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Abstract 1 

As of early May 2021, the ongoing pandemic COVID-19 has caused over 160 million of infections 2 

and over 3 million deaths worldwide. Many risk factors, such as age, gender, and comorbidities, 3 

have been studied to explain the variable symptoms of infected patients. However, these effects 4 

may not fully account for the diversity in disease severity. Here, we present a comprehensive 5 

analysis of a broad range of patients’ laboratory and clinical assessments to investigate the genetic 6 

contributions to COVID-19 severity. By performing GWAS analysis, we discovered several 7 

concrete associations for laboratory features. Based on these findings, we performed Mendelian 8 

randomization (MR) analysis to investigate the causality of laboratory traits on disease severity. 9 

From the MR study, we identified two causal traits, cholesterol levels and WBC counts. The 10 

functional gene related to cholesterol levels is ApoE and people with particular ApoE genotype are 11 

more likely to have higher cholesterol levels, facilitating the process that SARS-CoV-2 binds on 12 

its receptor ACE2 and aggravating COVID-19 disease. The functional gene related to WBC counts 13 

is MHC system that plays a central role in the immune system. The host immune response to the 14 

SARS-CoV-2 infection greatly affects the patients’ severity status and clinical outcome. 15 

Additionally, our gene-based and GSEA analysis revealed interferon pathways, including type I 16 

interferon receptor binding, regulation of IFNA signaling, and SARS coronavirus and innate 17 

immunity. We hope that our work will make a contribution in studying the genetic mechanisms of 18 

disease illness and serve as useful reference for the clinical diagnosis and treatment of COVID-19. 19 

Keywords: COVID-19, Genome-wide association study, Mendelian randomization, GSEA 20 

analysis, ApoE gene, MHC system, IFNA pathway 21 
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Introduction 23 

The coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute 24 

respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the late December of 2019, the COVID-25 

19 has spread rapidly around the world leading to an ongoing pandemic. As of early May 2021, 26 

reported to the world health organization (WHO), there have been over 160 million confirmed 27 

cases of COVID-19, including over 3 million deaths. Common symptoms include fever, cough, 28 

and fatigue. Meanwhile, the symptoms could be largely variable; for example, about a third of 29 

patients do not develop noticeable symptoms; of patients who develop noticeable symptoms, 81% 30 

develop mild to moderate symptoms, while 14% develop severe symptoms, and 5% suffer critical 31 

symptoms 1. Many key factors have been reported to be associated with COVID-19 severity, such 32 

as age, sex, and comorbidities. Specifically, older people are more likely to be infected by SARS-33 

CoV-2 and experience more severe symptoms. Global data indicate higher COVID-19 fatality rates 34 

among men than women. Most countries reported that the male case fatality is more than 1.0 higher 35 

than that of female 2,3. Besides, comorbidities have a critical role in poor outcomes, severity of 36 

disease and high fatality rate of COVID-19 cases 4. However, these risk factors cannot fully explain 37 

the clinical variability among the patients.  38 

Many recent studies turn their attention to the host genetic backgrounds and believe that 39 

the genetic factor may play an essential role in determining the host responses to SARS-CoV-2 5-40 

9. By performing large-scale genome-wide association studies (GWAS) of COVID-19 clinical 41 

phenotypes, several disease-associated variants and genes were identified and summarized by the 42 

Host Genetics Initiative (HGI) 9, such as the rs11385942 (SLC6A20), rs657152 (ABO), and 43 

rs2236757 (IFNAR2) 10,11. Among these findings, SLC6A20 encodes a proline transporter and is 44 

functionally associated with ACE2 (angiotensin-converting enzyme 2), which encodes the well-45 

known SARS-CoV-2 receptor 10; gene IFNAR2 encodes one type of I interferons that is essential 46 

to the establishment of antiviral state and intensifying to antiviral response12. However, most of 47 

existing GWAS studies are based on the European populations, or meta-analysis with multiple 48 

populations. It is a pity that the genomic studies based on Asian populations, especially Chinese 49 

population, are relatively few. Wang et al. (2020) reported the first host genetic study in the Chinese 50 

population of 332 COVID-19 patients and suggested some relatively significant genetic loci as 51 

candidate variants associated with severity status 5. However, their study did not identify any 52 
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genome-wide significant genetic variants (p-values < 5E-08) due to a small sample size and limited 53 

effects of single variants.  54 

In our study, we performed extensive GWAS analyses for a wide range of laboratory 55 

assessments measured from the blood test of 466 COVID-19 patients. Even with a relatively small 56 

sample size, our GWAS results indeed identified several concrete genome-wide significant 57 

associations, which are either the first replication study for a previously reported signal or the first 58 

discovery in Chinese population based on genetic analysis. These variant-trait associations include 59 

rs1801020 (F12) with activated partial thromboplastin time, rs56393506 (LPA) with lipoprotein-60 

A, rs28946889 (UGT1A complex) with total/indirect bilirubin levels, rs7412 (ApoE) with low-61 

density lipoprotein cholesterol levels (LDL-C), and rs9268517 (BTNL2) with white blood cell 62 

counts (WBC). Based on these substantial findings, we implemented Mendelian randomization 63 

(MR) to examine whether these traits are causal factors to the COVID-19 susceptibility and 64 

severity.  65 

MR uses genetic variants as instrumental variables to determine whether an observational 66 

association between a risk exposure and an outcome disease is also a causality 13. In recent years, 67 

MR has rapidly gained popularity in epidemiology and medical research, because of the ever-68 

expanding genetic databases and well-powered GWAS studies on a large number of traits. We 69 

selected the above traits with established associations as exposure variables and the COVID-19 70 

severity status released by the HGI database as the outcome variable. By performing MR analysis, 71 

we uncovered the causal associations of LDL-C and WBC on the disease severity. The cholesterol 72 

level and WBC counts-related genes are ApoE and MHC (major histocompatibility complex) 73 

system, respectively. We further studied the genetic architecture of how ApoE affects the severe 74 

illness of COVID-19 and revealed that ApoE could affect the severity of COVID-19 by influencing 75 

cholesterol levels in the peripheral tissues. Specifically, people with particular ApoE genotype are 76 

more likely to have higher levels of cholesterol, which leads the plasma membrane to form more 77 

lipid rafts. Compared to other people, these people are more vulnerable to SARS-CoV-2 as more 78 

lipid rafts would facilitate the binding of the virus to its target receptor ACE2 14. The genetic 79 

mechanisms of how MHC system contributes to the susceptibility and severity of COVID-19 are 80 

mainly through activating and regulating the immune system. Specifically, MHC family works as 81 

an immune activator and directly triggers the proliferation of lymphocyte cells. As the number of 82 

lymphocyte cell increases, immune system springs into action against SARS-CoV-2. Therefore, 83 
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the abnormal change of immune cell counts and the MHC expression levels often used as 84 

indicators of the severity of COVID-19 symptom 15.  85 

We further performed gene-based studies and gene-set enrichment analysis (GSEA) based 86 

on the GWAS single-variant associations for testing COVID-19 severity. As a result, we 87 

successfully discovered four functional pathways: regulation of IFNA signaling, SARS 88 

coronavirus and innate immunity, type I interferon receptor binding, and overview of interferons-89 

mediated signaling pathway. The type I interferon (IFN-I) can bind to the receptor on the surface 90 

of immune cell membrane, mobilize and enhance the activity of immune cells, prevent the 91 

transmission of virus between cells, and clear the cells infected by the virus 16,17. A study reported 92 

that the characteristic of severe COVID-19 cases was the IFN-I response and the mouse model of 93 

SARS-CoV-2 infection showed that the timing of IFN-I response is the key factor to determine the 94 

outcome of infection 18. In March 2020, the National Health Commission and the National 95 

Administration of Traditional Chinese Medicine issued the COVID-19 diagnosis and treatment 96 

plan, IFN-I is one of the main antiviral drugs 19. To the best of our knowledge, this is the first time 97 

that the interferons-related pathways are uncovered from the genetic studies of COVID-19 patients 98 

in Chinese population.  99 

In summary, we succeeded in identifying genome-wide significant associations between 100 

genetic variants and laboratory traits measured from Chinese ancestry COVID-19 patients. Most 101 

of these findings were supported by previous literatures. On the basis of these concrete associations, 102 

we conducted MR analysis and detected two candidate genes, ApoE and MHC system, which 103 

influence the severity status by acting on cholesterol levels and WBC counts, respectively. Besides, 104 

we identified four interferons functional pathways that directly determine the COVID-19 disease 105 

severity based on genomic studies of infected patients. These findings provide new insights in 106 

studying the genetic mechanisms of COVID-19 susceptibility and severity. We hope that our work 107 

will serve as useful reference for academic field and make contribution to investigate the COVID-108 

19 disease and finally stop the pandemic.  109 

110 
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Results 111 

Basic information of the enrolled patients. After quality control (Materials and Methods), there 112 

were 466 patients used for analysis, of which 229 were males (49.1%) and 237 were females 113 

(50.9%) (Figure 1A). The age of patients ranged from 23 to 97, composing with 20-39 (8.5%), 40-114 

59 (31.1%), 60-79 (51.1%), and 80-99 (9.2%) (Figure 1A). According to the patients’ severity of 115 

illness at the time of admission to the hospital, they were classified into four categories as mild (N 116 

= 6, 1.29%), moderate (N = 164, 35.19%), severe (N = 227, 48.71%), and critical (N = 69, 14.81%). 117 

The method of classifying severity followed the criteria made by the National Health Commission 118 

of the People's Republic of China 20. We further broadly defined the mild group as mild and 119 

moderate patients (N = 170) and the severe group as severe and critical patients (N = 296) (Figures 120 

1B-1C). We then fitted a single factor linear regression model and statistically proved that age was 121 

a risk factor for severe symptoms of COVID-19 (z-score = 4.146, p-value = 3.38E-05). Besides, 122 

we performed a Fisher's exact test to test the independence of patients' gender and severity and 123 

found a significant correlation (OR = 1.59, p value = 0.016), revealing a higher propensity for 124 

severe in males with COVID-19. These phenomena were consistent with reports from previous 125 

literatures 21,22.  126 

More than 50% of the patients (N = 288) had at least one comorbidity prior to admission 127 

to the hospital, and the most frequent ones were hypertension (N = 180 ,38.63%), diabetes (N = 128 

95, 20.38%), and coronary heart disease (N = 63, 13.52%). The distribution of comorbidities 129 

among mild and severe patients is provided in Figure 1D. We then tested whether the presence or 130 

absence of comorbidities would affect the patients’ severity by performing a Fisher’s exact test 131 

and found that having comorbidities is a risk determinant to develop severe symptoms (OR = 1.86, 132 

p = 2.09E-03). This conclusion has been supported by many studies 23,24. Most of the patients 133 

experienced various COVID-19 symptoms, including cough (N = 302, 64.81%), fatigue (N = 200, 134 

42.92%), and chest tightness (N = 188, 40.34%). We also reported the distribution of symptoms 135 

among mild and severe patients (Figure 1D). 136 

Genome-wide association analysis of laboratory features. We first evaluated the imputation 137 

accuracy of genetic variants by two measurements: imputation score and correlation with chip 138 

array sequencing. After quality control (Materials and Methods), a total of 6,349,370 variants were 139 
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selected for further analysis and 99.6% of these variants had imputation score over 0.8 based on 140 

reference panel as EAS population from the 1000 Genome Project. In addition, 214 patients were 141 

sequenced with high depth and high coverage. We took overlap of variants between their chip 142 

array genotypes and imputed genotypes and it yield 479,823 sites. Over 98.1% patients had 143 

correlation coefficients above 0.8 across these genetic sites. With a mean sequencing depth of 144 

17.8x, we finally tested a total of 6,185,321 autosomal variants and 164,049 X-chromosome 145 

variants for association with 78 quantitative laboratory traits in 466 COVID-19 patients. These 146 

laboratory measurements were grouped into 10 distinct categories (Table 1): hematological (n = 147 

22), anticoagulation (n = 7), electrolyte (n = 7), lipid (n = 7), protein (n = 4), liver-related (n = 12), 148 

kidney-related (n = 3), heart-related (n = 8), inflammation (n = 3), and other biochemical (n = 5). 149 

The study workflow is designed as in Figure 2. When we applied multiple-testing correction to the 150 

number of the studied traits, 5 variant-trait associations were significant signals (p-value < 5E-151 

08/78 = 6.41E-10), 4 out of which were previously identified in either European, Asian, or both 152 

populations (Table 2). These associations include rs1801020 (F12, p-value = 4.13E-16) with 153 

activated partial thromboplastin time (APTT), rs56393506 (LPA, p-value = 1.97E-14) with 154 

lipoprotein-A (LpA), rs28946889 (UGT1A complex, p-value = 5.08E-14) with total bilirubin 155 

levels (Tbil), and rs28946889 (UGT1A complex, p-value = 1.51E-16) with indirect bilirubin levels 156 

(Ibil). The Manhattan plots and QQ-plots were drawn for APTT, LpA, and Ibil with the CMplot 157 

package in R 25 and provided in Figure 3. A novel association was rs11032789 (EHF, p-value = 158 

6.40E-10) with apoprotein A (apoA). Even though the association between rs7412 (ApoE, pvalue 159 

= 2.30E-08) and low-density lipoprotein cholesterol levels (LDL-C) did not reach the study-wide 160 

significance threshold, it had been widely identified in European, Asian, and Chinese populations. 161 

The association between rs9268517 (BTNL2, p-value = 4.05E-08) with white blood cell counts 162 

(WBC) did not pass the threshold either. Considering that BTNL2 encodes a major 163 

histocompatibility complex (MHC) class II protein and is involved in immune surveillance, we 164 

considered this identified association was a worth-investigating signal. The Manhattan plots for 165 

LDL-C and WBC were provided in Figure 4A and Figure 5A, respectively.  166 

We additionally illustrated more details on the above detected associations. Specifically, 167 

the rs1801020 (F12)-APTT association was previously identified in GWAS analysis from the 168 

BioBank Japan Project (BBJ), one of the largest East Asian biobanks with over 160,000 subjects 169 
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26. The gene F12 encodes coagulation factor XII that participates in the initiation of blood 170 

coagulation and mutation of F12 will cause prolonged coagulation time and poor thromboplastin 171 

production 27. The rs56393506 (LPA)-LpA association was previously identified by GWAS in 172 

European population with over 13,781 individuals 28 but not in Asian population based on genomic 173 

studies. The gene LPA encodes a serine proteinase that constitutes a substantial portion of 174 

lipoprotein(a) 29. The rs28946889 (UGT1A complex)-Tbil and UGT1A complex-Ibil associations 175 

were identified from the BBJ database 26. The UGT1A complex represents a complex locus that 176 

encodes several UDP-glucuronosyltransferases. The mutation of UGT1A1 gene is the only enzyme 177 

involved in bilirubin glucuronidation in hepatocytes, which can reduce the activity of the enzyme 178 

and cause insufficient bilirubin glucuronidation, thus increasing the level of serum bilirubin. The 179 

rs7412 (ApoE)-LDL-C association was previously identified by GWAS analysis in European, 180 

Asian, and Chinese populations. The gene ApoE is a type of apolipoprotein that participates in 181 

lipid metabolism and particular ApoE genotype results in higher risk of elevated LDL-C levels. 182 

The rs9268517-WBC is a novel genetic association identified by our GWAS analysis. However, 183 

its closest gene BTNL2 was previously identified to be associated with WBC by a GWAS analysis 184 

with 408,112 European individuals 30. The gene BTNL2 encodes MHC II type I transmembrane 185 

protein and binding to its receptor can inhibit T cell activation and cytokine production. 186 

Two-sample Mendelian randomization analysis. Yet we have the individual-level genotypic 187 

data, laboratory measurements, and clinical severity to perform one-sample MR analysis, we 188 

choose not to do so due to the small sample size and low powers and also its less powerful 189 

performance in controlling for confounders. We instead examined the causal relationships between 190 

the laboratory measurements with concrete genome-wide associations and COVID-19 191 

susceptibility and severity tested by various phenotype types from the Host Genetics Initiative 192 

(HGI) database based on the two-sample MR analysis. Typically, the two-sample MR study 193 

requires two independent studies from one population to ensure consistent SNP sites. We 194 

harmonized the summary results from exposure and outcome studies to adjust the SNP sites into 195 

positive chains and remove inconsistent ones with large allele frequency difference 196 

(Supplementary Table S1). In brief, we identified three leniently significant causal associations (p-197 

value < 0.05), including WBC counts (p-value = 0.009), LDL-C (p-value = 0.034), and apoA (p-198 

value = 0.047) on the susceptibility and severity of COVID-19 disease. The valid instrumental 199 

variants used for LDL-C, apoA, and WBC are rs7412 (ApoE), rs11032789 (EHF), and rs9268517 200 
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(BTNL2), respectively. After SNPs clumping and pruning, there was only one SNP used in MR 201 

analysis for each trait and therefore the Wald ratio method 31 was used to estimate the causal effects. 202 

Typically, the minimum number of independent SNPs is three 26 and the inverse variance weighted 203 

method 32 is often used to estimate the causal effects. Furthermore, by controlling the false 204 

discovery rate (FDR), the q-values are all greater than 0.05 for the above identified associations 205 

with 84 multiple testing (7 laboratory traits * 12 HGI phenotypes). Despite the small number of 206 

valid instrumental variants applied in the analysis and insignificant results with large multiple 207 

testing burden, our results still provide worthwhile directions for further investigation. We detected 208 

these valuable genetic mechanisms of COVID-19 disease: ApoE and MHC family influence the 209 

COVID-19 susceptibility and severity status by acting on the cholesterol levels and WBC counts 210 

of patients, respectively.  211 

We adopted other large-scale publicly available databases and evaluated whether our 212 

findings were also suggested by these databases. To investigate the causal effects of LDL-C, we 213 

downloaded the significant summary statistics for LDL-C from the BBJ database with sample size 214 

72,866 26. There are 22 genome-wide associated variants mapped to different genes. First, we 215 

tested on only the ApoE gene by using SNPs mapped to this gene (rs769446, p-value = 2.977E-216 

322, LD with rs7412 = 0.56 in 1000 Genome Project all populations). Hereby, there was one valid 217 

instrumental SNP, and the Wald ratio test was used in MR analysis. The results were provided in 218 

Supplementary Table S2 and showed four significant associations corresponding to four HGI 219 

phenotypes. The q-values (FDR) of these associations are also less than 0.1 with two less than 0.05. 220 

Second, we did the MR analysis based on all the LDL-C associated 22 SNPs. After SNP clumping 221 

and harmonization with HGI database, 11 SNPs were used in MR. The estimate of the causal effect 222 

sizes, p-values, and q-values for testing the effect of LDL-C on susceptibility of COVID-19 were 223 

provided in Supplementary Table S3 and Figures 4B-4C. We also used MR-Egger method 33 to 224 

test the heterogeneity and the p-value is 0.464 > 0.05 (Q-statistic = 8.71) showing no heterogeneity. 225 

Besides the heterogeneity, we also tested pleiotropic effects based on MR-PRESSO global test 34 226 

and obtained a p-value of 0.228 > 0.05 meaning no direct effects of the analyzed SNPs on outcome 227 

severity. The results of no heterogeneity and no pleiotropy enhanced the validity of MR results. 228 

We also tested the causality of cholesterol levels on COVID-19 susceptibility and severity in 229 

European population 35 and African American population 36, respectively. The results were 230 

provided in Supplementary Tables S4 and S5 showing a possible causal effect of LDL-C on 231 
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COVID-19 disease in other populations besides East Asian. We mention that the causal effect 232 

directions of LDL-C on disease illness varied upon analyzed SNP(s) and HGI phenotypes; showing 233 

the complex biological mechanisms of how the genetic variation regulates the disease status by 234 

controlling cholesterol levels.  235 

Our analysis results and observations of trait measurements over time are consistent with 236 

two main points of view. The first one is that people with ApoE ε4/ε4 genotype tend to have higher 237 

plasma cholesterol levels compared to those with the other ApoE genotypes 37,38. Recently, several 238 

studies reported that patients who carried ApoE ε4/ε4 genotype tend to be infected by SARS-CoV-239 

2 and experience severe symptoms from COVID-19 39,40. For example, a study concluded that, 240 

among older people, patients with ApoE ε4/ε4 genotype had much higher risk of developing severe 241 

symptoms compared with ApoE ε3/ε3 (OR = 2.31, p-value = 1.19E-06) 39. By investigating the 242 

ApoE genotypes in all 466 COVID-19 patients, we found 7 patients who carried ApoE ε4/ε4 in 243 

total, of which 5 patients were severe. We investigated the biological mechanisms of how ApoE 244 

gene regulated the COVID-19 susceptibility and severity and found a pathway where ApoE 245 

influenced disease status by controlling for cholesterol levels, which were consistent with our MR 246 

findings. Specifically, people with ApoE ε4/ε4 have increased risk of high cholesterol levels. When 247 

they are exposed to SARS-CoV-2, the accumulation of cholesterol in alveolar epithelial cells 248 

increased the density of lipid rafts, from which the virus binds to its target receptor ACE2. 249 

Therefore, higher density of lipid rafts facilitates the bindings in cell membranes and eventually 250 

raised the susceptibility to SARS-CoV-2 infection and severity of COVID-1914,40,41. The genetic 251 

mechanism is illustrated in Figure 4D. The second point of view is that as the disease condition 252 

worsened, the lipid levels including apoA and LDL-C largely decreased 42. Our results in the next 253 

section of “Time-series analysis of laboratory features” supported this association, showing a very 254 

low level of cholesterol in blood is a risk sign for suffering severe symptoms in COVID-19 cases.  255 

We further tested on the MHC system genes. The SNPs (rs114398276) mapped to MHC 256 

genes in BBJ database were removed when harmonizing with HGI results due to large difference 257 

in allele frequency. As an alternative, we downloaded another summary result based on East Asian 258 

population with sample size 151,807 43. First, we tested the causality of WBC counts on COVID-259 

19 severity based on SNPs mapped to MHC family, which is gene HLA-C (rs2524084, p-value = 260 

1.260E-53, LD with rs9268517 = 0.21 in 1000 Genome Project all populations). The results were 261 
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provided in Supplementary Table S6 and showed four significant associations corresponding to 262 

four HGI phenotypes. The q-values (FDR) of these four associations are also less than 0.05 263 

suggesting the candidate pathway that MHC family has an effect on COVID-19 disease by 264 

controlling WBC counts. Second, we did the MR analysis based on all associated 81 SNPs. After 265 

SNPs clumping and harmonization with HGI database, 48 SNPs were used in MR. The estimates 266 

of the effect size, p-values, and q-values for testing the causal effects of WBC counts on disease 267 

illness were provided in Supplementary Table S7 and Figures 5B-5C. We also used MR-Egger 268 

method to test the heterogeneity and the p-value is 0.365 > 0.05 (Q-statistic = 48.69) showing no 269 

heterogeneity. Besides the heterogeneity, we also tested pleiotropic effects and obtained a p-value 270 

of 0.469 > 0.05 meaning no pleiotropy. The causal effect direction of WBC counts on COVID-19 271 

illness is consistently positive based on our dataset and the tested Asian database, suggesting that 272 

WBC count is likely a risk predictor to disease status. 273 

We searched the gene-trait “major histocompatibility complex” + COVID-19 on PubMed 274 

and it yielded 57 hits (as of May 10, 2021), indicating the essential role of the MHC system in the 275 

immune responses of COVID-19 patients. The MHC complex is a group of related proteins that 276 

are encoded by the MHC gene complex in human. The function of these cell-surface proteins is to 277 

activate T lymphocyte cells and NK (natural killer) cells by presenting antigens. The SARS-CoV-278 

2 was found to restrain antigen presentation and suppress immune reaction by downregulating the 279 

expression of MHC class in COVID-19 cases 44. Previous studies showed that, as the disease 280 

progresses, mHLA-DR levels and lymphocyte cell counts varied in COVID-19 patients 15,45. In 281 

conclusion, the MHC gene complex and its expression levels are closely related to COVID-19 282 

severity of infection symptoms. The genetic mechanism is illustrated in Figure 5D. 283 

Reverse Mendelian randomization analysis. Our MR analysis in previous section suggested the 284 

causal effects of LDL-C and WBC counts on COVID-19 disease. To further investigate whether 285 

there exist causal effects of COVID-19 severity on LDL-C or WBC counts, we did the reverse MR 286 

analysis where the illness status was exposure, and the laboratory assessments were outcome 287 

variables. Specifically, we used the various HGI phenotypes 9 as exposure and LDL-C levels and 288 

WBC counts as outcome. The results were provided in Supplementary Tables S8 and S9 implying 289 

no causality.  290 
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Time-series analysis of laboratory features. We used line chart to visualize the variation patterns 291 

of laboratory measurements at five time points. Based on the severity status at admission and 292 

clinical outcome in the end, the patients were grouped into three teams: mild and recovered (mild), 293 

severe and recovered (recovery), and severe and dead (death). We provided the line charts for 294 

apoA, LDL-C, and WBC in Figures 6A-6C and for the other traits in Supplementary Figures. 295 

These line charts could visually reflect whether a trait was protective or risk to COVID-19 disease. 296 

For example, the apoA and LDL-C levels were likely to be protective factors since patients in the 297 

recovery and death groups had lower values than those in mild group, while the WBC counts 298 

appeared to be risk predictor to COVID-19. We also performed logistic regression analysis to 299 

statistically assessed the risk and protective factors to disease severity and clinical outcome 300 

(Figures 6D-6F). For apoA and LDL-C, negative effects implied protective influence on disease 301 

illness; while for WBC counts, the effect direction is positive indicating risk impact. We also 302 

noticed that with the progress of the disease, the negative association between the lipid traits and 303 

clinical outcome became more significant. Considering that patients in mild and recovery groups 304 

were cured and out of hospital, these time-series analyses also could reflect the comparison of 305 

laboratory features between COVID-19 cases and healthy controls.  306 

Gene-based and gene-set enrichment analysis of clinical measurements. We analyzed three 307 

clinical features, including severity (mild versus severe), clinical outcome assessments (survival 308 

versus death), and disease duration (hospitalized days) by first performing single-variant genome-309 

wide association studies. The Circular-Manhattan plot and QQ-plot were provided in Figures 7A-310 

7B. No genetic variants reach the genome-wide significance threshold (p-value < 5E-08) due to 311 

the current small sample size (N = 466) and thus the effect sizes of single variants tend to be small. 312 

To aggregate the single-variant effects, we further performed VEGAS gene-based test 46 and 313 

g:GOST GSEA analysis 47 for clinical severity. With a window size of 50kb, 25,345 genes were 314 

mapped and the average number of SNPs on each gene is 251. For the window of 10kb, 24,640 315 

genes were mapped, and the average number of SNPs is 119. Then, we selected only genes with 316 

p-value less than 0.05. A number of 1,170 genes passed the significance threshold for window size 317 

50kb and 1099 genes for 10kb. We obtained an intersect of 705 genes from the two sets of 318 

significant genes for further GSEA analysis.  319 

The GSEA results identified four significant pathways with p-value less than 0.05 (Figure 320 

7C). These pathways include regulation of IFNA signaling (REAC:R-HSA-912694, p-value = 321 
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6.42E-04), SARS coronavirus and innate immunity (WP:WP4912, p-value = 2.54E-03), overview 322 

of interferons-mediated signaling pathways (WP:WP4558, p-value = 8.64E-03), and type I 323 

interferon receptor binding (GO:0005132, p-value = 4.38E-02). All the four pathways belong to 324 

the IFNA family, which is a member of the alpha interferon gene cluster on and encodes type I 325 

interferon (IFN) family produced in response to viral infection. The IFNA family is a key part of 326 

the innate immune response with potent antiviral, antiproliferative and immunomodulatory 327 

properties. Insufficient virus-induced type I IFN production is characteristic of SARS-CoV-2 328 

infection since SARS-CoV-2 suppresses the IFN response by interacting with essential IFN 329 

signaling pathways 48. Blunted amounts of IFNs have been detected in the peripheral blood or 330 

lungs of severe COVID-19 patients 49. We note that since VEGAS is based on a simulation 331 

procedure to calculate the gene-based p-values, thus its results may vary slightly every time we 332 

rerun the analysis. We examined the effect of running the analysis multiple times and found that 333 

the results of gene-based association and the subsequent GSEA study are robust and reliable. We 334 

also investigated the effect of varying the window sizes around each gene and found that the results 335 

are robust to the choice of window sizes. In summary, based on the single variant associations, 336 

VEGAS gene-based tests, and GSEA analysis, we identified four IFNs pathways whose 337 

imbalanced responses may cause the pathology of COVID-19 based on genomic studies in Chinese 338 

population. 339 

As we mentioned in the Introduction section, several genetic loci have been identified to 340 

be associated with the critical illness in COVID-19 7. We summarized eight genome-wide 341 

significant associations in Table 3, including the lead SNP in each locus, the p-values of these 342 

SNPs for testing severity status in our dataset, and their allele frequencies in Asian and European 343 

populations from 1000 Genome Project and in our case subjects. Among these eight SNPs, one 344 

SNP (rs74956615, 19:10427721) does not exist in our imputed genotype and two SNPs 345 

(rs73064425, 3:45901089; rs3131294, 6:32180146) were removed from analysis due to low allele 346 

frequencies. For four out of the other five SNPs, their allele frequencies in European populations 347 

are much higher than in Asian population (average difference is 0.16), showing that these 348 

significant SNPs are more prominent in European than in Asian. The eighth SNP is rs9380142 349 

(6:29798794) mapped to gene HLA-G. The HLA-G gene belongs to the MHC region that plays a 350 

critical role in immune responses and regulations. We believe that a large-scale COVID-19 case-351 

control study in Chinese population also has potential to uncover the MHC region.   352 
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Materials and methods 353 

Subjects. All the subjects enrolled in this study were recruited by the Wuhan Union Hospital 354 

(Union hospital of Tongji Medical College of Huazhong University of Science and Technology). 355 

These subjects had been diagnosed with COVID-19 respiratory disease and hospitalized in Wuhan 356 

Union Hospital between January 15 and April 4, 2020. Written informed consent was obtained 357 

from all participants, as approved by the Medical Ethics Committee of Union Hospital, Tongji 358 

Medical College, Huazhong University of Science and Technology.  359 

Phenotype. There are two types of phenotypes: laboratory and clinical measurements. Numerous 360 

laboratory features from various lab test categories were measured at different time points during 361 

hospitalization. For each laboratory measurement, we took average of all non-missing records of 362 

each patient during his or her hospitalization for genomic analysis. The clinical characteristics 363 

include three traits: severity status (mild versus severe) collected at the time of admission to the 364 

hospital, clinical outcome assessments (survival versus death), and disease duration (i.e., 365 

hospitalized days) at the time of eventual treatment and prevention of disease. 366 

Genotyping and imputation. We sequenced samples with the DNBSEQ platform (MGI, 367 

Shenzhen, China) to generate 100bp paired-end reads. The mean sequencing depth was 17.8×. We 368 

excluded samples with (i) sample call rate < 0.99, (ii) closely related individuals identified by 369 

identity-by-descent (IBD > 0.1) calculated in KING 50, and (iii) outliers identified by principal 370 

component analysis based on three-sigma rules. We then applied standard quality control criteria 371 

for genetic variants by removing those with (i) SNP call rate < 0.99, (ii) minor allele frequency 372 

(MAF) < 0.01, and (iii) Hardy-Weinberg equilibrium p-value < 1E-06. Based on the VCF files 373 

after VQSR with biallelic variants, imputation was performed with Beagle v4.0 51 taking GL as 374 

input in east Asian (EAS) population of 1000 Genomes Project as reference panel. 375 

Genome-wide association studies. We used PLINK v2.0 52 to perform single-variant GWAS 376 

analyses using a linear regression model for the quantitative laboratory features under the 377 

assumption of additive allelic effects of the SNP dosage. For each trait, we adjusted for age, sex, 378 

and top six principal components (PCs) of genetic ancestry and normalized the resulting residuals 379 

by applying a Z-score normal transformation. The number of PCs was chosen by using 380 

EIGENSTRAT software 53,54. We set a genome-wide significance threshold at the level of 5E-08 381 
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and a study-wide significance threshold at the level of 6.41E-10 (=5E-08/78) by applying 382 

Bonferroni correction based on the number of laboratory traits (n = 78). 383 

Two-sample Mendelian randomization. Several significant associations were identified from 384 

the GWAS analysis of laboratory measurements. Given the potential genetic correlation between 385 

these features and the COVID-19 susceptibility and severity, we performed two-sample Mendelian 386 

randomization analyses to examine causal effects between them and uncover genetic variants that 387 

determined disease status by acting on the laboratory traits. Note that the causal interpretation of 388 

the laboratory exposure variable on the disease outcome requires three standard assumptions to 389 

hold: (i) relevance: instrumental variants are highly associated with the exposure; (ii) no 390 

unmeasured confounders: variants are not associated with any confounding factors that may be 391 

associated with both exposure and outcome; and (iii) exclusion restriction: variants influence the 392 

outcome only through the path of exposure, i.e., no horizontal pleiotropic effects of variants on the 393 

outcome. We used the laboratory features that displayed strong study-wide signals with genetic 394 

variants (p-value < 6.41E-10) as the variant-exposure associations to ensure the relevance 395 

assumption. For the variant-outcome associations, we used the COVID-19 Host Genetics Initiative 396 

(HGI) round 5 GWAS meta-analysis results and genome-wide significant variants were removed 397 

to ensure the exclusion restriction assumption. There are four types of phenotypes in HGI: very 398 

severe respiratory confirmed covid versus population (A2), hospitalized covid versus not 399 

hospitalized covid (B1), hospitalized covid versus population (B2), and covid versus population 400 

(C2). We selected B2, C2, and B1 phenotypes to study the susceptibility and critical illness of 401 

COVID-19. For each type of phenotype, there are four different sets of populations: all populations 402 

but not 23andme, all populations but not UKBB, all Europeans, and all Europeans but not UKBB. 403 

We used R (version 4.0.2) with the TwoSampleMR package 55,56 and set the significance threshold 404 

at the level of 0.05. We also calculated the adjusted p-values (i.e., q-values) by controlling the 405 

false discovery rate (FDR). In details, we used R (version 4.0.2) with the p.adjust function from 406 

stats package 57 to obtain the q-values and declared more stringently significant associations based 407 

on an FDR of 0.1 and 0.05.  408 

Time-series laboratory features. To better understand the variation trends of laboratory features 409 

during the patients’ hospital stay, we divided the hospitalization days into several stages for each 410 

patient. For each laboratory feature, we only kept patients with more than two non-missing records 411 
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and divided these records into two equal-length groups named early and late time stage. At each 412 

of the two-time stages, we took average of all available values for each feature and treated this 413 

average as the patient’s representative measurement at this time stage. We also defined the first 414 

and last non-missing measurement as initial and end record. In addition, we took average of all 415 

non-missing records for each patient during his or her hospitalization days and used this value as 416 

the overall average. By doing so, for each patient, we obtained five values of all laboratory features: 417 

initial, early, average, late, and end. To test the association between the time-series laboratory traits 418 

with disease severity and clinical outcome, we further performed logistic regression analysis after 419 

adjusting for age and sex at each time stage.  420 

Gene-based and gene-set enrichment analysis. For the patients’ clinical features, we performed 421 

GWAS single-variant analysis in PLINK 2.0 based on a logistic (for severity status and clinical 422 

outcome assessments) or linear (disease duration) regression model. For the severity status, we 423 

further conducted gene-based tests and gene-set enrichment analysis (GSEA) to aggregate effects 424 

of multiple genetic variants from the single tests. The gene-based test is VEGAS method 46 that 425 

combines the p-values of the single variants. A list of selected genes from the gene-based results 426 

was taken for further GSEA analysis to uncover functional pathways based on the g:GOST toolset 427 

47. We used six existing gene set databases, including GO (gene ontology) molecular function 58, 428 

GO cellular component 58, GO biological process 58, KEGG (Kyoto encyclopedia of genes and 429 

genomes) 59, Reactome 60, and WikiPathways 61. 430 

Data availability. The data that support the findings of this study have been deposited into CNGB 431 

Sequence Archive (CNSA) 62 of China National GeneBank DataBase (CNGBdb) 63 with accession 432 

number CNP0001876. 433 

434 
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Discussion 435 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new coronavirus 436 

causing the ongoing pandemic coronavirus disease 2019 (COVID-19). Patients’ with COVID-19 437 

experience largely various clinical and laboratory assessments, from no symptoms, to exhausted 438 

respiratory system, and even death. Many clinical and experimental studies have concluded that 439 

several key determinants are responsible for the disease variability, including old age, male gender, 440 

and having comorbidities at the admission to the hospital. However, these factors still cannot fully 441 

account for the diverse symptoms among patients. Recent studies have turned more attentions into 442 

the host genetic background. The Host Genetics Initiative (HGI) have reported many candidate 443 

loci by performing large-scale GWAS analysis with thousands of cases and up to millions of 444 

controls.  445 

In this study, we analyzed 466 COVID-19 patients hospitalized in the Wuhan Union 446 

Hospital. A broad range of clinical information, such as age, gender, comorbidities, and laboratory 447 

blood test results, such as hematological and liver-related assessments were collected for each 448 

patient. The analyses of age, gender, and comorbidities in mild and severe patients confirmed their 449 

potential risk on critical symptoms. We also performed GWAS analysis for the numerous 450 

laboratory features and discovered seven concrete genome-wide variant-trait associations, five of 451 

which were previously uncovered by large-scale genomic studies. Our results were either the first 452 

replication or the first identification study in Chinese population based on GWAS study. With 453 

these well-established genetic associations, we conducted Mendelian randomization (MR) analysis 454 

to uncover important laboratory traits that have causal effects on the susceptibility and severity of 455 

COVID-19 disease. Our analyses highlighted two fundamental pathways; one is the cholesterol 456 

levels with functional gene ApoE, and the other one is the white blood cell counts (WBC) with 457 

functional gene MHC complex. We further researched on and well explained the genetic 458 

mechanisms of how genes ApoE and MHC family influenced the disease status by acting on 459 

cholesterol levels and WBC counts.  460 

We additionally carried out the gene-based tests and gene-set enrichment analysis (GSEA) 461 

based on the single-variant GWAS summary results of severity case-control study. Interestingly, 462 

we for the first time revealed four interferons (IFNs) related functional pathways based on host 463 

genetic studies in Chinese population, including regulation of IFNA signaling, SARS coronavirus 464 
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and innate immunity, overview of interferons-mediated signaling pathway, and type I interferon 465 

receptor binding. Several considerable studies observed that low levels of IFNs production was 466 

highly correlated with severe COVID-19. Most of these studies were based on bulk RNA-seq, 467 

scRNA-seq, or experimental designs, while our analysis is built on genomic data, supporting this 468 

solid conclusion from a new perspective. 469 

Despite the many compelling discoveries of our work, there are still a few limitations. First, 470 

the single-variant GWAS analysis of severity status did not identify any genome-wide signals due 471 

to the current sample size (N = 466) and thus small genetic effect sizes. We believe that large-scale 472 

case-control studies have potentials to uncover genome-wide significant variants. Second, even 473 

though our GWAS analysis of laboratory features produced concrete and powerful signals, there 474 

are still many more traits without being detected associated variants that reach the study-wide or 475 

the genome-wide significance threshold. For the identified associations, after SNPs clumping and 476 

pruning, there is merely one independent strong variant, while the tested traits were often known 477 

as polygenic. This is still due to small sample size restriction. Third, despite the fact that our MR 478 

findings are supported by solid biological mechanisms and also potentially replicated by many 479 

populations, the causal significance could be different among different HGI phenotypes. For 480 

example, when testing the causal effects of LDL-C based on BBJ database, with the outcome of 481 

covid vs. population in all population without UKBB, the p-value is 0.01; while for the outcome 482 

of hospitalized covid vs. population in all population without UKBB, the p-value is 0.98. We 483 

consider this phenomenon directly relating to the corresponding HGI GWAS summary results and 484 

further investigations are needed to explain the intrinsic biological reasons.485 
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Table 1. Overview of the tested laboratory assessments 

Category Trait Abbreviation N 

Hematological Red blood cell count RBC 420 

Red blood cell distribution width RDW 420 

White blood cell count WBC 420 

Lymphocyte count Lym 420 

Lymphocyte percentage Lym% 420 

Neutrophil count Neu 420 

Neutrophil percentage Neu% 420 

Eosinophil count Eos 420 

Eosinophil percentage Eos% 420 

Basophil count Bas 420 

Basophil percentage Bas% 420 

Monocyte count Mon 420 

Monocyte percentage Mon% 420 

Platelet count Plt 420 

Platelet distribution width PDW 420 

Mean platelet volume MPV 420 

Hematocrit Hct 420 

Plateletcrit PCT 420 

Hemoglobin Hb 420 

Mean corpuscular hemoglobin MCH 420 

Mean corpuscular hemoglobin concentration MCHC 420 

Mean corpuscular volume MCV 420 

Anticoagulation Activated partial thromboplastin time APTT 410 

D-dimer D-dimer 410 

Erythrocyte sedimentation rate ESR 184 

Fibrinogen FIB 410 

International normalized ratio INR 410 

Prothrombin time PT 410 

Thrombin time TT 410 

Electrolyte Sodium Na 420 

Potassium K 420 

Calcium Ca 420 

Magnesium Mg 420 

Chloride Cl 420 

Phosphorus P 420 

Anion gap AG 420 

Lipid Triglyceride TG 406 

Apoprotein A apoA 402 

Apoprotein B apoB 402 

Lipoprotein(a) LpA 402 

Total cholesterol TC 406 

High-density-lipoprotein cholesterol HDL-C 406 

Low-density-lipoprotein cholesterol LDL-C 406 

Protein Total protein TP 420 

Albumin Alb 420 

Globulin Glb 420 

Albumin/globulin ratio A/G 420 

Liver-related Aspartate aminotransferase AST 420 

Alanine aminotransferase ALT 420 

Aspartate aminotransferase/alanine aminotransferase ratio AST/ALT 420 

Total bilirubin Tbil 420 

Direct bilirubin Dbil 420 

Indirect bilirubin Ibil 420 

Acetyl cholinesterase AChE 350 

Alkaline phosphatase AKP 420 

Lactate dehydrogenase LDH 420 

γ-glutamyl transferase GGT 420 

Prealbumin PA 420 

Total bile acids TBA 420 

Kidney-related Blood urea nitrogen BUN 420 

Serum creatinine Cre 420 

Uric acid UA 420 

Heart-related α-hydroxybutyric dehydrogenase HBDH 414 

Myoglobin Mb 343 

High-sensitivity cardiac troponin hscTn 347 

Homocysteine Hcy 350 

Brain natriuretic peptide BNP 309 

Creatine kinase CK 414 

Creatine kinase-MB active CK-MBa 414 

Creatine kinase-MB quality CK-MBq 343 

Inflammation C-reactive protein CRP 418 

Interleukin-6 IL6 351 

Procalcitonin PCTN 394 

Other biochemical Cystatin C CysC 420 

Osmotic pressure Osm 420 

Ferritin FER 203 

Blood glucose BG 420 

Total carbon dioxide TCO2 420 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 9, 2021. ; https://doi.org/10.1101/2021.06.04.21258335doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.04.21258335
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

 

Table 2. The concrete associations identified from single-variant GWAS analysis 

Trait SNP CHR POS REF ALT 

Mapped/Closest 

Gene AF R2 beta se p-value N European Asian Chinese 

APTT rs1801020 5 177409531 A G F12 0.254 1.000 -0.606 0.071 4.13E-16 410 X √ X 

LpA rs56393506 6 160668275 C T LPA 0.114 0.998 0.817 0.103 1.97E-14 402 √ X X 

Tbil rs28946889 2 233762816 G T UGT1A Complex 0.400 0.996 -0.521 0.067 5.08E-14 420 X √ X 

Ibil rs28946889 2 233762816 G T UGT1A Complex 0.400 0.996 -0.585 0.068 1.51E-16 420 X √ X 

apoA rs11032789 11 34624907 T G EHF 0.040 1.000 0.960 0.151 6.40E-10 402 X X X 

LDL-C rs7412 19 44908822 C T ApoE 0.092 0.998 -0.652 0.114 2.30E-08 406 √ √ √ 

WBC rs9268517 6 32411963 C T BTNL2, HLA-DRA 0.067 1.000 0.721 0.129 4.05E-08 420 X X X 

Notes. AF indicates the allele frequency for the effect/alternate allele; R2 indicates the imputation 

score based on EAS population from the 1000 Genome Project; N is the sample size used in GWAS 

analysis; “√” and “X” indicate the corresponding associations were previously reported and not 

reported in a population based on genomic studies, respectively. 
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Table 3. The summary of eight reported COVID-19 illness associated loci 

SNP Chr:BP Locus p-value A1 1KGP Asian Freq 1KGP European Freq A1 Freq Mild Freq Severe Freq 

rs73064425 3:45901089 LZTFL1 / T 0.005 0.0795 0.005365 0.005882 0.005068 

rs9380142 6:29798794 HLA-G 0.846804 G 0.3492 0.3439 0.43133 0.4206 0.4375 

rs143334143 6:31121426 CCHCR1 0.966751 A 0.0347 0.1123 0.059013 0.06176 0.05743 

rs3131294 6:32180146 NOTCH4 / A 0.0079 0.1133 0.006438 0.008824 0.005068 

rs10735079 12:113380008 
OAS1–

OAS3 
0.433044 G 0.252 0.3638 0.233906 0.2265 0.2382 

rs2109069 19:4719443 DPP9 0.788196 A 0.1399 0.3211 0.143777 0.1382 0.147 

rs74956615 19:10427721 TYK2 / / / / / / / 

rs2236757 21:34624917 IFNAR2 0.4025 G 0.4345 0.7058 0.381974 0.3618 0.3936 

Notes. A1 denotes the effect/alternate allele. 1KGP Asian Freq indicates the allele frequency in 

Asian population from the 1000 Genome Project. Mild Freq indicates the allele frequency in 

patients from mild and moderate (grouped into mild) groups. 
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Figure 1. Basic clinical information of COVID-19 patients 

 

Notes. (A) Pie diagrams for sex ratio and age distribution of 466 samples. (B) Bar charts for 

severity category and histogram of hospitalized days. In severity chart, the blue and green bars 

indicate the mild group, orange and red bars indicate the severe group. (C) Bar chart for the counts 

of severity in each age range. (D) Bar charts for the distributions of comorbidities and symptoms. 

For the comorbidities, HTN, CHD, BRN, TUM, SMK, CHB, COPD, HBV, ASM, TUB, and CKD 

indicate hypertension, coronary heart disease, brain infarction, tumor, smoking history, chronic 

bronchitis, chronic obstructive pulmonary disease, Hepatitis B virus, asthma, tuberculosis, and 

chronic kidney disease, respectively. For the symptoms, COU, FTG, CHT, APP, SPU, MUS, DIA, 

VOM, HDC, DIZ, THR, DYS, PAL, RHI, NEW, CHP, HEMO, ABD, and HEMO indicate cough, 

fatigue, chest tightness, poor appetite, sputum, muscle ache, diarrhea, vomiting, headache, 

dizziness, sore throat, dyspnea, palpitation, rhinorrhea, night sweating, chest pain, hemoptysis, 

abdominal pain, and hematemesis, respectively.  
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Figure 2. The workflow of the main analyses performed in this study 
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Figure 3. The Manhattan plots and QQ-plots of three strong signals 

 

Notes. Figures A, C, and E are Manhattan plots and Figures B, D, F are QQ-plots for APTT, 

LpA, and Ibil, respectively.  
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Figure 4. The genetic mechanisms of ApoE influencing severity by acting on cholesterol levels 
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Notes. (A) Manhattan plot of the GWAS single-variant test results of LDL-C. The red dash line 

indicates the genome-wide significance threshold 5E-8. (B) The fitted line of SNP effects on 

severity status versus SNP effects on LDL-C with 11 SNPs significantly associated with LDL-C 

in BBJ database. (C) Forest plot for MR effect sizes of LDL-C on severity status based on BBJ 

database. (D) A genetic mechanism of how ApoE genotype influences the susceptibility and 

severity of COVID-19 disease. 
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Figure 5. The genetic mechanisms of MHC system determining severity by controlling WBC 

counts 
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Notes. (A) Manhattan plot of the GWAS single-variant test results of WBC counts. The red dash 

line indicates the genome-wide significance threshold 5E-8. (B) The fitted line of SNP effects on 

severity status versus SNP effects on WBC counts with 48 SNPs significantly associated with 

WBC counts in database with 151,807 East Asian participants. (C) Forest plot for MR effect sizes 

of WBC counts on severity status. (D) A genetic mechanism of how MHC system genotype 

influences the severity of COVID-19.  
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Figure 6. The time-series laboratory features 

 

Notes. The top three figures show variation trends of apoA, LDL-C, and WBC counts over time. 

The pink, light blue, and orange lines indicate the patients are grouped into mild, recovery, and 

death team, respectively. The y-axis denotes the quantities of each trait. The bottom three figures 

show regression associations between each trait with disease severity (green) and clinical outcome 

(yellow)over time. The y-axis denotes -log10(p-value) multiplied by the effect direction (positive 

effect is 1 and negative effect is -1).  
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Figure 7. The genome-wide association studies of COVID-19 severity: a case-control study 

 

Notes. (A) Circular-Manhattan plots for clinical traits. The inner circle is for severity status (mild 

vs. severe), the middle circle is for clinical outcome assessments (survival vs. death), and the outer 

circle is for disease duration (hospitalized days). (B) The QQ-plot for three clinical traits. (C) 

Bubble plot of GSEA analysis based on the single-variant and gene-based studies on severity status. 

The red dashed line is the threshold of 0.05. 
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