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Abstract  
 

Impaired lung function is predictive of mortality and is a key component in the diagnosis of chronic 

obstructive pulmonary disease. Lung function has a strong genetic component but is also affected by 

environmental factors such as increased exposure to air pollution. How genetic factors and air 

pollution interact to affect lung function is however less understood.  

We conducted a genome-wide gene-air pollution interaction analysis of spirometry measures with 

three measures of air pollution at home address: particulate matter (PM2.5 & PM10) and nitrogen 

dioxide (NO2), in approximately 300,000 unrelated European individuals from UK Biobank. We 

explored air pollution interactions with previously identified lung function signals and determined 

their combined interaction effect using a polygenic risk score (PRS).   

We identified seven genome-wide interaction signals (𝑃 < 5 × 10−8 ), and a further ten suggestive 

interaction signals (𝑃 < 5 × 10−7). We found statistical evidence of interaction with PM2.5 for 

previous lung function signal, rs10841302, near AEBP2, suggesting increased susceptibility of 

FEV1/FVC to PM2.5, as copies of the G allele increased (interaction beta: -0.073 percentage points, 

95%CI: -0.105,-0.041). There was no observed interaction between air pollutants and the weighted 

genetic risk score. 

We carried out the largest genome-wide gene-air pollution interaction study of lung function and 

identified effects of clinically relevant size and significance. We observed up to 440ml lower lung 

function for certain genotypes associated with mean levels of outdoor air pollution at baseline, 

which is approximately equivalent to nine years of normal loss of lung function.  

 

Introduction 
 

Impaired lung function is predictive of mortality and is a key component in the diagnosis of chronic 

obstructive pulmonary disease (COPD). Smoking is the biggest risk factor for COPD, which is thought 

to have caused as many as 2.9 million deaths worldwide in 2016 (1) although other sources of indoor 

air pollution are also associated with COPD risk (2, 3). Furthermore, increased exposure to air 

pollution is associated with lower lung function (4).  
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Lung function and COPD risk is also influenced by genetic factors and we and others have discovered 

over 300 genetic association signals for COPD risk and/or lung function measures  (5, 6). Combining 

these signals into a single polygenic risk score, we have shown that individuals in the highest decile 

of genetic risk have an almost 5-fold increased risk of COPD compared to those in the lowest decile. 

However, collectively, these variants only explain up to around 13% of the heritability of lung 

function. 

We hypothesised that there could be interactions between genetic variants and air pollution 

measures which affect COPD risk and lung function. Detection of such effects could enable 

identification of high-risk subgroups of the population and provide new biological insight into the 

mechanisms whereby air pollution affects respiratory health.   

To test this hypothesis, we carried out the largest genome-wide gene-air pollution interaction study 

of lung function in ~300,000 individuals from UK Biobank, using particulate matter (PM) and nitrogen 

dioxide (NO2) concentrations as measures of air pollution exposure.   

 

Methods and Materials 
 

Selection of individuals with lung function data  
 

We selected unrelated European individuals from UK Biobank as previously described (6). In 

summary, we selected individuals that had complete lung function data and passed our previously 

outlined quality control filters for forced expiratory volume in 1 second (FEV1), forced vital capacity 

(FVC) and the ratio (FEV1/FVC). From this we then selected a subsample of unrelated individuals of 

genetically determined European ancestry (KING kinship coefficient < 0.0884 corresponding to 

below 2nd degree kinship (7)). All individuals had complete data for sex, age, height and ever smoking 

status (ever vs never).  

Air pollution data 
 

Air pollution concentrations at place of residence of UK Biobank participants at recruitment were 

estimated using European Study of Cohorts and Air Pollution Effects (ESCAPE) land use regression 

models (8, 9). In these analyses, we explored associations with fine particles with average diameter < 

2.5 µm (PM2.5), particulate matter with average aerodynamic diameter < 10 µm (PM10) and annual 

average concentrations of nitrogen dioxide (NO2).   

For the particulate measures, models were not robust more than 400km from Greater London, so 

analyses did not include participants from northern England and Scotland. ESCAPE NO2 variables 

were available UK-wide.  

Genome-wide interaction analysis  
 

FEV1, FVC and FEV1/FVC were adjusted for sex, age, age2, height and ever smoking. Residuals were 

then inverse normal transformed. Air pollution measures PM2.5 and PM10 were transformed into 

standard z-scores to avoid collinearity issues between the air pollution and interaction terms 
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(observed due to small measurement variances). Air pollution measure NO2 was analysed 

untransformed.  

Individuals were genotyped using the Affymetrix Axiom UK BiLEVE and Affymetrix Axiom UK Biobank 
arrays (10) with imputation undertaken using the Haplotype Reference Consortium (HRC) (11)and 
combined UK10K + 1000 genomes (12) reference panels. Multiallelic variants were removed and 
variants imputed with low confidence were excluded (imputation quality r2 < 0.5 for all SNPs and r2 < 
0.8 for rare SNPs with minor allele frequency (MAF) < 1%). Variants with MAF less than 0.5% were 
removed.   

Each transformed lung function trait was used as the outcome in a multiple regression model which 

included the first 15 principal component terms for ancestry, genotyping array, SNP term (using an 

additive genetic model), air pollution variable and an interaction term for the interaction between 

SNP and air pollution:  

 

            𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑖 =  𝛽0 + 𝛽1𝐺𝑖 + 𝛽2𝐴𝑖 + 𝛽3𝐺𝑖𝐴𝑖 + 𝑃𝐶1𝑖 … 𝑃𝐶15𝑖 + 𝐴𝑟𝑟𝑎𝑦𝑖 + 𝜀𝑖         (Equation 1) 

 

where 𝐺𝑖  is the genotype for individual 𝑖, 𝐴𝑖  is the air pollution value, 𝑃𝐶1𝑖 … 𝑃𝐶15𝑖 represent 

principal component values and 𝐴𝑟𝑟𝑎𝑦𝑖 is the genotype array value (coded 0 and 1 for UK Biobank 

array and UK BiLEVE array respectively). The p-value returned for the 𝛽3 estimate corresponds to the 

interaction effect between SNP and air pollution value (𝐺𝑖𝐴𝑖). Multiple regression was performed 

using PLINK2 (13). 

Signal selection and fine-mapping 
 

To define association signals and their sentinel variants, all variants were ranked by p-value and the 

SNP with the lowest p-value was selected as the first signal sentinel. All SNPs +/-1 megabase (Mb) 

either side of this first sentinel were then excluded and the process repeated for the next most 

significant SNP until all 2Mb regions containing a sentinel SNP with 𝑃 < 5 × 10−8 had been 

identified (genome-wide signals). The process was repeated to define a set of signals with sentinel 

SNPs at threshold of 𝑃 < 5 × 10−7 (suggestive signals). Conditional analysis was used to identify 

additional independent genome-wide and suggestive signals by including the sentinel interaction 

term in the model, re-analysing all SNPs within each 2Mb region and determining whether any SNPs 

remained below the pre-specified threshold. Region plots for each signal were created using 

LocusZoom (14). 

To aid the interpretation of interaction effects for genome-wide significant interaction signals, we 

presented the association between lung function trait and air pollution variable stratified by 

genotype group. To do this, dosages were converted to direct genotype calls by rounding to the 

nearest genotype group.    

Using a Bayesian method (15) we fine-mapped each signal to a credible set of SNPs (the set of SNPs 

95% likely to contain the causal SNP, under the assumption that the causal SNP was analysed).  

Identification of putative causal genes 
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Credible set SNPs including the sentinel SNP were annotated using Annovar (16) to identify coding 

variants with a putative functional effect (for example, missense). To identify whether any of the 

signals were independently associated with gene expression, we searched the GTEx (17) and blood 

eQTLgen (18)eQTL catalogues. To identify a potential shared causal variant between the SNP-air 

pollution interaction signals and the eQTL gene expression signals, colocalisation was undertaken 

using COLOC (19) where full summary data was available in GTEx and eQTLgen databases (20). An 

observed probability > 0.8 for a shared causal variant was used as the threshold to conclude 

colocalisation of SNP-air pollution and gene expression signals. We queried the sentinel SNPs in 

Open Target Genetics (21) for eQTL associations (which in addition to GTEx includes a further 14 

consortia with eQTL expression association results) and to identify associations with protein 

expression (pQTL) and overlap with regions known to interact with gene promoters (promotor 

capture HiC). 

Association with other phenotypes 
 

The SNP with the highest posterior probability for causality in each credible set was queried in 

PhenoScanner (22) and Open Targets Genetics (21) resources to identify shared associations with 

other phenotypes at a threshold of 𝑃 < 1 × 10−3.  

Functional enrichment 
 

To identify whether there was enrichment of SNP-air pollution interaction signals within regulatory 

regions of the genome (for example, DNase Hypersensitivity Sites) in specific cell or tissue types we 

used GARFIELD (23). The software determines whether signals are enriched for DNase I 

hypersensitive sites across 55 tissues (with an adjusted significant enrichment threshold for 540 

effective annotations of P < 9.26 × 10−5). We investigated the functional impact of SNPs (potential 

chromatin effects) which were highly probable to be the drivers of each signal (i.e. SNPs with 

posterior probability > 0.9 in credible sets) using DeepSEA (24). To define a significant functional 

impact we used an E-value < 0.05 (the proportion of 1000 Genomes SNPs predicted to have a higher 

magnitude for chromatin effect compared to the chosen SNP being investigated) and an absolute 

probability difference > 0.1 between alternative and reference allele (the threshold defined for ‘high 

confidence’).   

Effects of Socio-Economic Status  
 

Socio-economic status (SES) of an individual is a plausible moderator of lung function, with observed 

modification of air pollution effects (4), however adjusting for SES in our analyses would have led to 

a reduction of approximately 13% in the discovery sample size due to missing data. We accounted 

for any effects of SES on genome-wide interaction signals in two ways. Firstly, we undertook a 

sensitivity analysis for the top signals adjusting for educational status and income status using a 

complete-case analysis (after inverse normalisation of lung function traits). Secondly, we present 

interaction effects for genome-wide signals across categorised groups for income and educational 

status to visualise any difference in effect (akin to a three-way interaction between SNP, air 

pollutant and education/income). Income status was categorised using the definition in UK Biobank 

of “less than £18,000”, “£18,000 to £30,999”, “£31,000 to £51,999”, “£52,000 to 100,000” and 

“Greater than 100,000”. Educational status was dichotomised as “lower vocational qualification or 

less” vs “higher vocational qualification or more”, grouping  A-level (2), O-level (3), CSEs (4), and 
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“None of the above” (-7) under “low education”, and College/University (1), NVQ (5) and Other 

professional qualifications (6) under “high education”. Individuals who selected “Do not know” (-1), 

“Prefer not to answer” (-3) or have missing data were excluded from subsequent analyses. 

Previously reported lung function and COPD association signals  
 

We performed a look-up in the genome-wide gene-air pollution interaction analyses (for all three air 

pollution measures and all three lung function measures), for the 304 signals previously reported for 

association with lung function and COPD (279 lung function signals from Shrine et al. 2019 (6) and 25 

signals from Sakornsakolpat et al. 2019 (5)). As these independent signals have a priori evidence for 

association with lung function or COPD, we applied a Bonferroni corrected threshold for 304 tests to 

define a significant air pollution interaction effect (𝑃 < 1.6 × 10−4). As before, to aid interpretation 

of the interaction effect for any statistically significant signal, we present the association between 

lung function trait and air pollution stratified by genotype group.  

Weighted genetic risk score interaction analysis 

We used a weighted polygenic risk score (PRS) to explore whether the combined effect of previously 

reported lung function signals showed an interaction with air pollution measures (i.e. whether the 

phenotypic effects of the SNPs were modified by exposure to air pollution). Each individual’s score 

was calculated using the effect sizes of the 279 SNPs reported in Shrine et al. 2019 (6) on FEV1/FVC 

(using the lung function reducing allele as the coded allele). Multiple regression was performed using 

the same model above, using the weighted polygenic risk score in place of the genotype. As all three 

lung function traits are correlated, interaction terms (i.e. wGRS x Air pollution measure) with 𝑃 <

0.05 were defined as statistically significant. 

Antioxidant genes and their interaction with air pollution  
 

Genetic variation within antioxidant genes may contribute to susceptibility of adverse effects of air 

pollution on respiratory health (25). We have provided look-ups for the most commonly evaluated 

antioxidant genes (for which a SNP was reported) and for SNPs evaluated in previous antioxidant-

gene-air pollution interaction studies, both of which are reviewed in Fuertes et al. (25). A Bonferroni 

adjusted threshold of P < 3.85 × 10−3 (for 13 variants) was used to determine statistical 

significance. 

 

Results  

 

Genome-wide interaction analysis  
 

Genome-wide interaction analysis was undertaken in 277,597 European individuals from UK Biobank 

for air pollution variables PM10/PM2.5, (Supplementary table 1) and a total of 10,848,082 SNPs 

(Supplementary figure 1). For the NO2 analysis, there were 299,015 European individuals and 

10,846,777 SNPs. Manhattan plots are presented in Figure 1 and QQ plots in supplementary figure 

2.  

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 7, 2021. ; https://doi.org/10.1101/2021.06.03.21256376doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.03.21256376
http://creativecommons.org/licenses/by/4.0/


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 - Manhattan plots for the gene-air pollution interaction GWAS. The red line represents a p-value threshold of 5 × 10−8. The blue line represents a p-value threshold of 5 × 10−7. Each genome-wide signal 
is annotated by nearest gene.  
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We identified seven signals with an interaction effect reaching genome-wide statistical significance 

(𝑃 < 5 × 10−8 ) for at least one lung function trait and air pollution variable (Table 1, 

Supplementary table 2 and Supplementary figure 3). Four signals were identified for an interaction 

with PM10. These included two for FEV1 (in 4q35.2 [near LINC02374] and in 19q12 [near 

LOC100420587]), one for FVC (in 1p36.33 [near LINC01342]) and one for FEV1/FVC (in 6p25.1 [in 

LY86-AS1]). Two signals were identified for an interaction with PM2.5; one for FEV1 (in 7q31.33 [near 

GRM8]) and one for FVC (in 5q31.2 [in KDM3B]. One signal was identified for air pollutant NO2 for 

both lung function traits FEV1 and FVC (in 21q21.1 [near MIR548XHG]). Of the seven identified SNPs, 

three were common (MAF > 5%) two were low frequency, (1% < MAF < 5%) and two were rare (MAF 

< 1%). Conditional analysis did not identify any additional signals in each region.  

To aid with the interpretation of statistically significant interaction effects, we have presented the 

association between air pollution and lung function stratified by genotype group (number of copies 

of coded allele) for each of the seven genome-wide interaction signals (Figure 2) and interaction 

plots of predicted lung function against air pollution for each genotype group (Supplementary figure 

4). In some instances, statistically significant association between lung function and air pollutant is 

observed in all genotype groups. For others, the association only reaches statistical significance for 

certain genotype groups.  

Signals were deemed suggestively statistically significant using the same signal selection procedure 

with a threshold of 5 × 10−7 (Supplementary table 3 and Supplementary figure 5). Region plots 

after conditional analysis suggested only one signal per 2Mb region. Ten suggestive signals were 

identified that were independent of the seven genome-wide significant signals, all were either 

intergenic or mapped to the intronic region of the mapped gene. Eight were represented by 

common SNPs, and two by low frequency SNPs.  
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Table 1  - Seven identified genome-wide gene-air pollution interaction signals, CAF = Coded Allele Frequency, INFO – imputation quality, AP = Air Pollutant, LF = Lung Function, BP = Base 
Position. A negative BETA (interaction effect) suggests a more deleterious effect on lung function per unit increase of air pollutant as the coded allele increases. A positive BETA (interaction 
effect) suggests a more protective effect. Interaction effect is per unit increase in air pollutant NO2 (1 μg/m3) and per standard deviation increase for air pollution variables PM10 and PM2.5 as 
the coded allele increases. Lung function effects are the product of the BETA value and the observed standard deviation of the lung function trait within the analysed sample.  

 

 

 

LF trait AP SNP CHR BP Coded 
Non 

Coded 
CAF INFO 

 
BETA 

 
SE 

LF effect (ml for 
FEV1, FVC or % 

points for 
FEV1/FVC) 

P Locus 

FVC PM10 rs74048016 1 1068280 C G 0.98 0.97 -0.053 0.010 -50.8 3.83×10-8 
C1orf159 (dist=16811), 
LINC01342 (dist=4117) 

FEV1 PM10 rs28666788 4 188078645 G A 0.096 0.99 -0.025 0.005 -18.9 3.92×10-8 
FAT1 (dist=433635), LINC02374 

(dist=44495) 

FVC PM2.5 rs192415220 5 137726002 C T 0.006 0.94 -0.100 0.018 -95.9 3.96×10-8 KDM3B 

FEV1/FVC PM10 rs137914543 6 6414006 G GTCTC 0.06 0.83 -0.038 0.006 -0.24 3.55×10-10 LY86-AS1 

FEV1 PM2.5 rs138235384 7 125969169 C T 0.994 0.90 -0.097 0.018 -73.3 4.10×10-8 
LOC101928283 (dist=949794), 

GRM8 (dist=109483) 

FEV1 PM10 rs762101031 19 29112275 CAAT C 0.96 0.79 -0.046 0.008 -34.8 2.87×10-8 LOC100420587 

FEV1 
NO2 rs2825255 21 20362376 T C 0.83 1.00 

-0.003 0.001 -0.23 2.53×10-9 MIR548XHG (dist=230246), 
LINC01683 (dist=903217) FVC -0.003 0.001 -0.29 3.52×10-8 
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Figure 2 - Association between lung function trait and air pollutant (effect size and confidence intervals) for the seven genome-wide signals. Note: For SNPs rs138235384 and rs192415220 the 
effect size for 0 copies and 2 copies of the effect allele respectively are not presented due to the low minor allele frequency and small sample size. Effect sizes will not be exactly consistent with 
Table 1 due to rounding error when converting from dosage to direct genotypes.  
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Credible sets and causal genes  
 

To determine a causal gene for each signal (both genome-wide and suggestively significant), we used 

Bayesian fine mapping to define the 95% credible set of causal SNPs (assuming the causal SNP was 

included in the analysis, Supplementary table 4) and investigated whether credible set and sentinel 

SNPs were associated with changes in gene expression in GTEx, Blood eQTL and Open Target 

Genetics databases (Supplementary table 5). Genome-wide significant signal, rs74048016, whose C 

allele had a larger deleterious effect on lung function as the measurement of PM10 increased, was 

associated with decreased expression of HES4 and increased expression of C1orf159 and RP11-

465B22.3 in blood. The signals did not colocalise with the known gene expression signals in this 

region (using the eQTLgen database (20)). Credible set SNPs for suggestive signals rs769937512, 

rs111552599, rs139556451, rs200460259 and rs10082259 were associated in various tissues for 

genes AL445991.1, FRAS1, PNMA2/DPYSL, MUC4/MUC20 and UROD respectively (Supplementary 

table 5). These signals did not colocalise. There was no association with protein expression and no 

overlap with regions that had strong evidence for interaction with gene promoters. 

Association with other phenotypes  
 

Sentinel SNPs were queried in PhenoScanner and Open Targets Genetics resources (Supplementary 

table 6). Five signals were found to be associated with at least one trait at 𝑃 < 1 × 10−3, three 

genome-wide signals (rs28666788, rs192415220 and rs138235384) and two suggestive signals 

(rs10082259/rs6661026 and rs769937512). None of the associations reached genome-wide 

significance (𝑃 < 5 × 10−8). For the genome-wide signals rs28666788, rs192415220 and 

rs138235384 the strongest associations were with alcohol consumption, self-reported cervical 

polyps and sexual dysfunction respectively (at < 5 × 10−6).  

Functional enrichment 

 

When looking for evidence of significant functional enrichment at DNase I hypersensitive sites (DHS) 

using GARFIELD, SNPs showing SNP-NO2 interaction effects on lung function phenotype FVC were 

enriched in various tissues including fetal lung, using a threshold of 𝑷 < 𝟓 × 𝟏𝟎−𝟓 to select 

contributing SNPs (Supplementary figure 6). No significant functional enrichment was observed 

when considering genome-wide statistically significant SNPs only (𝑷 < 𝟓 × 𝟏𝟎−𝟖) or for any of the 

other eight combinations of lung function and air pollution measures. For the six SNPs which were 

highly probable to be causal drivers of their respective signals (posterior probability > 0.9), none 

showed any evidence of any chromatin effects using DeepSEA (Supplementary table 7).  

 

Effects of Socio-Economic Status  
 

When adjusting for socio-economic status variables educational status and income status, sample 

sizes were reduced to 259,130 and 240,202 for the NO2 and PM10/PM2.5 analyses respectively. Effect 

sizes were largely consistent with the primary analysis with minimal reductions in effect size for 

rs74048016 and rs192415220 (Supplementary table 8 and Supplementary figure 7), suggesting that 

the interactions identified were not due to confounding by SES factors. Interaction effects were 

generally larger in magnitude (but not significantly due to overlapping confidence intervals) for 

those in the lower educational group (Supplementary figure 8). When stratifying by income group 
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(Supplementary figure 9), overlapping confidence intervals again suggested no significant effect of 

income status on air pollution and lung function association across genotype groups. A slight inverse 

correlation between magnitude of interaction effect and income group was observed for rs2825255 

for both lung function traits (higher income group, smaller interaction effect magnitude) with a 

positive correlation observed for rs762101031 (higher income group, larger interaction effect 

magnitude).  

 

Lung function associated signals  
 

To determine whether any signals previously shown to be associated with lung function produced an 

interaction effect with air pollution variables, we performed a look up of the 304 variants (279 lung 

function signals from Shrine et al. (6) and 24 COPD signals from Sakornsakolpat et al. (5)) in our 

genome-wide analysis. Of the 304 signals, one signal, rs10841302, near AEBP2, for which the G allele 

is associated with lower values of FEV1/FVC, met a Bonferroni threshold of P < 1.6 × 10−4 for an 

interaction with PM2.5 for FEV1/FVC (interaction β: -0.0118; CI: -0.0170,-0.0066; interaction 

P=9.65x10-6) (Supplementary table 9), suggesting a larger deleterious effect of PM2.5 on FEV1/FVC as 

copies of the G allele increased (Figure 3). This is equivalent to an FEV1/FVC effect of -0.073 

percentage points (CI: - 0.105,-0.041) per unit increase in PM2.5. The interaction can also be 

interpreted by air pollution and lung function association stratified by genotype group. For genotype 

groups CC, CG and GG for SNP rs10841302, a unit increase in PM2.5 (1 𝜇g/m3) resulted in a reduction 

of FEV1/FVC by 0.032 (95% CI: 0.026-0.038; P = 1.21 × 10−22), 0.034 (95% CI: 0.028-0.040; P = 

5.52 × 10−39) and 0.056 (95% CI: 0.048-0.064; P = 2.43 × 10−43) standard deviations. This equates 

to direct FEV1/FVC effects of 0.19 (95% CI: 0.16-0.23), 0.20 (95% CI: 0.17-0.24) and 0.33 (95% CI: 

0.29-0.38) percentage points respectively per 1 𝜇g/m3 of PM2.5.   

We tested the interaction between a weighted polygenic risk score for lung function (based on the 

effect sizes of 279 lung function signals reported in Shrine et al. (6)) and each air pollution measure 

on FEV1, FVC and FEV1/FVC (Supplementary table 10). None of the interaction effects were 

statistically significant (all P > 0.05).  

 

Antioxidant genes and their interaction with air pollution  
 

We performed a look up of the 13 variants corresponding to seven commonly evaluated antioxidant 

genes and/or those analysed in previous studies of antioxidant gene-air pollution interaction 

analyses, as reviewed by Fuertes et al. (25) (Supplementary table 11). None of the SNPs reached the 

Bonferroni significant adjusted threshold used to determine statistical significance (P < 3.85 ×

10−3). One SNP, rs1001179 in CAT approached this threshold (P = 0.009) for an interaction with NO2 

for lung function phenotype FEV1/FVC.   
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Figure 3 - Interaction plot of FEV1/FVC predicted values against PM2.5 values across genotype 
groups (with coded allele G) for the previously identified lung function signal rs10841302  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion 
 

We carried out the largest genome-wide gene-air pollution interaction study of lung function and 

identified seven genome-wide statistically significant signals, as well as identifying an interaction 

with air pollution for one previously identified lung function signal.    

For the signals identified, ascribing the biological mechanisms proves a challenge and further 

biological studies of gene function for those implicated are needed. For genome-wide SNP 

rs74048016, as the number of copies of the coded allele increases the effect of air pollutant PM10  on 

FVC becomes more negative, suggesting that those with two copies of the effect allele are at 

increased susceptibility of air pollution effects. The coded allele is associated with decreased 

expression of HES4 and increased expression of C1orf159 in blood in Open Targets Genetics. The 

signals for genome-wide association and gene expression signals did not colocalise (there was 

insufficient evidence of a  shared causal variant between the two analyses) in this genomic region 

(using data from eQTLgen). Expression of HES4 (hes family bHLH transcription factor 4) has been 

implicated in poor outcomes for patients with Triple Negative Breast Cancer (TNBC) (26) and both 

HES4 and C1orf159 (chromosome 1 open reading frame 159) have been implicated via functional 

annotation (nearest gene) of other genome-wide significant loci for several traits and diseases, 

including peak expiratory flow (PEF) (27, 28). There is also evidence of colocalisation between gene 

expression and genome-wide analyses for these genes in certain tissues for height phenotypes 

(standing and sitting) (27, 28).  
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We identified a further ten signals (independent of the primary genome-wide signals) at suggestive 

statistical significance, which would be important to take forward in future replication analyses. 

Genes implicated include PNMA2, DPYSL2 and BNIP3L, all via functional annotation of other 

genome-wide significant loci for height, and additionally for educational attainment phenotypes (29, 

30). There was however no attenuation of suggestive signal rs139556451 (which implicated the 

aforementioned genes in our analysis) when re-analysing with adjustment for education and income 

status (in the subset for which this data was available). BNIP3L expression has also been linked with 

lung cancer (31). Additionally, gene FRAS1 identified by eQTL associations for SNPs in the 

rs111552599 suggestive signal credible set has been implicated by other genome-wide signals for 

lung function, specifically for trait FEV1/FVC (6, 29) and mutations in FRAS1 have been observed 

amongst individuals with Fraser syndrome, which can cause airway abnormalities (32, 33). MUC4 

(identified by credible set eQTL associations for rs200460259), which encodes airway mucins (34) is 

associated with severity of lung disease in cystic fibrosis (through functional annotation of another 

genome-wide signal) (35) and risk of lung cancer (association with variants in the gene) (36). We 

were however unable to determine whether the association signal for the genes described here 

were driven by the same causal variant as the interaction signal.  

We identified an interaction effect between SNP rs10841302 (a previously identified lung function 

signal associated with FEV1/FVC) and PM2.5 for lung function trait FEV1/FVC. Previous work has 

shown that the rs10841302 G-allele is associated with a deleterious effect on FEV1/FVC. We found 

that this deleterious effect increased in magnitude as the exposure to PM2.5 increased. A causative 

gene for the association between rs10841302 and lung function has not been determined. The SNP 

is near AEBP2 (AE Binding Protein 2), a transcriptional repressor with a possible contribution to 

histone methylation and the G allele is associated with increased expression of both RP11-405A12.2 

(in pancreas and subcutaneous adipose tissues) and RP11-664H17.1 (in pancreas and tibial nerve 

tissues) in GTEx (17). There was no evidence of an interaction between air pollution measures and a 

combined effect from all previously identified lung function signals represented by a polygenic risk 

score.   

 

A particular strength of this study is the discovery sample size available for the interaction analysis. 

Interactions are challenging to identify due to the requirement of much larger sample sizes than 

GWAS efforts exploring the marginal effects of genetic variants (37). This strength is however 

unfortunately a contributor to its biggest limitation, which is identifying suitable independent 

datasets of sufficient sample size with lung function data in European ancestry populations to 

replicate discovery interaction signals. We calculated that sample sizes to replicate three of our 

novel genome-wide interaction signals when considering the reported interaction effect, main 

genetic effect and air pollution variable effect (chosen from each MAF frequency group of common, 

low frequency and rare), signals rs28666788 (MAF = 10%), rs74048016 (MAF = 2%) and rs192415220 

(MAF = 0.6%) would be ~72k, ~71k and ~66k respectively to detect the effect at 80% power. 

However, these sample sizes are indeed sensitive to any observed error in interaction effect 

estimates, such that when using lower and upper confidence interval effect estimates, sample sizes 

required could range from ~35k to ~194k.   

The discovery of gene-air pollution interactions which affect lung function susceptibility is limited, 

likely due to the aforementioned difficulty in identifying suitable sample sizes to provide adequate 

power. Previous genome-wide interaction studies are either attributed to related phenotypes, such 

as asthma  (38) or have focussed on candidate genes, such as those with a role in oxidative stress, 

where conclusions drawn are often inconsistent with respect to direction of effect or presence of 
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interaction (39, 40). Previous studies of interactions between genes and smoking behaviour, the 

largest risk factor for poor lung function and COPD, have also been largely unsuccessful in identifying 

interaction signals. This has been of interest as not all smokers develop restrictive lung problems. 

Candidate gene-smoking interactions have been identified, however utilising small sample sizes with 

absence of replication (41-43) and none of the previously identified lung function signals produced 

an interaction with smoking behaviour (6). Genome-wide interaction analysis efforts have also been 

considered for lung function (44) however with little success, and although a recent study of gene-

smoking interaction effects for COPD found a genome-wide significant interaction at 15q25.1 (45), 

this is likely driven by the strong association between this locus and smoking behaviour  (46-48). 

There has however been some evidence of interaction between smoking behaviour and genetic risk 

scores, when combining the effects of SNPs associated with lung function (6, 49). To the best of our 

knowledge, no genome-wide significant smoking interaction signals for lung function have been 

identified, highlighting the impact of identifying novel genome-wide gene-air pollution interaction 

signals.  

Should the interaction effects be replicated in future analyses, the magnitude of effects observed 

here suggest potential for clinically relevant impacts on those with certain genotypes. Results (Table 

1, Figure 2) are expressed per unit pollutant. For context, average annual concentrations of PM10 in 

2018 were 14.7 µg/m3 in 2018 at urban background air quality monitoring sites (likely to represent 

where most of the UK population live) (50). Corresponding concentrations for PM2.5 and NO2 was 

10.0 µg/m3 and 20.1 µg/m3 respectively. Taking genome-wide signal rs28666788 as an example, 

(with coded allele G frequency of 0.096), effects on FEV1 per unit increase in PM10 were statistically 

significant for all genotype groups. For those with zero, one and two copies of the effect allele, lung 

function effects of approximately -7.5ml, -17.5ml and -30ml were observed per 1µg/m3 PM10 

respectively (figure 2). Therefore, when subjected to the average concentrations of 14.7 µg/m3 of 

PM10, this equates to respective reductions of 112.5ml, 260ml and 440ml. Average declines in FEV1 

per year could be up to 46ml for individuals aged 30 onwards (51), so these effects are 

approximately equivalent to nine years of normal loss of lung function for those with two copies of 

the coded allele (4 and 7 more than those with one and zero copies respectively). For other SNPs, 

such as rs2825255, with coded allele (T) frequency of 0.83, association between lung function and 

air pollutant is observed for certain genotype groups. Using the average NO2 measure, those with 

one and two copies of the effect allele could be subject to reductions in FEV1 of approximately 35ml 

and 75ml (approximately equivalent to 0.75 and 1.5 years of normal lung function decline 

respectively), as opposed to those with zero copies, where there was no observed statistically 

significant effect of air pollutant on FEV1 (confidence interval overlaps 0).  

There were approximately 40,000 individuals with clean lung function data with missing data for 

education and income status. We expect that those with higher SES and higher income are more 

likely to have complete data thus the data is not missing at random. We did not carry out imputation 

as it is difficult to know which might introduce more bias, imputation or exclusion and thus carried 

out a complete-case analysis. Further studies are required in this respect. Previous studies have 

reported modification of air pollution effects on lung function when considering SES (4, 52-54) 

possibly due to differences in housing conditions, indoor air quality, nutrition and occupation (54). 

Adjusting for SES and presenting interaction effects across educational and income groups did not 

produce a notable modification of interaction effects in our analyses, suggesting that observed 

differences in the effect of air pollution across genotype groups are not mediated or confounded by 

socio-economic status.  
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There are other limitations with this study. We only had air pollution data at baseline with some 

limitations in the availability and did not have follow-up data. An analysis of a German cohort of 601 

elderly women (mainly non-smokers) with three follow-ups from 1985-2013 suggested that changes 

in air pollution over time was associated with improvements in lung function, modified by genetic 

factors (55). In addition, there are limitations with the ESCAPE models (8, 9). Exposure estimates are 

based on place of residence so will not capture variability in exposure related to work and leisure 

activities outside the home, which may have led to exposure misclassification bias making it harder 

to detect effects. Furthermore, it must be noted that our analysis includes imputed genetic dosages 

alongside directly genotyped data and we only considered an additive genetic model for our 

analysis. Previous studies for certain antioxidant gene SNPs such as rs1695 in GSTP1 have also 

considered the suitability of alternative genetic models (56, 57). 

 

Conclusions 
 

We have identified genetic variants whose effect on lung function is dependent on air pollution 

exposure levels. This could help identify high-risk genetic subgroups whose lung function could be 

more susceptible to the effects of outdoor air pollution. While this is the largest study of this type to 

date, we highlight the need for replication in independent datasets with recorded lung function, for 

which availability is currently limited. We hope that future replication and further biological studies 

of gene function will help to establish the genes and biological pathways involved.   
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