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Abstract 

Objective 

Anticipating fetal risk is a major factor in reducing child and maternal mortality and 

suffering. In this context cardiotocography (CTG) is a low cost, well established procedure that 

has been around for decades, despite lacking consensus regarding its impact on outcomes. 

Machine learning emerged as an option for automatic classification of CTG records, 

as previous studies showed expert level results, but often came at the price of reduced 

generalization potential. 

With that in mind, the present study sought to improve statistical rigor of evaluation 

towards real world application. 

Materials and Methods 

In this study, a dataset of 2126 CTG recordings labeled as normal, suspect or 

pathological by the consensus of three expert obstetricians was used to create a baseline 

random forest model. 

This was followed by creating a lightgbm model tuned using gaussian process 

regression and post processed using cross validation ensembling. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2021. ; https://doi.org/10.1101/2021.06.03.21255808doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.06.03.21255808
http://creativecommons.org/licenses/by-nc/4.0/


Performance was assessed using the area under the precision-recall curve (AUPRC) 

metric over 100 experiment executions, each using a testing set comprised of 30% of data 

stratified by the class label. 

Results 

The best model was a cross validation ensemble of lightgbm models that yielded 

95.82% AUPRC. 

Conclusions 

The model is shown to produce consistent expert level performance at a less than 

negligible cost. At an estimated 0.78 USD per million predictions the model can generate value 

in settings with CTG qualified personnel and all the more in their absence. 
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1. Introduction 

Direct information regarding the fetus well-being is not trivially acquired during 

pregnancy, and key information such as the fetal heart rate (FHR) is crucial for 

anticipating fetal risks in both antepartum as well as intrapartum. [12] 

In this context cardiotocography (CTG) is a well-established, routine procedure 

that has been used since the end of the 1960s for monitoring the fetal heart rate and 

uterine contractions (UC) signals during pregnancy and delivery. [12] 

The fetal heart rate itself is used for investigating the oxygen supply for the 

fetus, as hypoxia during labor can lead to death and long-term disabilities. [7] 

The interpretation of the CTG signals is supported by guidelines developed by 

institutions such as International Federation of Gynecology and Obstetrics (FIGO) and 

the Institute of Child Health and Human Development (NICHD). [3] 

While FHR and UC signals are the primary objective of CTG, the guidelines 

extend the definition of observations to include features that describe these signals, 

such as acceleration, deceleration, and variability. [16] 

Despite the existence of these guidelines, the CTG exam is still prone to 

subjectivity and there is no universal consensus regarding its interpretation. This 

subjectivity extends to measuring its outcomes, which 40 or so years after its 

implementation, still retains significant variance. [2] 

CTG is most commonly applied in high-risk pregnancies and is not 

recommended by the World Health Organization (WHO) for healthy pregnant women 

undergoing spontaneous labor. [20] 
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 2. Related Work 

 Studies regarding the impact on outcomes of the CTG exam have considerable 

variability: sensitivity ranging from 2 to 100% and specificity between 37 and 100% [2]. 

At the heart of such variance lies the opportunity of improving consistency 

through the application of a machine-based model, which would remove inter-observer 

variation. 

In the past studies exploring machine learning for automatic CTG classification, 

authors often favored theoretical performance over practical applications, as decisions 

such as excluding the suspect class [9] [15] [17], single run experiments [9] [15] [17] 

[21] and small sized testing sets [9] [17] [21] constrain the potential generalization of 

any given model. 

The present study sought to improve the statistical rigor of previous work done 

with machine learning applied to CTG in order to bring the results one step closer to 

real world application. 
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3. Materials and Methods 

3.1 Dataset 

The dataset used in this study contains 2126 fetal cardiotocograms represented 

in 21 features belonging to 3 different classes: normal (n = 1655), suspect (n = 295) 

and pathological (n = 196). [1] 

The class labels were given by the consensus of three expert obstetricians, 

using FIGO as its guideline for interpretation. [3] 

The features were created by SisPorto 2.0 software [1], which applies pattern 

recognition to digital CTG signals yielding the features described in the table 1 below. 

Column Name Description 

LB FHR baseline (beats per minute) 

AC # of accelerations per second 

FM # of fetal movements per second 

UC # of uterine contractions per second 

DL # of light decelerations per second 

DS # of severe decelerations per second 

DP # of prolonged decelerations per second 

ASTV Percentage of time with abnormal short-term variability 

MSTV Mean value of short-term variability 

ALTV Percentage of time with abnormal long-term variability 

MLTV Mean value of long-term variability 

Width Width of FHR histogram 

Min Minimum of FHR histogram 

Max Maximum of FHR histogram 

Nmax # of histogram peaks 
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Nzeros # of histogram zeros 

Mode Histogram mode 

Mean Histogram mean 

Median Histogram median 

Variance Histogram variance 

Tendency Histogram tendency 

NSP Fetal state class code (N=normal; S=suspect; P=pathologic) 

Table 1. Description of dataset variables. [3] 

3.2 Metrics 

         The primary metric used to measure performance in this study is the area 

under the precision-recall curve. The reasoning behind this is trifold: the metric is 

representative of performance amidst class imbalance, the metric allows practical 

decisions (i.e., favoring recall for screening purposes or precision for resource 

allocation) as well as being conceptually familiar to professionals that underwent 

nursery or medical school. The AUPRC can be defined in the equation below [14], 

where p and r denote precision and recall respectively: 

 

𝐴𝑈𝑃𝑅𝐶 =  ∫ 𝑝(𝑟)𝑑𝑟
1

0

 

         Secondary metrics were also made available, including accuracy, precision, 

recall, f1-score and area under the receiver operator characteristic curve (AUROC). 
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         AUPRC was chosen in favor of AUROC as the ROC curve can be misleading 

in the face of class imbalance, as few examples of the minority class diminish the 

trustworthiness of the measured performance [5]. 

         Logloss was used as a loss function for training classifiers as well as the 

minimization criteria during hyperparameter optimization. 

  

3.3 Evaluation Method 

         In order to ensure the reliability of proposed techniques, all experiments were 

repeated 100 times (n = 100) and the reported metrics represent the median of 

experiment runs. 

         In every experiment run, the testing set was composed by 30% of data using 

the target classes as stratification criteria. 

         During hyperparameter optimization, models were trained under k-fold cross 

validation using k = 4 on training data. 

 

3.4 Machine Learning Models and Hyperparameter Optimization 

In order to establish the baseline performance level, a RandomForest model [6] 

was conceived. The reasoning behind this choice is due to the low variance coupled 

with good bias levels as well as the synergy between this framework and the final 

candidate, a LightGBM model [13]. 
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Tree-based algorithms rely on similar assumptions and representations, 

therefore its performance can be consistently compared whilst not incurring any extra 

overhead for preprocessing. 

The parameters for the baseline model were not tuned, rather, they were 

chosen for the main purpose of lower variance, as to establish a consistent baseline 

for performance while also minimizing bias whenever possible. 

The table 2 reports the parameters and constants used in the baseline model. 

Parameter name Value 

n_estimators 501 

max_features 0.3 

random_state 451 

Table 2. Baseline random forest model parameters. 

After the baseline model, a lightgbm model was conceived through bayesian 

optimization using a gaussian process regression mapping the logloss of the model 

(calculated on k-fold cross validation with k = 4) to the parameters in the search space. 

The optimization procedure had 30 random starts followed by 70 rounds of 

refinement leading to a lightgbm classifier with the following parameters: 

Parameter name Value 

learning_rate  0.034086444079214386 

n_estimators 300 

num_leaves 31 

max_depth 11 

max_bin 356 
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bagging_freq 8 

bagging_fraction  0.6433384789192684 

feature_fraction  0.700623286108986 

min_child_samples 7 

min_split_gain  0.0 

boosting_type gbdt 

bagging_seed 42 

random_state 451 

Table 3. LightGBM parameters obtained through bayesian optimization. 

 

3.5 Post Processing 

Following the results of hyperparameter optimization, the resulting LightGBM 

model was subjected to k-fold cross validation ensembling (CVE) wherein the model 

is trained multiple times (k = 4) on different subsets of the training set and its final 

predictions are subsequently averaged. This process managed to reduce both bias 

and variance, as shown in the next section. 

 

4. Results 

The results are summarized in table 6 and charts 1 and 2 depict the 

performance of the best model. A more detailed table of experiment results per model 

is available on annex 1, 2 and 3. 
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Parameter name AUPRC Accuracy AUROC F1-Score Recall Precision 

Random Forest Baseline 0.9559 0.9436 0.9868 0.8991 0.8831 0.9182 

LightGBM 0.9577 0.9483 0.9877 0.9084 0.8932 0.9261 

CVE LightGBM 0.9582 0.9514 0.9880 0.9128 0.8986 0.9286 

 

Chart 1: Performance of CVE LightGBM 
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Chart 2: Performance of CVE LightGBM measured by class 

Note: N denotes normal, S denotes suspect and P, pathological. 

 

         As part of the results, a cost estimate for the model was made in order to further 

support real world deployment and healthcare value assessment. 

         From an estimate of 140 million yearly births [19] worldwide, roughly translating 

to 12 million births/month, and 300 milliseconds execution time, the lightgbm model 

would cost 0.78 USD for every million predictions or 9.33 USD per month for covering 

all births in that given period. 
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5. Discussion 

The suspect class was shown to be the most difficult to predict, likely due to the 

fact that there are less observations when compared to the normal class as well as 

being the in-between of the other classes as well. 

While it would certainly increase the computational overhead, using the raw 

signal could yield better results, as theoretically the bayes optimal error is diminished 

when using aggregations like it was done by SisPorto 2.0. 

The cost estimate does not factor indirect costs that are facility specific, such 

as IT, data infrastructure required to support the model, and it drastically overestimates 

the amount of predictions required, as not all labor occurrences would need a CTG 

exam to begin with. 

In order to further approach this model to a real-world setting, we recommend 

exploring the effects of manufacturer, age and ethnic group [4] in order to ensure that 

the model retains performance levels amidst populational and hardware variance. 

  

6. Conclusion 

The models created in the course of this study showed good and consistent 

levels of performance. Lightgbm with bayesian optimization proved very useful in 

pushing the baseline, as did cross validation ensemble which introduced a small but 

welcome performance gain. 
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As the impact on outcomes of CTG remains unclear, a machine model could 

improve measurements by reducing subjectivity. 

The low-cost structure combined with the fact that CTG is a widespread 

procedure makes it a great candidate for real world experimentation. 

The cost overhead added by the AI model is easily overshadowed by the 

potential efficiency gains in domains with CTG qualified professionals and even more 

so for resource poor environments where the exam would be otherwise unavailable. 
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9. Annex 

 Accuracy AUROC AUPRC F1-Score Recall Precision 

Mean 0,9432 0,9865 0,9541 0,8967 0,8804 0,9172 

Std 0,0082 0,0031 0,0094 0,0157 0,0185 0,0185 

Minimum 0,9232 0,9787 0,9311 0,8581 0,8395 0,8559 

25% 0,9373 0,9843 0,9471 0,8868 0,8667 0,9070 

Median 0,9436 0,9868 0,9559 0,8991 0,8831 0,9182 

75% 0,9487 0,9889 0,9610 0,9076 0,8938 0,9320 

Maximum 0,9592 0,9926 0,9711 0,9263 0,9182 0,9521 

 

Annex 1. Random Forest baseline experiment results 

 

 

 Accuracy AUROC AUPRC F1-Score Recall Precision 

Mean 0,9484 0,9873 0,9561 0,9074 0,8939 0,9237 

Std 0,0083 0,0033 0,0112 0,0169 0,0196 0,0187 

Minimum 0,9248 0,9775 0,9255 0,8652 0,8452 0,8680 

25% 0,9436 0,9852 0,9491 0,8975 0,8825 0,9133 

Median 0,9483 0,9877 0,9577 0,9084 0,8932 0,9261 

75% 0,9545 0,9897 0,9642 0,9186 0,9092 0,9358 

Maximum 0,9671 0,9948 0,9781 0,9456 0,9360 0,9601 

 

Annex 2. LightGBM experiment results 
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 Accuracy AUROC AUPRC F1-Score Recall Precision 

Mean 0,9498 0,9877 0,9573 0,9097 0,8968 0,9251 

Std 0,0085 0,0032 0,0107 0,0169 0,0196 0,0182 

Minimum 0,9263 0,9791 0,9277 0,8712 0,8532 0,8670 

25% 0,9436 0,9853 0,9494 0,8979 0,8861 0,9141 

Median 0,9514 0,9880 0,9582 0,9128 0,8986 0,9286 

75% 0,9545 0,9898 0,9647 0,9215 0,9110 0,9362 

Maximum 0,9702 0,9943 0,9767 0,9432 0,9353 0,9575 

Annex 3. Cross validation ensemble LightGBM experiment results 
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