
Early epidemiological signatures of novel SARS-CoV-2 
variants: establishment of B.1.617.2 in England 
 

Authors: Robert Challen1,2,3; Louise Dyson3,5; Christopher E. Overton3,8,9, Laura M. Guzman-Rincon3,5, 
Edward M. Hill3,5, Helena B. Stage3,8,10,11, Ellen Brooks-Pollock3,4, Lorenzo Pellis3,6,8, Francesca 
Scarabel3,8, David J. Pascall3,12, Paula Blomquist13, Michael Tildesley3,5, Daniel Williamson1,6, Stefan 
Siegert1, Xiaoyu Xiong1, Ben Youngman1, JUNIPER3, Jonathan M. Read3,14, Julia R. Gog3,14, Matthew 
J. Keeling3,5, Leon Danon3,4,6,7*  

Affiliations: 
1. College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, Devon, UK. 
2. Somerset NHS Foundation Trust, Taunton, Somerset, UK. 
3. Joint Universities Pandemic and Epidemiological Research (JUNIPER) consortium. 
4. Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK. 
5. The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life 

Sciences and Mathematics Institute, University of Warwick, Coventry, UK. 
6. The Alan Turing Institute, British Library, 96 Euston Rd, London, UK. 
7. Department of Engineering Mathematics, University of Bristol, UK. 
8. Department of Mathematics, University of Manchester, UK. 
9. Clinical Data Science Unit, Manchester University NHS Foundation Trust, UK.  

10. Department of Physics and Astronomy, University of Potsdam, Germany 
11. Department of Physics, Humboldt University of Berlin, Germany 
12. MRC Biostatistics Unit, University of Cambridge, UK 
13. COVID Outbreak Surveillance Team, Public Health England, UK 
14. Lancaster Medical School, Lancaster University, UK  
15. Department of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge, UK 

 
*Corresponding author.  
 

Abstract  

The rapid emergence of SARS-CoV-2 mutants with new phenotypic properties is a critical 

challenge to the control of the ongoing pandemic. B.1.1.7 was monitored in the UK through 

routine testing and S-gene target failures (SGTF), comprising over 90% of cases by March 

2021. Now, the reverse is occurring: SGTF cases are being replaced by an S-gene positive 

variant, which we associate with B.1.617.2. Evidence from the characteristics of S-gene 

positive cases demonstrates that, following importation, B.1.617.2 is transmitted locally, 

growing at a rate higher than B.1.1.7 and a doubling time between 5-14 days. S-gene positive 
cases should be prioritised for sequencing and aggressive control in any countries in which this variant 
is newly detected.   

One-Sentence Summary: The B.1.617.2 variant of SARS-CoV-2 is replacing B.1.1.7 and emerging 
as the dominant variant in England, evidenced by sustained local transmission.  
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SARS-CoV-2 has caused millions of cases and deaths worldwide, generating thousands of variants that 
are circulating globally (1). Most mutations show no detectable phenotypic change and no selective 
advantage, however other mutations have emerged that confer higher transmission or vaccine escape 
potential (2). These are termed “variants-of-concern” (VOCs) and pose a serious threat to disease 
control.  

As of May 2021, current VOCs include B.1.1.7, which emerged in southeast England in September 
2020. Its large number of accrued mutations conferred increased transmissibility compared to earlier 
variants (3, 4), and increased mortality (5, 6). B.1.351, which emerged in South Africa, shares some of 
the same mutations as B.1.1.7, but also appears to show reduced sensitivity to immune responses 
acquired against the ‘wild-type’ Wuhan virus (7) or generated by current vaccines (8). B.1.617, the 
lineage behind the large number of cases in India in 2021, is currently increasing as a proportion of 
sequenced lineages in the UK against a background of B.1.1.7 sequences, suggesting a competitive 
advantage. B.1.617 comprises three sublineages: B.1.617.1, B.1.617.2 and B.1.617.3 (9). Two of the 
sublineages, B.1.617.1 and B.1.617.3 have the E484Q mutation, which may reduce viral neutralisation 
and could facilitate vaccine escape (10), and have been designated as “variants under investigation” 
(VUIs). For B.1.617.2, designated as a VOC on 6 May 2021 (11), there is emerging evidence on 
sensitivity to vaccine-acquired immunity with early studies suggesting no clear change (12) and 
experimental studies showing reduced sensitivity (13). Variants of SARS-CoV-2 that show increased 
transmissibility or escape from vaccine-derived immunity, even partially, could generate large future 
waves of infection requiring further costly NPIs to prevent healthcare systems being overwhelmed (14). 
Early identification and control of VOCs is therefore essential for limiting their impact.   

Here, we present multiple lines of evidence indicating the variant of concern B.1.617.2 is in the early 
stages of invasion in England. We combine genetic information from sequencing data with S-gene 
positivity status from testing data (which identifies B.1.617.2 and other variants but not the dominant 
B.1.1.7), and link this to demographic and geographical data to investigate the recent increase in cases 
and associate it with the local establishment of the variant of concern, B.1.617.2. 

Identifying variants in routine UK surveillance data 

The emergence and progression of the variant B.1.1.7 in the UK could be observed because, in contrast 
to previously circulating ‘wild-type’ variants, B.1.1.7 exhibits a deletion in the SARS-CoV-2 genome 
at site 69-70 associated with the spike protein, leading to the ThermoFisher TaqPath quantitative PCR 
assay failing to amplify the S-gene target (15). The percentage of cases with an S-gene target failure, or 
SGTF, increased from 3% in October 2020 to 98% by December 2020 (16). In contrast, other designated 
variants-of-concern including B.1.351 (first described in South Africa), P.1 (first described in Brazil) 
and B.1.617 lineages (first described in India, a sublineage of which B.1.617.2 was designated a VOC 
in April 2021) are all S-gene positive on the TaqPath assay (15) as they do not have the same spike 
protein deletion.  

The high prevalence of B.1.1.7 and associated S-gene negatives (17) allows us to use S-gene positive 
cases from the TaqPath assay in community testing (known as Pillar 2 in the UK) as a rapid signal for 
investigating community spread of S-gene positive variants, including B.1.351 and B.1.617. Early 2021 
was characterised by falling S-gene positive and S-gene negative cases, but since mid-March some 
regions have seen an increase in the relative proportion of S-gene positive cases (Figure 1A). Since 
early April 2021 there has been a steady rise in the absolute number of S-gene positive cases in some 
regions while S-gene negative cases continue to fall. S-gene positive cases are overtaking S-gene 
negative cases at the time of writing (start of June 2021).  
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In contrast to sequencing, which has a reporting delay of up to 3 weeks, the presence or absence of an 
S-gene from the TaqPath assay is obtained with shorter delay and no additional extra resources. 
Examining S-gene positive cases that have been sequenced in more detail reveals that the variant 
responsible for the increase in S-gene positive case numbers is B.1.617.2, the current dominant variant 
in India (Fig. 1B). Over the time period of interest, all other S-positive variants have either remained 
stable or declined. From 1st May 2021, B.1.617.2 is the proven cause of more than 95% of all S-positive 
cases, when sequenced (Fig. 1C). The association between S-gene positive cases and B.1.617.2 is 
supported by comparison of their geographic distributions in Supplementary Materials Section 5. 

 

 

Figure 1 - Temporal patterns in SARS-CoV-2 variants in England: (A) Pillar 2 S-gene positive and 

negative case counts (solid lines) since November 2020 (14-day rolling average) and sequencing 

activity associated with those cases (dashed lines). S-gene positive cases have been growing 

exponentially since late March. (B) The number of cases of different variants, from sequencing samples 

of S-gene positive tests (14-day rolling average). (C) Proportion of S-gene positive cases of different 

variants, showing recent dominance of B.1.617.2 over other VOC/VUI (14-day rolling average). Delays 

in returning sequencing results compared to S-gene tests lead to an underestimate of the expected count 

of B.1.617.2 (panel B) at the most recent time point. 

Results 

Relative growth rates of B.1.617.2 and B.1.1.7.  

We measured the growth rate of the S-gene positive and S-gene negative cases to assess the relative 
competitive advantage of VOCs, given the increasingly close relationship between B.1.617.2 and S-
gene positive cases, and the well-established relationships between S-gene negative cases and B.1.1.7. 
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The growth rate describes the exponential rate at which cases are growing or declining in a given area. 
As opposed to the widely used reproduction number (18), the growth rate can be estimated directly from 
data and provides a reliable measure of the speed of growth of cases regardless of whether they derive 
from direct transmission or other sources such as importation. We estimated the instantaneous growth 
rate using four independent methods, each based on different assumptions and modelling techniques: a 
Generalised Additive Model, a Gaussian Process model, a Poisson regression, and a Poisson model 
fitted in a Bayesian framework (see Supplementary Materials Section 3 for additional details).  

In England, the estimated instantaneous growth rate of S-gene negative cases appears relatively stable 
in the observed time window, from the beginning of February to mid-May 2021, indicating that cases 
were consistently declining (Figure 2A). Conversely, a clear increase in S-gene positive cases since the 
beginning of April is confirmed (Figure 1A), with growth rate estimates remaining above zero (Figure 
2A) with doubling times as short as 7 days in early May 2021. The transition from comparatively lower 
growth rates of S-gene positive cases at the beginning of the time series, to comparatively higher growth 
rates of S-gene positive cases at the end of the time series mirrors the transition seen in Figure 1B from 
primarily “non-VOC/VUI” cases at the beginning to B.1.617.2 cases towards the end. 

Spatially aggregated data may smooth out and hide local trends when epidemics are geographically 
heterogeneous, so we estimate the instantaneous growth rate for smaller geographies. Figure 2 also 
shows a selection of regions of England (North West, Midlands, London, Figure 2B) and cities and sub-
regions within the North West and Midlands (Figures 2C,D), where the highest growth rate of S-gene 
positive cases was observed. We estimated a positive growth rate of S-gene positive cases starting from 
the second half of March consistently across these regions, although with slightly different onsets. The 
growth of S-gene positive cases appears sustained until the end of the studied period despite a 
background of generally declining S-gene negative cases (except for Nottingham, showing an increase 
in both S-gene positive and negative cases in May 2021). This suggests a competitive advantage of S-
gene positive cases versus S-gene negative. The transition from low growth, “non-VOC/VUI” S-gene 
positive cases to B.1.617.2 S-gene positive cases in smaller geographic units is more abrupt. 

The relative growth rate estimates assume that testing efforts are similar over time. Since testing 
frequency is only partially observed, it is not possible to adjust for this entirely, so we present a wider 
set of measures to inform our conclusions; the results from all three methods give very similar results, 
increasing confidence in the observed patterns. The relative growth rate of S-gene positive compared 
to S-gene negative cases provides an assessment of their relative competitive advantage. While Figure 
2 shows estimates obtained using data from symptomatic cases only, which are likely less affected by 
testing biases, additional analyses for a different dataset including screening cases are included in the 
Supplementary Materials (SM Section 3), showing similar conclusions.   
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Figure 2 - Estimated growth rate and doubling time for S-gene positive and S-gene negative 

symptomatic cases in England. Green lines denote S-gene positive cases and red denote S-gene 

negative cases. Four methods used to estimate growth rate time series are denoted with full line 

(Poisson regression method), dotted line (Gaussian Process method), dashed line (Generalised 

Additive Model method), and dot-dash (Poisson Bayesian method). Panels show a hierarchy of areas: 

(A) England, (B) NHS Regions which are regions within (A), (C) Cities and sub-regions of the North-

West, (D) Cities in the Midlands. The M65 corridor includes the towns of Blackburn, Accrington and 

Burnley. See Supplementary Materials for precise geographic definitions and details of growth rate 

estimation methods. 

Shifting age distributions of cases  

The age distribution of confirmed cases in a generalised epidemic reflects the population mixing 
patterns and age-stratified infectivity, susceptibility, severity and testing-seeking behaviour. If most 
B.1.617.2 cases are imported through travel, we would expect the observed age distributions to reflect 
the age distribution of travellers (see Supplementary Materials section 3, Figure S3.6). Therefore, prior 
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to importation of B.1.617.2, S-gene positive cases are expected to correspond to other variants in the 
community, under the assumption that variants do not differ substantially in their age specific 
susceptibility or infectivity and follow the same age distribution as S-gene negative cases, since both 
are established. During the time of peak imports, we expect the S-gene positive samples to reflect the 
age of travellers and their immediate contacts before returning to a distribution reflecting community 
transmission. We would then expect the age distribution to revert to that of S-gene negative cases.  

The dynamics of perturbation and equilibration are summarised with the Wasserstein (or Kantorovich) 
distance metric (19, 20), which captures discrepancies between the age distribution of S-gene negative 
and positive samples, in Figure 3; findings are confirmed with the Kolmogorov-Smirnov distance in 
Supplementary Materials Section 3. These metrics are sensitive to sample size, so to assess uncertainty 
we generate a 95% significance level confidence region for the null hypothesis that S-gene positive and 
S-gene negative have the same age distribution, based on a permutation test. If the distance metric falls 
outside this confidence region, the null hypothesis is rejected, and we conclude that the age distributions 
are different for S-gene positive and S-gene negative cases.  

In Bolton, Leicester and Birmingham the Wasserstein distance rises for short periods of time in late 
March and early April 2021, leaving the null hypothesis confidence region (Figure 3). This is consistent 
with the timing and opportunity of importation of B.1.617.2 (see also Supplementary Materials Section 
7 for traveller status breakdown). However, on 23 April, travel restrictions were imposed from India, 
with only British citizens and permanent residents allowed to enter the country subject to a 10-day stay 
in a quarantine hotel and two mandatory PCR tests (21). This rise in the Wasserstein metric followed 
by its subsequent decline supports the hypothesis that introductions of S-gene positive infections related 
to B.1.617.2 were quickly followed by sustained transmission in the community, which is reflected in 
similar age distributions of S-gene positive and S-gene negative cases in the most recent data 
(Supplementary Materials Section 3). The slightly older average age of cases that are S-gene positive 
may reflect slightly lower vaccine efficacy against B.1.617.2, such that older age groups who are more 
likely to have received the vaccine are at elevated risk of B.1.617.2 infection compared to B.1.1.7. 
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Figure 3 - Dynamics of age distributions of cases. For each region, we show the Wasserstein distance 

between the age distribution of S-gene positive and S-gene negative cases, normalised with peak value 

at 1 (top panels), the mean age (middle panels) and the number of cases (bottom panels). All metrics 

are computed over a 14-day rolling window of cases by specimen date, plotted by the last swab date in 

the 14-day window. The black curve indicates the Wasserstein distance between the two age 

distributions. The purple shaded region indicates the confidence region for the Wasserstein distance if 

the two samples were drawn from the same distribution, generated through 1000 Monte Carlo samples 

of a permutation test  (see text and Supplementary Materials Section 3). The grey shaded bands indicate 

dates where the Wasserstein distance falls outside of the 95% confidence region, denoting a significant 

difference between the age distribution of S-gene positive and S-gene negative cases. The red dashed 

curve indicates S-gene negative cases and the blue dotted curve indicates S-gene positive cases.  
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Discussion 

We provide evidence that S-gene positive SARS-CoV-2 infections in England, although initially 
confined to travellers and their close contacts, have now become established in the wider population. 
All indications are that these cases are now due to B.1.617.2. Recently, S-gene positive cases have a 
substantially larger growth rate than S-gene negative cases, which suggests that B.1.617.2 is likely to 
become the dominant variant in the UK, replacing B.1.1.7. This analysis was only possible by 
combining genomically incomplete, yet widely collected routine testing data with the delayed signal 
from genetically complete cases. In early 2021, the majority of positive SARS-CoV-2 tests in England 
were genomically sequenced (74% in April 2021), with the sequencing subject to processing delays: 
21% of sequencing results were available within 1 week, 44% within 2 weeks, and 66% within 3 weeks 
(as of 27th May 2021). At the end of the study period, nearly all S-gene positive samples that were sent 
for sequencing were subsequently verified to be B.1.617.2, yet many S-gene positive samples were still 
being processed. We can draw conclusions about the spread of B.1.617.2 from S-gene data because of 
the close relationship between S-gene positivity and B.1.617.2 in England at the end of the study period. 

The shortest COVID-19 doubling times estimated in England were in March 2020 when SARS-CoV-2 
infections were doubling every 3 days (22). Here, S-gene positive cases were estimated to be doubling 
every 7 days in England overall, and as rapidly as every 5 days in some regions with known outbreaks 
of B.1.617.2. This growth rate is in contrast to a shrinking epidemic of S-gene negative cases in the 
same areas, and at the same times. Mathematical modelling of the UK’s proposed roadmap to relax 
social distancing restrictions entirely has demonstrated that variants with even a moderate increase in 
transmission rate or that partially evade vaccine-derived immunity have the potential to threaten the 
current (30 May 2021) decline in cases and deaths. Variants with a large competitive advantage can 
generate a resurgence in cases and hospital admissions larger than experienced in January 2021 in the 
UK. The rapid doubling of S-gene positive cases calls for speedy and focussed control measures.  

In other European countries, a similar picture is emerging. Denmark, Germany and the Netherlands, are 
seeing B.1.617.2 growing on a background of predominantly B.1.1.7 infections (over 90% of cases in 
each country). In Denmark, where up to 91% of cases are sequenced, 36% of B.1.617.2 cases were 
associated with recent travel, yet the recent doubling in cases across all regions of Denmark suggests 
that B.1.617 and its sublineages has shifted to spreading beyond the household and close contacts of 
identified travellers. As of the 30th of May, B.1.617.2 makes up 80% of all recorded B.1.617 cases 
making up 0.5% of total cases (27). Germany and the Netherlands are sequencing a smaller proportion 
of cases (10% and 3% respectively) and report a peak in B.1.617 cases in early May. In Germany, 
B.1.617 cases account for 2% of cases in late May, with less than 0.5% in the Netherlands. This is 
consistent with travel-related importation and a delay in reporting of B.1.617.2. Our findings suggest 
that further growth of B.1.617.2 is likely in those countries, should patterns in England be repeated.  

The UK vaccine uptake is very high: over 75% of the population have received one dose, and over 50% 
have received both doses at the time of writing (early June 2020). A key question for the UK’s continued 
easing of social distancing measures is the effectiveness of currently used vaccines against B.1.617.2. 
However, here we demonstrated that S-gene positive cases were initially in distinct subpopulations, 
both regionally and in terms of age groups. This observation could partly explain the difference in 
growth rates between S-gene positive and S-gene negative cases, if behavioural patterns imply 
differences in contact rates (24, 25) or propensity for larger gatherings (26) that is not dependent on the 
biology of B.1.617.2. However, the initial differences observed in age distributions have now converged 
to the background distribution, suggesting that the S-gene positive, and thus B.1.617.2, growth rate has 
stabilised to a higher value than B.1.1.7. The observation that age-related incidence is initially perturbed 
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has the potential to affect vaccine effectiveness studies (27) if confounders are not completely accounted 
for. Current analysis of B.1.617.2 severity from Public Health England suggests that, when age is 
controlled for, the risk of hospitalisation remains increased in infections caused by B.1.617.2 (23). Our 
analysis highlights the complex and dynamic relationship between space, time, and age of cases in this 
outbreak, and the challenges in fully controlling for these variables when estimating phenotypic 
properties of emerging variants. 

Despite remaining limitations (Supplementary Material Section 8), the United Kingdom has a -well-
established disease surveillance programme and has the ability to undertake detailed epidemiological 
studies that establish phenotypic properties of globally circulating variants that are often not possible in 
locations where variants emerge or are first identified (29). Our work provides a deeper understanding 
of the effect of SARS-CoV-2 variant dynamics that need to be accounted for when estimating 
transmissibility, severity (4–6) and vaccine escape potential (27), and there is an ethical imperative to 
continue these efforts because the results have global policy implications. 
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Materials and Methods 

1. Materials: Description of data sources 

We estimated lineage-specific growth rates, age distributions and geographical spread using data 
provided by Public Health England (PHE) collected as part of the pandemic monitoring effort in 
England and provided to the Scientific Pandemic Influenza group on Modelling (SPI-M). 

We use information on variants of concern (VOCs) or variants under investigation (VUIs) in the UK 
from four data streams: the positive SARS-CoV-2 cases line list; the S-gene line list detailing TaqPath 
test results; the VAM line list detailing variants of concern identified by genomic sequencing from 
COG-UK; and the CTAS (Contact Tracing Advisory Service) line list, detailing genomic sequencing 
results that are not variants of concern. Descriptive analyses of the frequency of variants of concern 
among patients who have a S-gene positive TaqPath test result were performed using all four data 
sources to create a combined genomic and S-gene data set, de-duplicated into unique episodes of 
infection. For the analysis of growth rates, and associated age distributions, we used only the positive 
cases line list and the S-gene line list, de-duplicated using 4 different methods, as detailed below, and 
excluding the last 4 days of case counts, which are subject to reporting delays, and may bias recent 
estimates of growth rates. In our main results we present findings based on unique episodes of infection 
and provide further sensitivity analyses in this section. 

Here, we describe each dataset in turn and the data fields that are applicable to the sequencing and/or 
determining S-gene status of specimens. We later describe the pipeline to combine the multiple data 
sources. 

Dataset 1: Variant line list (VAM):  

This contains a list of specimens sequenced by the Covid Genomics UK Consortium (COG-UK), 
provided by Public Health England (PHE), that were genomically confirmed as VOCs or VUIs; as of 
20 May in the UK there were 5 VOCs and 7 VUIs (Table 1 of PHE SARS-CoV-2 variants of concern 
and variants under investigation in England: Technical Briefing 10; (1)). Additionally, each record 
included the traveller status of the individual (Traveller, Contact of Traveller, Not travel-associated, 
Refused or Uncontactable, Awaiting information).  The VAM is deduplicated to one VOC/VUI call per 
person. If multiple VOCs per person are identified (rare), non-B.1.1.7 (e.g., B.1.617.2) is prioritised 
over B.1.1.7 which is prioritised over unclassified. 

Dataset 2: CTAS line list: 

This contains genomic information collected through the Contact Tracing Advisory Service (CTAS) 
and included traveller status. It lists all sequences that could be linked to the contact tracing system, 
including sequences that were not VOCs or VUIs. CTAS line list was the only source to contain 
sequences that were neither VOCs or VUIs. 

Dataset 3: “Pillar 1 and Pillar 2 line lists”: 

These are lists detailing the first case for an individual (i.e. they are deduplicated) within Pillars 1 and 
2 of the UK SARS-CoV-2 mass testing programme. Pillar 1 encompasses virus testing in PHE 
laboratories and NHS hospitals for those with a clinical need, and health and care workers. Pillar 2 
contains records of virus tests for the wider population. It records the ethnicity, age and location (to 
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coarse-grained geographic level) for each positive case. In addition, each line list record has a 
categorical value for “Asymptomatic_indicator” which details the symptomatic status of the individual 
on the date of testing for community (Pillar 2) tests. A value of “N” indicates the person declared 
symptoms at the time of testing; and “Y” can be interpreted as tests conducted for screening purposes 
(i.e. asymptomatic testing).  

Dataset 4: “S-gene line list”:  

For Pillar 2 tests performed using the ThermoFisher TaqPath system, these supplied RT-PCR cycle 
threshold (Ct) values and their classification according to whether the S-gene target of the TaqPath 
assay failed to amplify. The TaqPath assay is a multiplex test designed to target three distinct 
regions of the SARS-CoV-2 genome (N, ORF1ab, S). Each record in the S-gene line list was 
classified as either S-gene negative, S-gene positive or equivocal, according to these Ct criteria: S-gene 
negative - N<=30 Ct; S undetected; ORF<=30 Ct; (also referred to as S-gene dropout) and S-gene 
positive - N<=30 Ct; S<=30 Ct; ORF<=30 Ct; (also known as “triple-positive”), and equivocal - other 
combinations. Tests taken during recovery are frequently equivocal when CT values rise. 

1.1 Processing I: case numbers for growth rate estimates 

The S-gene line list is provided on a per-test basis, and some people have multiple S-gene test results. 
This can be the result of repeated testing during a single episode of infection or multiple episodes of 
repeated infection, and there is some ambiguity in this. We ensured each infection episode was counted 
no more than once in the following four ways: 

1) Selecting only cases for whom the S-gene test result is within 4 days of their first ever positive result 

for that patient (“first infection”) 

This is simple but potentially biases the data, under-representing people who have had multiple 
infections or for whom the first test in an infection episode was done in a lab that does not use TaqPath 
tests and followed up with a TaqPath test later in the infection. 

2) Selecting only cases with a first positive TaqPath test result for an individual (“first taqpath”) 

By taking the first ever TaqPath test result for an individual we maximise the number of individuals we 
identify but potentially bias the data because the date of the sample may not be completely 
representative of the date of onset of disease, if the patient was initially diagnosed by a laboratory that 
does not use TaqPath, or by a lateral flow device. Also, cases with repeated infections, separated by a 
long time, would be excluded from analysis. 

3) Selecting only the last positive TaqPath result for an individual (“last taqpath”) 

By taking the last ever TaqPath test result we also potentially bias the sample by making the time point 
of infection more recent, in the subset of patients who have had multiple TaqPath test results. However, 
if these test results are widely separated in time, this strategy may be appropriate as it will pick up the 
most recent infection episodes. 
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4) Inferring continuous infection episodes based on delays between tests (“infection episodes”) 

This strategy involves grouping all known test results, both TaqPath and non TaqPath, together into 
continuous episodes, containing sequences of positive test results separated by 28 days or fewer (or 56 
days in the event of an equivocal S-gene test result). Each episode may contain multiple test results, and 
if there are TaqPath results within the episode that are positive, and there are no negative S-gene results, 
the episode is deemed to be caused by a S-gene positive infection. Conversely if there are negative 
TaqPath test results within an episode and no positive results the episode is deemed to be caused by a 
S-gene negative infection. It is categorised as equivocal if TaqPath test results are all equivocal, and 
unknown if there are no TaqPath test results for that episode.  

This strategy has the benefit that we correctly identify the onset date of the episode regardless of when 
the TaqPath testing was done in an episode, and potential episodes of re-infection are detected. 
Compared to other methods it may appropriately result in earlier infection dates if they have had a few 
tests done in laboratories that do not use TaqPath tests. 

1.2 Processing II: S-gene and genomic sequencing case data 

Assembling a linked data set for genomic variant and TaqPath result informs our analysis of case 
numbers. The data processing pipeline has five main steps: 

Step 1: Create a joint confirmed sequence case list from the CTAS and VAM linelists 

● From the VAM line list we took proven VOC and VUI cases (i.e. confirmed through 
sequencing).  

● From the CTAS line list we took proven non-VOC/VUI cases. 
● We used the following groups: B.1.351, P.1 & P.2, B.1.617.1, B.1.617.2, other VOC/VUI. 
● We included the B.1.1.7 and B.1.525 variants within the “other VOC/VUI” category. 

Step 2: Gather unsequenced S-gene positive cases from the S-gene line list  

● We added entries in the sequenced case list from Step 1 with a FINALID not present to the 
group of unsequenced S-gene positive cases from the S-gene positive line list, deduplicated 
using the infection episodes strategy. 

Step 3: Construct a combined list of sequenced VOCs and VUIs (from Step 1) and unsequenced S-gene 

positive cases (from Step 2) 

● We include both confirmed and suspected cases with VOCs/VUIs of interest. 

Step 4: Using Pillar 1 and Pillar 2 line lists, determine if a case was asymptomatic undertaking a test 

as part of a screening process: 

● Check for match of FINALID and specimen_date fields in the Pillar 1 and Pillar 2 line lists and 
the Step 3 combined list. 

● Extract value from the Asymptomatic_indicator field: U for Pillar 1; N for Pillar 2 and 
symptomatic; Y for Pillar 2 and test conducted for screening purposes (i.e. asymptomatic 
testing) 

● Non-matches could occur if it was not the first sample that was sent for sequencing and we 
could not match the date. This may happen either when a case is a reinfection or if multiple 
specimens were taken. We recorded these instances as “Unknown” for asymptomatic indicator. 
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Step 5: Using Pillar 1 and Pillar 2 line lists, determine ethnicity, age and location of a case: 

● Check for a match of the FINALID field between the Pillar 1 and Pillar 2 line lists and the Step 
3 combined list. 

● If a match is found, extracted data from the fields for ethnicity, age and patient location (LTLA 
level).  

● We assume these remain unchanged throughout the study period, acknowledging this will not 
account for people aging or moving residence. 
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2. Methods: Instantaneous growth rate estimation  

We measured the growth rate of the S-gene positive and S-gene negative cases to assess the potential 
of VOCs. The growth rate describes the exponential rate at which cases are growing or declining in a 
given area. As opposed to the widely used reproduction number (2), the growth rate can be estimated 
directly from data and provides a direct measure of the speed of growth of cases regardless of whether 
they derive from direct transmission or other sources such as importation. It is therefore a more reliable 
measure to investigate trends when prevalence is low and importation may be significant. From a given 
growth rate, classical methods allow to compute the corresponding reproduction number using 
estimates of the generation time distribution (3–5), but this implicitly makes the assumption that the 
observed growth is driven entirely by local transmission. Additionally, the generation time distribution 
of a new variant is often hard to infer from the scarce available data and may in general be different 
from that of previously circulating variants.  

Especially in situations of low prevalence, as at the time of writing (June 2021), outbreaks can be very 
heterogeneous across the country. For this reason, in addition to looking at aggregated national figures, 
which could average out areas seeing rapid spread with others still in decline, we estimated the growth 
rates in different smaller-scale geographies independently. These local outbreaks can be indicative of 
the speed of growth of a national epidemic were a variant to become widespread across the country, 
although conditions at the local scale may not translate to larger geographies. Further, estimating 
reliable trends in the growth rate when looking at small scale geographies is challenging due to the very 
low number of cases involved and that the instantaneous growth rate is undefined when no cases are 
observed in a given time period. To mitigate this problem and handle the uncertainty with the data, we 
applied four independent methods to estimate the instantaneous growth rate, each of them with different 
assumptions, as described below. 

Generalised Additive Model method. To estimate growth rates, we adapt a generalised additive model 
(GAM) where the number of cases on day , , is assumed to be given by  for 
some smoother function . We use a log link and a penalised spline as implemented in the R package 
mgcv (6). The over-dispersed noise inherent in both disease dynamics and surveillance data motivates 
the use of a negative binomial error structure, and a day-of-the-week fixed effect is added to capture 
daily variability within a 1-week period. The number of knots used by the spline is fixed as one twentieth 
the length of the time-series (for time-series shorter than 200 days the default number of knots is used) 
to avoid over smoothing the data or losing signal in the noise. The instantaneous local growth rate is 
then the time derivative of the smoother. The GAM can lead to boundary effects from the choice of 
smoother, so the most recent central estimates may not be reliable. The growth rate is assumed 
independent for each geographical area and case definition considered, where case definitions include 
S-gene positive and S-gene negative. The model used is an extension of the model developed by Pellis 
et al. 2021 (7). 

Gaussian Process method. The growth rate is estimated independently for each geographical area. For 
a given area i, the method assumes that the daily count of cases is distributed as a negative binomial 
function with risk parameter , where t is a day index. We decompose the log-relative-risk parameter 
into a Gaussian process (GP) and a weekday random effect: , where wt has a log-
gamma distribution with shape 0 and rate 0.01, and gt is a GP with a Matérn covariance function with 
v=3/2, length scale l and precision tau. The hyperparameter l is assigned a log-normal prior with mean 
1 and precision 1, while tau has a log-normal distribution with mean -3.5 and precision 100. The growth 
rate is calculated as the first derivative of the GP. To remove fine-scale fluctuations, the derivative is 
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approximated using a centred difference approximation. The model is implemented using the R-
package INLA, where the GP is obtained as the weak solution of a stochastic partial differential equation 
(8, 9). 

Poisson regression method. The growth rate is estimated for every day using a generalised linear model, 
where the number of cases on day , , is assumed to be given by  which fits a 
quasipoisson model to the surrounding 8 weeks of case counts, as a direct estimate of  as the growth 
rate. When considering dates within the most recent 4 weeks there is less data to estimate the growth 
rate on, so the most recent estimates are both less reliable and more representative of the growth rate in 
the past. As quite a large window of data is used, this method is slow to respond to step changes in the 
instantaneous growth rate.  

Poisson Bayesian method. The same approach as the poisson regression was also implemented in 
Bayesian framework using an observation level random effect, rather than quasipoisson error 
distribution to account for the overdispersion. This was fitted in the R package brms v 2.15.0 (10). The 
priors used were a normal (mean 0, standard deviation 5) prior on the intercept of the model, a standard 
normal prior on the growth rate ( ), and an exponential (lambda=1) prior on the standard deviation of 
the observation random effect distribution. As in the poisson regression method, the surrounding 8 
weeks of case counts were used, and the caveats about the most recent 4 weeks of data apply. This 
method was used to validate the main estimates in Figure 2 of the paper and is not being used in the 
sensitivity analysis. 

Figures S2.1 and S2.2 show estimates of the instantaneous growth rate obtained using the three different 
methods. For sensitivity, we tested different datasets obtained with the four alternative deduplication 
processes (1-4) presented in Section 1.1. Consistent results across different methods and data cleaning 
processes give us confidence on the general trends of S-gene positive and negative cases. 
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Figure S2.1 - Instantaneous growth rates and doubling times for all regions estimated using three of 
the different methods explained in Section SI2 (General additive model, Gaussian Process and 
Poisson regression) and data obtained using the four different deduplication strategies explained in 
Section 1.2.  
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Figure S2.2 - Instantaneous growth rates and doubling times for all regions estimated using three of 
the different methods explained in Section 2 (General additive model, Gaussian Process and Poisson 
regression) using all cases, versus the subset of cases described as “symptomatic”. 
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3. Methods: Comparison of the distribution of cases by age 

Individuals’ transmission patterns typically depend on age, and interactions between different age 
groups can drive epidemics. Using empirically-derived age mixing matrices describing those 
interactions, next generation matrices can be calculated (11), which map the age distribution of infected 
individuals in a population to the age distribution after one generation of infections. As the epidemic 
progresses, the age distribution of infected individuals converges to the dominant eigenvector of the 
next generation matrix (12), provided interaction mixing and transmission patterns remain constant, and 
assuming the same generation time distribution for all ages. Under the assumption that mixing and 
transmission patterns (i.e. relative susceptibility and infectivity by age) are similar for all variants of a 
pathogen up to a multiplicative constant describing an overall increase or decrease in transmissibility, 
we would expect cases across different variants to have the same age distribution, regardless of whether 
the epidemic is growing or declining. However, when a new variant emerges, it may emerge 
preferentially within and between certain age groups, though as the variant-level epidemic progresses 
the age distribution should eventually converge to the same dominant eigenvector. In the context of 
B.1.617.2, many cases arrived in the UK through travel, possibly resulting in an age bias in B.1.617.2 
cases aligned with the age distribution of travellers. Following these seeding events, we may observe 
three primary outcomes: continued growth through importation of cases, continued growth through 
community transmission, or local extinction of the variant. If we observe continued growth through 
importation, the age distribution of cases will reflect those of the imported cases. If continued growth 
occurs through community transmission, the age distribution of cases should gradually shift towards 
the dominant eigenvector, which describes the mixing and transmission patterns in the community. If 
local extinction occurs, the cases should die out, and we again expect a distribution indistinguishable 
from the dominant eigenvector, but without a corresponding growth in cases. Therefore, by studying 
the age distribution of different variants in tandem with the growth rate, we can gain insight into whether 
there is community transmission.  

To investigate the age distribution of cases, we use the Wasserstein (or Kantorovich) distance metric 
(13, 14). Given a metric space M provided with a metric d, the 1st Wasserstein distance, or ‘earth 
mover’s distance’, or Mallow’s distance, intuitively describes the minimum cost of transforming one 
probability distribution to another. Let X and Y be random variables with distributions P and Q in Rd, 
respectively. The Wasserstein distance between P and Q, , can be defined as the minimum 
of the expected difference between X and Y, taken over all joint probability distributions F for (X,Y) 
such that the marginal distribution of X is P and the marginal distribution of Y is Q, i.e., 

   

 

We consider the 1st Wasserstein distance, defined for p=1. Some of the advantages of the Wasserstein 
distance rather than other measures, e.g., the Kullback–Leibler divergence, in the context of age 
distributions, are: 1) the Wasserstein distance satisfies the properties of a metric (e.g., it is symmetric); 
2) it is well defined for probability distributions with different support; 3) it is appropriate for 
information like age where the distance between different values has meaning.  

To ensure conclusions are not driven by the choice of distance metric, we also use the Kolmogorov-
Smirnov distance measure. This is defined as the largest absolute difference between two cumulative 
distribution functions, i.e., 
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where F and G denote the cumulative distribution functions of the probability distributions under study. 
The Kolmogorov-Smirnov test is conceptually simple but suffers from some drawbacks including that 
it focuses on the point of maximal difference rather than measuring more global differences between 
distributions. We here use this measure only as an additional validation of the tests performed using the 
Wasserstein distance.   

To compare two empirical distributions (e.g., the observed age distributions of S-gene positive versus 
S-gene negative cases), we consider the null hypothesis that the two samples are drawn from the same 
age distribution. We do this by using a permutation test:  we combine the two samples into a single 
distribution, from which we randomly draw 1000 permutations that split this single distribution into 
two samples, with the respective sample sizes of the original two samples. For each pair of permutation 
samples, we calculate their (Wasserstein or Kolmogorov-Smirnov) distance. These distances represent 
possible values that could be obtained if the two samples were drawn from the same distribution. From 
the 1000 permutation distances, we can calculate percentiles in order to obtain a confidence region. We 
use the latter to determine whether the observed samples are likely to have been drawn from the same 
distribution: if the distance calculated from the original samples lies within the confidence region, then 
there is insufficient evidence to reject the null hypothesis that the two samples were drawn from the 
same distribution, at the corresponding confidence level.  

 

Figure SI 3.1: Comparing the Wasserstein time-series to snapshots of the observed age distributions 
for S-gene positive and S-gene negative cases in Leicester. This figure illustrates how the Wasserstein 
distance relates to the observed distributions.  

 

Figure S3.1 focuses on Leicester as an example. The bottom three panels show a snapshot of the age 
distributions at given points in time. Panel (a) shows the age distribution of cases between 23/03/2021 
and 05/04/2021. Visually comparing the S-gene positive and S-gene negative age distributions, there 
does not seem to be a notable difference between the two, at least within the binomially distributed 
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uncertainty bounds. This is in agreement with the fact that the Wasserstein distance for the 
corresponding date range falls well within the confidence region. The second panel shows the age 
distributions between 05/04/2021 and 18/04/2021. There is now a more evident difference in the 
observed age distributions, with S-gene positive cases occurring in older individuals. The corresponding 
Wasserstein distance is outside the confidence region, confirming the significant difference between 
the two age distributions. The final panel shows the distributions for cases between 28/04/2021 and 
12/05/2021. Visually the two age distributions appear similar again, and the Wasserstein distance is 
back within the confidence region, so there is no evidence to suggest a significant difference between 
the distributions. Therefore, the relative position of the computed Wasserstein distance and the 
confidence region obtained by a permutation test allows quantification of the visual relationship 
between the age distributions and indicates whether such distance is significant based on the sample 
sizes involved. This is particularly important when either one or both sample sizes are low and visual 
inspection may be difficult. In this case, the Wasserstein distance can be very high even when the two 
samples are drawn from the same distribution, leading to large confidence regions. 

To investigate temporal changes in the relationship between the two age distributions, we considered 
the age distributions over a rolling time window. We opted for a 14-day time window, as this ensured 
that there were sufficient cases to get some insight into the age distribution, whilst still having a fine-
grained temporal resolution. Using a longer window would result in a temporal correlation of long 
duration, so short-term, but substantial perturbations to the age distributions could be missed. 
Performing this for the regions of interest, for the Wasserstein distance, gives the results shown in 
Figure 3 in the main paper. To verify that our conclusions regarding comparisons between the data 
streams are not driven by the assumptions of the Wasserstein distance, in Figure S3.2, we show the 
same analysis for the Kolmogorov-Smirnov distance alongside the Wasserstein distance. Comparing 
the results, both metrics suggest similar conclusions. Therefore, our conclusions are not driven by the 
choice of model.  

 

Figure S3.2: Comparison of the Kolmogorov-Smirnov and Wasserstein distances between the S+ and 
S- age distributions, in the areas of concern. This considers the age distribution among a two-week 
rolling aggregation of cases, plotted by last swab date in the two-week window. The black curve 
indicates the distance between the two age distributions. The purple shaded region is generated through 
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1000 Monte Carlo samples of a permutation test, and indicates the confidence region for distance 
metrics if the two samples were drawn from the same distribution. The grey shaded regions indicate 
dates where the distance metric falls outside of the confidence region, denoting a significant difference 
between the age distribution of S-gene positive and S-gene negative cases. 

For comparison, we show the age distributions in the regions of interest below: 

 
Figure S3.3: Age distributions of S-gene positive and negative detected COVID-19 cases over a two 
week period from the dates shown in column headers, for 3 NHS regions of England with good TaqPath 
test coverage.  
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Figure S3.4: Age distributions of S-gene positive and negative detected COVID-19 cases over a two 
week period from the dates shown in column headers, for 3 smaller geographic regions of the North 
West of England, associated with S-gene positive COVID-19 outbreaks. 
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Figure S3.5: Age distributions of S-gene positive and negative detected COVID-19 cases over a two 
week period from the dates shown in column headers, for 3 smaller geographic regions of the Midlands 
of England, associated with S-gene positive COVID-19 outbreaks. 

Age distribution of cases among travellers 

Cases in travellers may not reflect the age distribution of community acquired cases. To investigate this, 
we compare the subset of PCR positive cases in confirmed travellers to all PCR positive cases (Figure 
S3.6). Both samples consider cases between 28/02/2021 and 24/05/2021, to ensure the time frames are 
comparable. The age distribution of traveller cases is skewed towards older individuals, suggesting that 
the perturbations seen in the age distribution of S gene positive cases are likely to be caused by imported 
cases. 

 

 

Figure S3.6: Age distribution of cases in travellers versus all cases. The left plot shows the proportion 
of cases in each age group, and the right plot shows the cumulative frequency up to each age group. 
From the left plot, the traveller age distribution appears skewed towards older individuals. The right 
plot confirms this, with the age distribution of all cases having a substantially higher cumulative 
frequency for lower ages.  
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4. Regions analysed 

Here we detail the definition of the regions that were used as units of analysis. In Table S4.1, the area 
of analysis, the name and the corresponding Office of National Statistics codes are listed. The regions 
were chosen to represent various different geographical levels where we have relatively good coverage 
both in terms of TaqPath S-gene status and also in terms of sequencing results. At the top level we 
analysed the whole of England, at the next level we analysed the NHS regions of the North West, the 
Midlands, and London. The North West and Midlands have the best overall TaqPath coverage in 
England, whereas London has a lower level of coverage and is included for comparison, (see 
Supplementary Material Section 6). The most granular regions were selected by focussing on areas 
where we see significant B.1.617.2 outbreaks, in the areas with good TaqPath coverage. These areas 
including Bolton, the M65 Corridor, and Manchester in the North West, and Nottingham, Leicester and 
Birmingham in the Midlands, were areas identified where numbers of sequenced B.1.617.2 were high, 
from the analysis presented in Section 5. In identifying these low level regions, we ensured that the 
areas were areas where the vast majority of sequenced S-gene positive cases were B.1.617.2, and where 
the B.1.617.2 cases were most clearly associated with community transmission, by investigating regions 
where the majority of cases were identified as symptomatic (rather than screening), where there was no 
clear evidence of high levels of case importation, and where the ethnicity and age distributions of cases 
were heterogeneous (see Section 7). 

 

Figure S4.1 - Mid and lower level regions analysed and presented in the main paper.  
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Supplemental Table S4.1 - UK Administrative Lower Tier Local Authority regions associated with 
regions analysed. 

 
Area of analysis LTLA code Name 
Bolton E08000001 Bolton 

M65 Corridor 

E06000008 Blackburn With Darwen 

E07000120 Hyndburn 

E07000117 Burnley 

Nottingham 

E06000018 Nottingham 

E07000036 Erewash 

E07000173 Gedling 

E07000176 Rushcliffe 

Leicester 

E06000016 Leicester 

E07000129 Blaby 

E07000135 Oadby and Wigston 

Birmingham 

E08000025 Birmingham 

E08000031 Wolverhampton 

E08000028 Sandwell 

E08000027 Dudley 

E08000029 Solihull 

E08000030 Walsall 

Manchester 

E08000003 Manchester 

E08000006 Salford 

E08000008 Tameside 

E08000007 Stockport 

E08000005 Rochdale 

E08000002 Bury 

E07000037 High Peak 
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5. Geographical distribution of S-gene positive cases, sequenced 
B.1.617.2 infections and B.1.1.7 sequences 

 

Figure S5.1: Geographical co-location of unsequenced S-gene positive cases and confirmed 
B.1.617.2 cases, in comparison to confirmed B.1.1.7 cases in the 4 weeks ending on the 26th May 
2021, in England as a whole.  
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London 

 
Figure S5.2: Geographical co-location of unsequenced S-gene positive cases and confirmed 
B.1.617.2 cases, in comparison to confirmed B.1.1.7 cases in the 4 weeks ending on the 26th May 
2021, in the NHS region of London.  
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North East and Yorkshire 

 
Figure S5.3: Geographical co-location of unsequenced S-gene positive cases and confirmed 
B.1.617.2 cases, in comparison to confirmed B.1.1.7 cases in the 4 weeks ending on the 26th May 
2021, in the NHS region of the North East and Yorkshire. 
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North West 

 

Figure S5.4: Geographical co-location of unsequenced S-gene positive cases and confirmed B.1.617.2 
cases, in comparison to confirmed B.1.1.7 cases in the 4 weeks ending on the 26th May 2021, in the 
NHS region of the North West. 
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Midlands 

 

Figure S5.5: Geographical co-location of unsequenced S-gene positive cases and confirmed B.1.617.2 
cases, in comparison to confirmed B.1.1.7 cases in the 4 weeks ending on the 26th May 2021, in the 
NHS region of the Midlands. 
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East of England 

 
Figure S5.6: Geographical co-location of unsequenced S-gene positive cases and confirmed B.1.617.2 
cases, in comparison to confirmed B.1.1.7 cases in the 4 weeks ending on the 26th May 2021, in the 
NHS region of the East of England. 
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South East 

 

Figure S5.7: Geographical co-location of unsequenced S-gene positive cases and confirmed B.1.617.2 
cases, in comparison to confirmed B.1.1.7 cases in the 4 weeks ending on the 26th May 2021, in the 
NHS region of the South East.  
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South West 

 
Figure S5.8: Geographical co-location of unsequenced S-gene positive cases and confirmed B.1.617.2 
cases, in comparison to confirmed B.1.1.7 cases in the 4 weeks ending on the 26th May 2021, in the 
NHS region of the South West. 
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6. S-gene TaqPath test coverage 

The degree of testing using the TaqPath assay varies from lab to lab. Since 1st March 2021 coverage of 
the S-gene test has been more extensive in the regions which we identify as problematic. This may be 
the result of an acquisition bias. 

Since 1st March 2021 the number of Pillar 2 positive cases varies substantially from region to region 
reflecting areas where the epidemic has taken more time to die down. 

 

Figure S6.1 - Pillar 2 positive cases by LTLA between 2021-04-17 and 2021-05-15. 

The proportion of tests that are performed using the TaqPath testing system and therefore for which we 
will have S-gene results generally covers those areas which have had a lot of Pillar 2 testing. However, 
regions with low case numbers also tend to have low TaqPath coverage and hence the S-gene signal in 
these areas is unreliable. Overall the TaqPath coverage in London for example is only about 30%. 

 

Figure S6.2 - TaqPath test coverage in Pillar 2 by LTLA between 2021-04-17 and 2021-05-15. 
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7. Epidemic curves 

 
Figure S7.1 Epidemic curves for S-gene positive cases in the 3 NHSER regions under investigation. 
The NHS regions selected are those with the most reliable TaqPath coverage. The majority of cases to 
date have been in the North West. Cases are heterogeneous in age and ethnicity. At least half of all 
cases arise from symptomatic infection. Cases in grey are S-gene positive cases for which we have no 
sequencing information yet. The last 4 days of case counts will be revised upwards due to reporting 
delays, and are excluded from growth rate calculations. 
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Figure S7.2 Epidemic curves for S-gene positive cases in the 3 smaller regions under investigation in 
the North West. As the first and most significantly affected region Bolton has had intensive case 
finding and testing efforts. Cases are seen to be reaching a plateau here. A similar picture is seen in 
the M65 Corridor. Case numbers in Manchester are still growing. The last 4 days of case counts will 
be revised upwards due to reporting delays, and are excluded from growth rate calculations. 
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Figure S7.4 - Epidemic curves for S-gene positive cases in the 3 smaller regions under investigation 
in the Midlands. Nottingham and Leicester had earlier imports of a variety of S-gene positive variants 
including B.1.351. More recently the sequencing has been dominated by B.1.617.2. Case growth in 
Nottingham has thus far been relatively slow, compared to the other two regions. Cases in 
Birmingham are increasing rapidly. The last 4 days of case counts will be revised upwards due to 
reporting delays, and are excluded from growth rate calculations. 
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