleterious variants in the same candidate genes is consistent with the hypothesis that 

mutations in these genes play a causative role in POI.   

 Further support for the causative role of heterozygous gene variants in POI comes from 

the reproductive history of the mothers of girls with primary amenorrhea. A heterozygous MND1 

gene mutation in a mother resulted in POI at age 35 years45. Similarly, a heterozygous mutation 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2021. ; https://doi.org/10.1101/2021.06.02.21258048doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.02.21258048
http://creativecommons.org/licenses/by-nc-nd/4.0/


in MCM8 caused POI in a mother at age 29 years18. In both families, the daughters with 

homozygous mutations presented with primary amenorrhea. With the exception of a few 

reports, age at menopause is rarely mentioned or may not yet have occurred for mothers of girls 

with POI. However, age at menopause is heritable supporting the segregation of ovarian 

damaging genes with an effect on age at menopause through the mother3. It is also not 

surprising that heterozygous variants that relatively decrease fertility would be removed from the 

population through decreased progeny81, and might therefore be inherited from the father since 

reproductive lifespan is not limited in men. Taken together, these cases also support the 

hypothesis that heterozygous mutations can result in earlier age at menopause.   

 Although the number of subjects in the current study is not sufficient to replicate the 

genes individually, we were able to demonstrate significantly enriched gene clusters controlled 

for multiple testing. Previous work in autism and congenital heart disease has used a similar 

category-wide association study approach27,28. Our approach was unbiased; first examining the 

most deleterious variants in women with POI to identify known genes and candidates with 

previous functional models, and subsequently determining whether additional genes were found 

in the clustered gene sets. Interestingly, a MAGENTA analysis of age at natural menopause 

variants identified similar enhanced categories for candidate genes inferred from genome-wide 

associated variants68. In addition, known genes causing male azoospermia were enriched in 

comparable pathways82. Taken together, a category enhanced approach identifies consistent 

gene sets across reproductive studies. Genes falling into gene sets including oogenesis, 

spermatogenesis, meiosis, DNA damage and repair, transcription and translation, chromatin 

binding, regulation of gene expression, growth factors, embryo development, cell division, 

extracellular to cytoplasmic signaling, protein kinase phophorylation, and vasoactivity and 

hormone regulation were enriched compared to controls in our unbiased candidate gene search 

for damaging mutations across the genome (Figure 1)83. New candidate genes were identified 
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within these gene sets demonstrating that the category approach provides a mechanism for new 

candidate gene discovery.  

 Our D. melanogaster knockdown model affords a mechanism to determine an oocyte 

and ovarian phenotype at scale for genes in enhanced pathways. The genes and 

developmental processes involved in oogenesis in D. melanogaster overlap with those in the 

mouse84. We chose quantifiable fertility assays including egg laying rates, hatchability and 

ovarian morphology62. The use of RNAi technology also presumes that the gene is not fully 

deleted and serves as an excellent model for heterozygous gene variants. Using our D. 

melanogaster model, we identified five genes that are critical for ovarian or oocyte development 

and that fall into the enriched pathways we defined: transcription/translation, meiosis, DNA 

repair and DNA damage. RNAi knockdown resulted in atrophic ovaries with no eggs or progeny 

(Table 6 and Supplementary Figures 18 and 19). 

 USP36 is a deubiquitinase demonstrated to promote RNA polymerase I stability for the 

ribosomal RNA processing and translation85. Previous studies found that the scny D. 

melanogaster homologue also acts as a histone H2B ubiquitin protease86. The atrophic ovary in 

the knockdown shows that the ribosomal RNA translation and/or the chromatin modification 

function may affect oocyte or ovarian development in addition to its role in embryogenesis85. 

 WDR33 plays a role as one of 4 proteins that recognize the polyadenylation signal in the 

3’-end processing of mRNA precursors87. The gene is highly expressed in testes and we have 

now demonstrated that it is also highly expressed in mouse oocytes (Supplementary Table 8). 

RNAi knockdown results in an atrophic ovary. Thus, WDR33 may also play critical role in 

ovarian or oocyte development. 

 PIWIL3 is a P-element induced wimpy testis protein short RNA found in human, 

nonhuman primate and bovine oocytes. It is specifically expressed in maturing human oocytes 

during oogenesis88 and in bovine oocytes from the GV stage onward89. It is critical for germline 

integrity from DNA transposable element activity90. The affected subject carries two PIWIL3 
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variants; a frameshift mutation and a stop gain mutation that both remove the PIWI domain from 

the protein90. We also identified a stop gain mutation in PIWIL2, a family member that is 

expressed in fetal human germ cells89. Although knockouts of the mouse PIWIL2 homologue 

Mili were described as fertile, there were no details provided across the reproductive lifespan91. 

These data demonstrate the importance of the PIWIL genes in the ovary in addition to the 

testes. 

 NPM2 is found in oocytes before germinal vesicle breakdown92. The Npm2 knockout 

females are infertile, with normal sized pronuclei that lack nucleoli92,93. Although previous 

studies suggest that infertility is caused by failure of zygote development, our data suggest that 

NPM2 is critical for oocyte and ovary development. 

 VCP, or valosin-containing protein, is an ATPase associated with a variety of activities94. 

It is expressed in GV oocytes and preimplantation embryos in the mouse and controls germinal 

vesicle breakdown. Vcp knockout mice demonstrate no homozygotes because they have a 

defect in early embryonic development. Our model demonstrates atrophic ovaries. A missense 

variant in a highly conserved threonine in the N terminal was found in two sisters and a mother 

with POI (Supplementary Figure 2E). The N terminal is the portion that interacts with other 

proteins. Therefore, VCP should be considered a new candidate for POI.  

  In contrast to genes described above, there were only subtle phenotypes identified 

using our model in genes associated with DNA damage and repair pathways. Two genes in the 

pathway, LLGL1 and BOD1L1, were highly expressed in the oocyte and demonstrated 

decreased hatchability and decreased fertility. The LLGL1 cytoskeletal network is involved in 

maintaining cell polarity and epithelial integrity95. Mutations including the gene region on chr 17 

cause Smith Magenis syndrome, a disorder of developmental delay, behavioral abnormalities, 

sleep disturbance and abdominal obesity. An indel upstream of LLGL1 in Shaanbei White 

Cashmere goats is associated with change in litter size96. BOD1L1 stabilizes RAD51 at the site 

of DNA replication forks97. The frameshift variant in our subject would remove all ATM 
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phosphorylation sites, along with the majority of the protein. Other genes in the DNA damage 

and repair pathway with no previous functional models or human mutations had no phenotype in 

our D. melanogaster model and more sensitive functional models may be needed. 

Nevertheless, a number of previously well validated variants involved in the homologous 

recombination steps in meiosis were discovered in our cohort (Figure 2)83. Many of these gene 

mutations may result in meiotic failure and oocyte loss. Given the large number of gene 

mutations falling into the DNA damage and repair pathway, intervening to rescue meiosis for 

development of normal gametes may be a treatment opportunity in POI.  

 An association between autoimmune oophoritis, with POI as the end-stage, has been 

demonstrated only with adrenal autoimmunity98. We identified a novel PTPN22 variant, a gene 

associated with adrenal insufficiency, and inTARBP1, a gene associated with autoimmune 

syndromes99,100. A final subject carried a variant in IL1B, which has been associated with 

ovarian inflammation. Further delineation of the associated autoimmune risk genes and 

diseases will clarify the relationship between autoimmunity, genetics and POI. 

 Our study is limited by whole exome sequencing. We were not able to evaluate common 

variation, some promoter regions and could not evaluate copy number variants. We did not 

have trios for the majority of subjects and did not recruit family members to clarify segregation 

or de novo mutations. Future studies will also be needed to more carefully analyze the 

mitochondrial genome. 

 The current cohort forms one of the largest WES datasets analyzed for POI. We used an 

unbiased approach and a new AI-based algorithm to identify the most likely pathogenic variants. 

We also demonstrated new genes important for oogenesis and ovarian development using a 

model D. melanogaster system. Our more global approach contrasts to previous studies that 

examined individual consanguineous families and/or were restricted to candidate gene lists. 

Collectively, our results identify not only disease-causing variants, but also gene categories 

involved in POI. These results should prove useful for precision medicine efforts aimed at early 
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identification of gene variants increasing a woman’s likelihood to experience infertility or a 

shortened reproductive lifespan. The early identification of women at risk for POI may enable 

fertility preserving measures. More broadly, better understanding of the genetic architecture of 

POI might also aid in identifying additional comorbid risks in a subset of the subjects. 
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Table 1. Candidate variants in previously identified genes causing POI. 
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functions have been added for genes that were not found in DAVID. 
5Homo = homozygous, Het = heterozygous 
6NA = not applicable, i.e. not identified 
7Confirmed by Sanger Sequencing 
 
 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2021. ; https://doi.org/10.1101/2021.06.02.21258048doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.02.21258048
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2. Candidate variants found as heterozygotes in previously identified genes causing POI 
or associated with age at natural menopause. 
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0 

1 Conservation – M-mammals including rhesus, mouse, dog, elephant, C-chicken, X-Xenopus 
tropicalis, Z-zebrafish, L-lamprey  
2 Previous evidence from human POI cases or GWAS of age at natural menopause 
3Z score for missense variants and observed/expected (90% confidence intervals) for loss of 
function variantsgnomAD.59 A Z score >3 indicates a gene constrained for missense variants 
and an upper bound 90% confidence interval <1 indicates a gene constrained for loss of 
function variants.  
4 DAVID Gene Sets: 1-oogenesis/spermatogenesis, 5-male gonad development, 7-
transcription/translation/DNA binding, 9-regulation of gene expression, 11-growth 
factor/cytokine/TGFβ, 13-chromatin binding, 16-meiosis/DNA repair/homologous recombination, 
18-embryo development, 25-extracellular to cytoplasmic signaling, 32-protein 
kinase/phophorylation, 34-cell division/meiosis, 40-cell proliferation/DNA damage, 41-
vasoactivity/hormone regulation. Also see Table 4. Other known biologic functions have been 
added for genes that were not found in DAVID. 
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5Homo = homozygous, Het = heterozygous 
6NA = not applicable, i.e. not identified 
7Confirmed by Sanger Sequencing 
8Expressed in superovulated mouse oocytes (Supplementary Table 9) 
 
 
Table 3. Candidate variants in genes from pathways with functional models 
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1 Conservation – M-mammals including rhesus, mouse, dog, elephant, C-chicken, X-Xenopus 
tropicalis, Z-zebrafish, L-lamprey  
2 Previous evidence from human or animal models 
3Z score for missense variants and observed/expected (90% confidence intervals) for loss of 
function variantsgnomAD.59 A Z score >3 indicates a gene constrained for missense variants 
and an upper bound 90% confidence interval <1 indicates a gene constrained for loss of 
function variants.  
4 DAVID Gene Sets: 1-oogenesis/spermatogenesis, 5-male gonad development, 7-
transcription/translation/DNA binding, 9-regulation of gene expression, 11-growth 
factor/cytokine/TGFβ, 13-chromatin binding, 16-meiosis/DNA repair/homologous recombination, 
18- embryo development, 25-extracellular to cytoplasmic signaling, 32-protein 
kinase/phophorylation, 34-cell division/meiosis, 40-cell proliferation/DNA damage, 41-
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vasoactivity/hormone regulation. Also see Table 4. Other known biologic functions have been 
added for genes that were not found in DAVID. 
5Homo = homozygous, Het = heterozygous 
6NA = not applicable, i.e. not identified 
7Expressed in superovulated mouse oocytes (Supplementary Table 9) 
8Confirmed by Sanger Sequencing 
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Table 4. Enhanced biological pathways or clusters in women with POI compared to controls. 

Cluster 3. 
Biological 
Process 

# 
Da
mag
ed 
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es 
Cas
es 
POI 

# 
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ged 
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s 
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Phen
otypi
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7. 
Transcription/
Translation/D
NA Binding 120 95 46 43 740 

0.0000
0 

0.0000
1 

0.0000
0 

0.0001
3 8.4 

40. Cell 
Proliferation/D
NA Damage 178 138 92 77 830 

0.0000
0 

0.0000
2 

0.0000
0 

0.0003
0 6.1 

16. 
Meiosis/DNA 
Repair/Homol
ogous 
Recombination 70 56 31 32 351 

0.0000
7 0.0069 

0.0008
9 0.029 5.0 

41. 
Vasoactivity/H
ormone 
Regulation 22 17 2 3 75 

0.0000
2 0.0013 

0.0003
0 0.0082 4.8 

11. Growth 
Factor/Cytokin
e/TGFβ 87 66 36 29 474 

0.0000
0 

0.0000
9 

0.0000
8 0.0011 3.8 

9. Regulation 
of Gene 
Expression 49 35 24 23 123 0.0023 0.074 0.011 0.14 3.6 
18. Embryo 
Development 23 16 4 3 61 

0.0001
6 0.0022 0.0014 0.011 3.0 

25. 
Extracellular 
to Cytoplasmic 
Signaling 44 33 15 12 284 

0.0001
0 0.0012 0.0011 0.0082 2.9 

1. 
Oogenesis/Spe
rmatogenesis 13 8 3 3 91 0.011 0.11 0.035 0.19 2.4 
34. Cell 
Cycle/Meiosis/
Nuclear 
Membrane 55 35 28 19 213 0.0020 0.020 0.011 0.057 2.4 
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5. Male Gonad 
Development 11 8 2 3 31 0.011 0.11 0.036 0.19 2.4 
13. Chromatin 
Binding 11 13 1 4 58 0.0032 0.025 0.015 0.067 2.2 
32. Protein 
Kinase/Phosph
orylation 57 33 28 16 244 0.0011 0.011 0.0081 0.035 2.1 
 

a Fisher exact test p value for the number of damaged genes in the biological category found using GEM 

with the term POI in cases compared to controls. b Fisher exact test p value for the number of damaged 

genes in the biological category found using GEM with the term phenotypic abnormality in cases 

compared to controls. c Fisher exact test p value corrected for the false discovery rate for the number of 

damaged genes in the biological category found using GEM with the term POI in cases compared to 

controls. d Fisher exact test p value corrected for the false discovery rate for the number of damaged genes 

in the biological category found using GEM with the term phenotypic abnormality in cases compared to 

controls.   

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2021. ; https://doi.org/10.1101/2021.06.02.21258048doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.02.21258048
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 5. Variants in candidate genes and candidate pathways with no previous model for 
primary ovarian insufficiency. 
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2Z score for missense variants and observed/expected (90% confidence intervals) for loss of 
function variantsgnomAD.59 A Z score >3 indicates a gene constrained for missense variants 
and an upper bound 90% confidence interval <1 indicates a gene constrained for loss of 
function variants.  
3 DAVID Gene Sets: 1-oogenesis/spermatogenesis, 5-male gonad development, 7-
transcription/translation/DNA binding, 9-regulation of gene expression, 11-growth 
factor/cytokine/TGFβ, 13-chromatin binding, 16-meiosis/DNA repair/homologous recombination, 
18-embryo development, 25-extracellular to cytoplasmic signaling, 32-protein 
kinase/phophorylation, 34-cell division/meiosis, 40-cell proliferation/DNA damage, 41-
vasoactivity/hormone regulation. Also see Table 4. Other known biologic functions have been 
added for genes that were not found in DAVID. 
4NA = not applicable, i.e. not identified 
5Homo = homozygous, Het = heterozygous 
6Expressed in superovulated mouse oocytes (Supplementary Table 9) 
7Confirmed by Sanger Sequencing 
8Functional support from D. melanogaster model 
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Table 6. Ovary and fertility phenotypes in D. melanogaster RNAi knockdown in 

ovaries/germline. 

Human Gene Fly 
Ortholog 

Ovary 
Defect 

Egg 
Defect1 Hatchability2 Fertility3 

USP36 Scny atrophic No eggs -- infertile 
VCP TER94 atrophic No eggs -- infertile 

WDR33 wdr33 atrophic No eggs -- infertile 
PIWIL3 piwi atrophic No eggs -- infertile 
NPM2 Nlp atrophic No eggs -- infertile 
LLGL1 l(2)gl normal normal ~20% ~1% 

BOD1L1 BOD1 normal normal normal ~50% 
DCP2 DCP2 normal normal normal normal 

TDRKH papi normal normal normal normal 
SMRCA/CHDL1 Iswi normal normal normal normal 

TTLL5 TTLL5 normal normal normal normal 
CPEB3 orb2 normal normal normal normal 

CDK7 Cdk7 Normal4 normal normal normal 

BRIP1 CG4078 Normal4 normal normal normal 

NIN Bsg25D normal normal normal normal 
NAP1L4 Nap1 normal normal normal normal 
BRAT1 CG7044 normal normal normal normal 

 
1Number of eggs laid in first 8 hrs after mating 
2Number of progeny hatched from eggs counted, "--" indicates no value because no 
eggs were laid. 
3Total progeny count 10 days post mating 
4CDK7 and BRIP1 displayed inconsistent minor ovary defects, but fertility was 
completely normal 
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Figure 1. Three examples of enriched pathways in the POI data set as determined by the 

permutation tests in cases (upper panels) and controls (lower panels). Enriched pathways that 

encompassed novel POI genes (Table 5) included: A) Transcription/Translation/DNA binding, B) 

Meiosis/DNA Repair/Homologous Recombination and C) Cell Division/Meiosis, compared to D) 

Housekeeping Genes. The number of damaged genes from the target gene list in the pathways 

of interest (red arrow) is compared to the distribution of damaged genes in random gene lists of 

equal number to the lists of interest (gray bars), burden-matched control genes (pink arrows) 

and housekeeping genes (green arrows). The burden-matched genes and housekeeping genes 

are not significantly enriched for any gene set. p values are controlled for the false discovery 

rate. 

 

Figure 2. Candidate genes in women with POI. Variants in a number of genes involved in 

chromosome pairing and DNA damage and repair are involved in meiosis. The figure depicts 

candidate genes that are involved in chromosome movement, double strand breaks, end 

resection, double strand break repair, crossovers and dissociation and resolution of Holliday 

junctions. Members of the nuclear pore complex (NUP43) play a role in chromosome movement 

and organization. After DNA replication (ORC6), the synaptonemal complex pairs homologous 

chromosomes (PSMC3IP) loaded with condensin and cohesion complex proteins (STAG3, 

REC8, NIPBL) and connects the synaptonemal complex to DNA repair proteins (SYCE1). 

During recombination, double strand breaks form (ATM, ANKRD3, PIF1), ends are resected 

(BRCA1, SAMHD1, BOD1L1), and crossovers occur (HFM1) through strand invasion 

(PSMC3IP, MND1, RAD51). Subsequently, DNA double strand break repair (CHD1L, POLG, 

POLK, MSH6, PCNA, NUPR1, APLF, NBN, RAD50, RUVBL2, MRE11), DNA repair (CDK7, 

MLH3, PRMT6, HELQ, TONSL), strand annealing (RECQL4) and repair via homologous 

recombination (BRCA2, BRIP1, FANCD2, HELQ, FANCM, FANCF, BLM, MCM9, USP36) take 
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place. Kinetochore/chromosome assembly, orientation and segregation (HAUS6, CENPF, 

NUP43, NCAPG2, LLGL1, NINL, ATRX) follow recombination.  
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Supplementary Table 1. Annotation clusters identified using the Database for Annotation, 

Visualization and Integrated Discovery (DAVID). Data were organized into 47 clusters with 

enrichment scores of >2.   

Supplementary Table 2. Housekeeping genes. Genes that are constantly and uniformly 

expressed over many developmental and adult time points in 16 tissue types were chosen as 

housekeeping genes to examine enrichment. 

Supplementary Table 3. PCR primers used to analyze gene expression in super ovulated 

mouse oocytes using RTPCR. 

Supplementary Table 4. Samples removed by Peddy for very low heterozygosity and low 

coverage. 

Supplementary Table 5. Related subjects identified by Peddy. 

Supplementary Table 6. Ancestry identified by PCA plot and projection onto 1000 genomes 

data. 

Supplementary Table 7. GEM results for all subjects. The GEM results for all genes with a GEM 

score greater than 0 are presented.  

Supplementary Table 8. Oocyte expression. RTPCR was performed in superovulated mouse 

oocytes for gene targets with no previous functional studies.  

Supplementary Table 9. Genes chosen for RNAi knockdown in a D. melanogaster model with 

Bloomington Drosophila Stock Center Number (BDSC#). 
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Supplementary Figure 1. Quality control metrics for 283 POI cases.  

Box whisker plots of the alignment statistics and vcf statistics for 283 cram and vcf files that 

passed QC metrics: A) Total number of reads per sample, B) Percentage of Aligned reads, C) 

Percentage of duplicate reads, D) Mean coverage per sample, E) Median coverage per sample, 

F) Percentage of Coverage over 20 bases, G) Number of SNPs per sample extracted from the 

Bcftools statistics, H) Number of Indels found per sample, and I) Average Depth per sample.  

 

Supplementary Figure 2. Peddy analysis of 283 samples from the final VCF files of women with 

POI. A) The predicted sex was female for all cases. B) The proportion of heterozygous calls 

ranged from 0.12 to 0.18 at a median depth of 30 to 65. C) PCA projection of the 283 cases 

onto ancestry of 1000 Genomes data. The majority of subjects were of European ancestry as 

expected. D) Coefficient of relatedness between two samples plotted by sampling 25K sites in 

the genome and comparing the relatedness reported in the ped file to the relatedness inferred 

from the genotypes. Thus, five sib pairs were confirmed, along with grandparent-parent and 

parent-child relationships. E) Five pedigrees of relationships confirmed by Peddy and 

investigators. 

 

Supplementary Figure 3-16. Enriched pathways in the POI data set as determined by the 

permutation tests in cases (upper left panels) and controls (lower left panels) and compared to 

data from the same pathways for the root phenotypic abnormality (upper right and lower right 

panels). The number of damaged genes from the pathways of interest (red arrow) is compared 

to the distribution of damaged genes in random gene lists of equal number to the lists of interest 

(gray bars), burden-matched control genes (pink arrows), and housekeeping genes (green 

arrows). The burden-matched genes and 16A) housekeeping genes are not significantly 

enriched for any gene set. 
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Supplementary Figure 17. PA-1 cells were transfected using PolyJet transfection reagent 

(SignaGen Laboratories, Rockville, MD) with WT eIF4ENIF1 or eIF4ENIF1 containing the 

c.603T>G variant created using the QuikChange II Site-Directed Mutagenesis kit (Agilent 

Technologies, Santa Clara, CA) into a pcDNA3.1(-) expression vector (Invitrogen, Carlsbad, 

CA) using the NEBuilder HiFi DNA Assembly Cloning Kit (New England Biolabs, Ipswich, MA). 

Stable cell lines were generated by selection of colonies resistant to 750 μg/ml G418 (Life 

Technologies, Carlsbad, CA). Cells were seeded at 3 × 104 cells/well in an 8-well chamber slide. 

After 48 hours, cells were fixed with ice-cold 100% methanol for 5 minutes at room temperature 

(RT), followed by washing with PBST comprising 0.1% Tween-20 in 1× PBS (Fisher Scientific, 

Waltham, MA). Cells were blocked with 1% BSA and 22.52 mg/ml glycine (Fisher Scientific, 

Waltham, MA) in PBST for 30 minutes at RT and then incubated with an N-terminal antibody 

(Novus Biologicals, Centennial, CO) diluted in 1% BSA in PBST at 4℃ overnight. After another 

wash with PBST, cells were labeled with an anti-rabbit Alexa Fluor 594 (Invitrogen, Carlsbad, 

CA) for 1 hour at RT, washed with PBST as before, counterstained with DAPI (Southern 

Biotech, Birmingham, AL), and mounted with glycerol mounting medium with DABCO (Electron 

Microscopy Sciences, Hatfield, PA). The Nikon fluorescent microscope was used for image 

acquisition. The c.603T>G variant, p.S201R, is located in the nuclear import signal of 

eIF4ENIF1. The top panels show the N terminal eIF4ENIF1 images with DAPI staining of the 

nucleus, while the bottom panels show the N terminal eIF4ENIF1 images. Compared to the A) 

wild type eIF4ENIF1, the B) S201R variant transfected cells demonstrated disorganized 

localization of eIF4ENIF1 with increased intranuclear protein.  

 

Supplementary Figure 18. Drosophila melanogaster phenotypes. 

Hatchability and total fertility values are plotted for all genes tested by RNAi in Drosophila. P 

values for genes with significantly different phenotypic values are highlighted in red. N= 8-10 for 

all measurements. C= control; KD= RNAi knockdown 
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Supplementary Figure 19. Drosophila melanogaster ovarian phenotype. 

Representative images of ovaries from RNAi knockdowns that produced atrophic ovaries and a 

control. All other RNAi knockdowns that produced normal ovaries appear identical to the control 

and are not shown.  
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