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Highlights  

We show a hierarchical Bayesian spatiotemporal model. 

 

Our model provides predictions of both long-term and short-term exposure. 

 

The computational cost is low.  

 

The model only needs a minimum number of stations being distributed 

throughout the territory.  

 

The other requirement of our model is that the spatial and temporal dimensions 

are either independent or separable. 
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Abstract 

 

Our objective in this work was to present a hierarchical Bayesian spatiotemporal 

model that allowed us to make spatial predictions of air pollution levels in an 

effective way and with very few computational costs. 

We specified a hierarchical spatiotemporal model, using the Stochastic Partial 

Differential Equations of the integrated nested Laplace approximations 

approximation. This approach allowed us to spatially predict, in the territory of 

Catalonia (Spain), the levels of the four pollutants for which there is the most 

evidence of an adverse health effect.  

Our model allowed us to make fairly accurate spatial predictions of both long-

term and short-term exposure to air pollutants, with a low computational cost. The 

only requirements of the method we propose are the minimum number of stations 

distributed throughout the territory where the predictions are to be made, and that 

the spatial and temporal dimensions are either independent or separable. 

Key words:    Spatial predictions, Hierarchical Bayesian spatiotemporal model, 

Stochastic Partial Differential Equations (SPDE), Integrated Nested Laplace 

Approximations (INLA).    
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Graphical abstract 
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Software and Data availability 
 
 

We used open data with free access using these sources. 

Air pollutants  

Departament de Territori i Sostenibilitat, Generalitat de Catalunya [Available at: 

https://analisi.transparenciacatalunya.cat/en/Medi-Ambient/Qualitat-de-l-aire-

als-punts-de-mesurament-autom-t/tasf-thgu, last accessed on March 14, 2021]. 

 

Meteorological variables 

METEOCAT, Generalitat de Catalunya. Meteorological data from XEMA 

[Available at: https://analisi.transparenciacatalunya.cat/en/Medi-Ambient/Dades-

meteorol-giques-de-la-XEMA/nzvn-apee, last accessed on March 14, 2021]. 

 

AEMET. AEMET Open Data [in Spanish] [Available at: 

http://www.aemet.es/es/datos_abiertos/AEMET_OpenData, last accessed on 

March 14, 2021]. 

 

Digitized cartography of the ABS 

Departament de Salut. Cartography [Available at: 

https://salutweb.gencat.cat/ca/el_departament/estadistiques_sanitaries/cartogra

fia/, accessed on March 14, 2021]. 

 

Code will be available at www.researchprojects.es  
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1.- Introduction 

In studies assessing the health effects of exposure to air pollution, there is the 

problem of how to estimate that exposure. Air pollution monitoring station 

locations do not usually coincide with where the majority of the subjects exposed 

to such pollution are found. In fact, the air pollution monitoring stations are not 

often distributed homogeneously in the territory under study, and it is quite usual 

that large areas, even some densely populated one, do not have any stations at 

all.  

 

Many studies use the measurements observed in the geographical region of the 

study to estimate, by means of point estimators, exposure levels for that entire 

region. The estimators most widely used are the inverse-distance weighted 

average and the arithmetic mean of the values of the air pollutant observed in 

several monitor stations, although sometimes the values of the pollutants 

observed in the nearest monitoring station are also used as estimators. The 

problem, as Wannemuehler et al. (2009) pointed out, is that when air pollution 

levels exhibit spatial variation across the study region, using these point 

estimators leads to a bias, as a consequence of ignoring the spatial structure (i.e., 

spatial dependence) of the data. Furthermore, when that biased estimated level 

is related to a health variable, this leads to an underestimation of the health effect 

of interest (Wannemuehler et al., 2009). 

 

There are numerous studies that propose models to estimate the levels of air 

pollutants, explicitly incorporating both spatial and temporal dependence 

(Cameletti et al., 2011, 2013; Pirani et al., 2013; Shaddick et al., 2013; Liang et 
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al., 2015, 2016; Calculli et al., 2015; Cheam et al., 2017; Mukhopadhyay and 

Sahu, 2018; Chen et al., 2018; Clifford et al., 2019; Nicolis et al., 2019; Wan et 

al., 2021) (to refer to only some of those that have appeared in the last ten years). 

However, we must point out that very few studies attempt to predict air pollution 

levels in locations where there is no monitoring station (ie, spatial prediction) 

(Cameletti et al., 2011, 2013; Pirani et al., 2013; Shaddick et al., 2013; 

Mukhopadhyay and Sahu, 2018; Nicolis et al., 2019), or, having them, to perform 

out-of-sample temporal predictions (Wan et al., 2021). 

 

The spatial domain of these studies ranges from cities (Santiago de Chile - Nicolis 

et al., 2019-; Beijing - Wan et al., 2021-) to countries (EU-15 countries - Shaddick 

et al., 2013-), passing through metropolitan areas (Greater London - Pirani et al., 

2013-) and regions (Po valley, northern Italy - Cameletti et al., 2011, 2013-; 

England and Wales - Mukhopadhyay and Sahu, 2018-). The pollutants that are 

predicted in these studies are coarse particles, PM10, those with a diameter of 10 

micrometres (μm) or less (Cameletti et al., 2011, 2013; Pirani et al., 2013; 

Mukhopadhyay and Sahu, 2018), fine particles, PM2.5, those with a diameter of 

2.5 μm or less (Mukhopadhyay and Sahu, 2018; Nicolis et al., 2019; Wan et al., 

2021), nitrogen dioxide, NO2 (Shaddick et al., 2013; Mukhopadhyay and Sahu, 

2018) and ozone, O3 (Mukhopadhyay and Sahu, 2018). Regarding the frequency 

at which pollutants are observed, daily data (Cameletti et al., 2011, 2013; Pirani 

et al., 2013; Mukhopadhyay and Sahu, 2018) dominate, although hourly data 

(Nicolis et al., 2019; Wan et al., 2021) and annual data (Shaddick et al., 2013) 

are also used. 
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The models used in most of these articles, in addition to incorporating spatial and 

temporal dependencies, include explanatory variables among which appear, in 

decreasing order of the number of studies, meteorological variables (Cameletti et 

al., 2011, 2013; Pirani et al., 2013; Shaddick et al., 2013; Nicolis et al., 2019; Wan 

et al., 2021), other pollutants different from the one predicted (Cameletti et al., 

2011, 2013), topographical variables (altitude – Cameletti et al., 2013; Wan et al., 

2021- and distances to sea and roads - Shaddick et al., 2013 -, and to mountains 

- Wan et al., 2021-), site types (Pirani et al., 2013; Mukhopadhyay and Sahu, 

2018), and land use variables (Shaddick et al., 2013). 

 

With one exception (Wan et al., 2021), the studies use a Bayesian approach since 

it is the one that best allows the uncertainty of complex space-time data to be 

incorporated. Most of the studies that use the Bayesian approach perform the 

inference using the Monte Carlo Markov Chain (MCMC) (Cameletti et al., 2011; 

Pirani et al., 2013; Shaddick et al., 2013; Mukhopadhyay and Sahu, 2018; Nicolis 

et al., 2019). Only one uses the Stochastic Partial Differential Equations (SPDE) 

representation of the INLA approximation (Cameletti et al., 2013). Using MCMC 

implies a high computational model complexity that, in some cases, prevents the 

practical application of the methods proposed by these studies. As an exception, 

it is worth mentioning Nicolis et al. (2019), who use the spTimer package (Bakar 

and Sahu, 2015). This package, which uses MCMC, allows large space-time data 

sets to be handled with fast computation and very good data processing capacity. 

The INLA approach is much more computationally effective than MCMC, 

producing accurate approximations to posterior distributions, even for very 

complex models (Lindgren and Rue, 2015). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 7, 2021. ; https://doi.org/10.1101/2021.06.06.21258419doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.06.21258419


 8 

These few studies that provide methods for spatial prediction use a relatively 

large number of monitoring stations. In this study we intend to present an equally 

effective model that allows the use of information from a small number of 

monitoring stations. Furthermore, we intend to make spatial predictions with a 

computational cost much lower than existing methods. 

 

Specifically, our objective in this work was to present a hierarchical Bayesian 

spatiotemporal model that allowed us to make spatial predictions of air pollution 

levels in an effective way and with very few computational costs. In this work, we 

used the SPDE representation of the INLA approximation to spatially predict, in 

the territory of Catalonia (Spain), the levels of the four pollutants for which there 

is the most evidence of an adverse health effect: PM10, NO2, O3 and PM2.5. We 

performed the spatial predictions at a point level (defined by its UTM coordinates), 

allowing them to be aggregated later in any spatial unit required. We were 

especially interested in the long-term exposure to air pollutants. That is, by living 

in a certain area an individual is exposed to a mix of pollutants that have lasting 

effects on their health. We also considered the performance of our method to 

spatially predict short-term exposure to air pollutants, which has more temporary 

effects on health. 

 

2.- Methods 

 

2.1.- Data 

We obtained information on the hourly levels of air pollution for 2011-2020 from 

the 143 monitoring stations from the Catalan Network for Pollution Control and 
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Prevention (XVPCA) (open data) (Departament de Territori i Sostenibilitat, 

Generalitat de Catalunya, 2021), located throughout Catalonia (Figure 1), and 

that were active during that period. The pollutants we were interested in for 

making spatial predictions were PM10, NO2, O3 and PM2.5 (all of them expressed 

as μm/m3) (air pollutants of interest, hereinafter). However, the monitoring 

stations also measured other pollutants: nitrogen monoxide (NO), sulphur dioxide 

(SO2), carbon monoxide (CO), benzene (C6H6), hydrogen sulphide (H2S), 

dichloride (Cl2), and heavy metals (mercury, arsenic, nickel, cadmium and lead). 

We have used these other pollutants as covariates.  

 

Not all pollutants of interest were measured at all the monitoring stations. Thus, 

during the entire period 2011-2020, PM10 was measured at 122 stations, NO2 at 

77 stations, O3 at 62 stations and PM2.5 at 42 stations. As can be seen in Figure 

2, most of the monitoring stations were located in the city of Barcelona and in its 

metropolitan area. In the rest of the territory, the stations were located in cities 

(especially those that measure NO2 and PM2.5) and, in the case of O3, also in 

rural areas. On the other hand, in 2020 (which we used to spatially predict short-

term exposure), the number of air pollution monitoring stations dropped 

considerably, from 143 to 78. In particular, those stations that measured particles 

dropped dramatically (PM2.5 from 42 to 3, 92.88% less; PM10 from 122 to 36, 

70.49% less). The number of stations that measured O3 went from 62 to 50 

(19.35% less stations) and NO2 from 77 to 67 stations (12.99% less) (Table 1). 

 

As we said, our primary interest was in spatially predicting long-term exposure to 

air pollutants. In this case, we used the monthly averages, after obtaining the 
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daily averages from the hourly data, from January 2011 to December 2019. To 

make the spatial predictions of the short-term exposure, we used the daily 

averages from January 1, 2020 to November 29, 2020.  

 

We carried out the spatial predictions at a point level, with the centroids being 

Basic Health Areas (ABS, for its acronym in Catalan from here on). Catalan health 

planning defines an ABS as the elementary territorial unit through which primary 

health care services are organized (Atenció Primària Girona. Institut Català de la 

Salut, 2021). The ABSs are either made up of neighbourhoods or districts in 

urban areas or by one or more municipalities in rural areas. Their delimitation is 

determined by geographical, demographic, social and epidemiological factors 

and, in particular, based on the accessibility the population has to services and 

the efficiency in the organization of health resources [18]. Catalonia is divided 

into 376 ABSs, with a population between 371 and 72,321 inhabitants (mean 

20,266 inhabitants, standard deviation 13,391, median 18,457 inhabitants, first 

quartile -Q1- 10,554, third quartile -Q3- 27,529). The population density was in 

the range of 0.31-34,590.58 inhabitants/km2 (mean 3,486.36, standard deviation 

6,719.23, median 309.18, Q1 44.83, Q3 3,752.54). In Catalonia, 769 of the 947 

of the municipalities belong to a single ABS. Of the 178 remaining, 46 were 

divided into more than one ABS, 37 of them into a maximum of five ABSs, eight 

between six and 14 ABSs and one, (the city of Barcelona) into 67 ABSs (Idescat, 

2021). 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 7, 2021. ; https://doi.org/10.1101/2021.06.06.21258419doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.06.21258419


 11 

Less than a third of ABSs have at least one air pollution monitoring station (105 

from a total of 376). An ABS has five monitoring stations, six ABSs have three 

stations, 22 ABSs have two stations and the remaining 76 have only one station.  

 

As covariates, we included the altitude of the air pollution monitoring station (in 

m) and the area of the ABS (in km2). The altitude (as well as other information 

related to the monitoring station, such as its latitude and longitude) were obtained 

from the Departament de Territori i Sostenibilitat (2021). We transformed the 

geographic coordinates (latitude and longitude) to UTM coordinates (in km) using 

the R package rgdal (Bivand et al., 2021). The areas of the ABS, as well as the 

UTM coordinates of their centroids, were calculated using QGIS (version 2.18) 

from the digitized cartography of the ABS (information of 2018) (open data) 

(Departament de Salut, 2021). 

 

It is known that, at least in the short term, exposure to air pollution is correlated 

with various meteorological variables. For this reason, in the case of spatial 

prediction of short-term exposure, we also included several meteorological 

variables as covariates. Most of them, such as temperature (in ºC), relative 

humidity (in %), wind speed at 10m (in m/s) and atmospheric pressure (hPA) 

influence the dispersion of the pollutant; although some also influencing its 

formation, for instance,  global solar radiation (W/m2) (O3 is a secondary pollutant, 

formed when the two atoms that make up oxygen gas dissociate under the action 

of light solar). The sources of the data were the stations of the Network of 

Automatic Meteorological Stations (XEMA) of the Meteorological Service of 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 7, 2021. ; https://doi.org/10.1101/2021.06.06.21258419doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.06.21258419


 12 

Catalonia (METEOCAT) (open data). We also used the daily data from the State 

Meteorological Agency’s (AEMET) automatic stations. 

 

Albeit not as much as the air pollutants monitoring stations, the meteorological 

stations are also dispersed throughout the territory. Catalonia has 217 

meteorological stations, 188 belonging to METEOCAT and 29 to AEMET. All of 

them measured all the meteorological variables every day. We used the same 

model (explained in this work) for short-term exposure to carry out the spatial 

prediction of the daily values of the meteorological variables at the ABS level, for 

the year 2020. Further details concerning this, can be found in Ribas et al. (2021).   

 

2.2.- Model specification 

We specified a hierarchical spatiotemporal model as follows: 

 

At the top of the hierarchy: 

 

!(#! , %) = ((#! , %) + *(#! , %)   {1} 

 

where i denoted the air pollution monitoring station where the pollutant was 

observed; t was the time unit; #! was the location of the station; ((. , . ) the 

spatiotemporal process, the realization of which corresponded to the pollutant 

measurements (at station i and time unit t); and *(. , . ) was the measurement error 

defined by a Gaussian white-noise process (i.e., spatially and temporally 

uncorrelated) (,"# was the nugget effect). 
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At the next level, we specified the following measurement equation: 

 

-(#! , %) = .(#! , %) + /(#! , %)   {2} 

 

where -(. , . ),  is the realization of the spatiotemporal process; .(. , . ) denoted the 

large-scale component, depending on the covariates; and /(. , . )	was a 

spatiotemporal process. 

 

The spatiotemporal process was an independent in time Gaussian field (GF) with 

zero mean and a Matérn covariance function: 

 

1234/(#! , %), /(#!
$
, %)5 =

%!
#"#$&(() 	(κ‖#! − #!

$
‖)

(
	Κ( 	(κ‖#! − #!

$
‖)  {3} 

 

where Κ( is the modified Bessel function of the second type and order : > 0. : is 

a parameter controlling the smoothness of the GF, ,# is the variance and = > 0, 

is a scaling parameter related to the range, >, the distance to which the spatial 

correlation becomes small. We used > = √8	: =⁄ , where >  corresponded to the 

distance where the spatial correlation is close to 0.1 for each : (Lindgren et al., 

2011). = = 2C√:, where C is a parameter controlling the rate of decay of the 

spatial correlation as the distance ‖#! − #!
$
‖ increases.  

 

Due to its computational problems, we chose to represent the GF as a Gaussian 

Markov Random Field (GMRF) (Rue et al., 2009). GMRFs are defined by a 

precision matrix with a sparse structure allowing inference to be performed in a 

computationally effective way. We linked the GF and GMRF through the 
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Stochastic Partial Differential Equations (SPDE) approach (Lindgren et al., 2011). 

The SPDE allowed us to find a GMRF, with local neighbourhood and sparse 

precision matrix (instead of spatiotemporal covariance function and the dense 

covariance matrix of a GF, respectively), that best represented the Matérn field. 

Further details can be found in Lindgren et al. (2011) and in Cameletti et al. 

(2013). 

 

We specified the large-scale component, .(. , . ), as a generalized linear mixed 

model (GLMM) with response from the Gaussian family.  Specifically, for each of 

the pollutants of interest (PM10, NO2, O3 and PM2.5) we specified two GLMMs: 

one for long-term exposure and the other for short-term exposure.  

 

Long-term exposure: 

 

.!,+ = D, +ED-F2GGH%IJ%-,!+

./

-0.
+ D.1IG%K%HLM! + D.2INMI! + #L_-!,3456 + !! + #"#$%ℎ 

Short-term exposure: 

 

.!,+ = D, +ED-F2GGH%IJ%-,!+

./

-0.

+ D.1%MPFMNI%HNM!+ + D.2NMGI%K3M	ℎHPKLK%-!+

+ D.7RKJL	#FMML!++D.8I%P2#FℎMNKS	FNM##HNM!+

+ D.9#2GIN	NILKI%K2J!+ + D#,IG%K%HLM! + D#.INMI! + #L_-!,:44; + !!

+ #'()	 
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where i denoted the air pollution monitoring station where the pollutant was 

observed (i=1,2,…143); t was the time unit (month in the case of long-term 

exposure, day in the case of short-term exposure); .!,+ = T(-!+), -!+ denoted the 

air pollutants of interest, PM10, NO2, O3 and PM2.5; F2GGH%IJ%-,!+ corresponded to 

the pollutant j measurements at station i and time unit t. Pollutants considered 

were, first, the pollutants of interest other than the pollutant for which the spatial 

prediction was made and, second, the rest of the pollutants (i.e., NO, SO2, CO, 

C6H6, H2S, Cl2, mercury, arsenic, nickel, cadmium and lead); INMI! was the area 

of the ABS i; #L_-!,., !+ and #.	denoted random effects. 

 

In the models, we included #L_-!,3456, #L_-!,:44; structured random effects, 

indexed on a standard deviation of the air pollutant that was being predicted, 

in the ABS i, during a particular year (2011 to 2018) and a particular week of 

2020 (weeks 1 to 37), respectively. We chose, a random walk of order one 

(rw1) as the structure of the random effect. In the integrated nested Laplace 

approximations (INLA) approach (Rue et al., 2009, 2017), the random walk of 

order 1 for the Gaussian vector x is constructed assuming independent 

increments (R INLA project, 2021a): 

 

∆V! = V! − V!=.		~	X(0, ,>#) 

 

Following the INLA approach, when, as in our case, the random effects are 

indexed on a continuous variable, they can be used as smoothers to model 

non-linear dependency on covariates in the linear predictor. 
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!+ denoted a random effect indexed on the air pollution monitoring station. This 

random effect was unstructured (independent and identically distributed random 

effects) and captured individual heterogeneity, that is to say, unobserved 

confounders specific to the station and invariant in time. 

 

We also included #-./01 and #234, structured random effects indexed on time, in 

order to control the temporal dependency associated to possible seasonal effects 

throughout the year (long-term exposure) and throughout the week (short-term 

exposure).  In this case, a model for seasonal variation with periodicity m (12 for 

long-term exposure, seven for short-term exposure), for the random vector (x1, 

x2,…,xn) (n>m) was obtained assuming that the sums were independent 

Gaussian with a precision Y. The density for x is derived from the n-m+1 

increments (R INLA project, 2021b): 

 

Y

?=@A.
# M

=B#∑(>%A>%&$A…A>%&'#$	)! 

2.3.- Inference 

Inferences for GMRFs were made following a Bayesian perspective, using the 

INLA approach (Rue et al., 2009, 2017). 

 

We started from the SPDE representation, which uses a finite element 

representation to define the Matérn field as a linear combination of basis 

functions defined on a triangulation of the domain (mesh, hereinafter). This 

consists of subdividing the domain into a set of non-intersecting triangles meeting 

in, at most, a common edge or corner (Lindgren et al., 2011; Cameletti et al., 

2013). 
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Then, instead of projecting the subsequent mean of the random field onto mesh 

nodes to target locations where we do not have observed data, we performed the 

spatial prediction of the random field jointly with the parameter estimation 

process. For this, we projected the mesh into those locations with no air pollutants 

observed and then we jointly computed the posterior means at all the locations 

(with observed and unobserved air pollutants measurements) (Krainski et al., 

2020). 

 

We separately estimated each year (long-term exposure) and each week (short-

term exposure) and then merged every year and every week. 

 

We used priors that penalize complexity (called PC priors). These priors are 

robust in the sense that they do not have an impact on the results, and 

furthermore, they have an epidemiological interpretation (Simpson et al., 2017). 

 

All analyses were carried out using the free software R (version 4.0.3), through 

the INLA package (Rue et al., 2009, 2017; R INLA project, 2021c). The maps 

were represented using the leaflet package (Cheng et al., 2019). 

 

2.4.- Measures of predictive performance 

The predictive performance of each model was assessed by cross-validation, 

considering a training set (2011 to 2018 for long-term exposure, weeks 1 to 36 - 

January 1 to September 8, 2020 -, for short-term exposure) and a test set (2019 
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for long-term exposure and weeks 37 - September 9 - to 48 - November 29, 2020-

for short-term exposure). 

 

The prediction accuracy was assessed by: 

 

- Mean absolute percentage error (MAPE) 

 

Z[\T =

1

X

EE^

-(#! , %) − -_(#! , %)
-_(#! , %)

^ ∗ 100

+!
 

 

where N was the total number of available observations in the test set; -(#! , %) 

were the pollutant measurements (at station i and time unit t) at the test set; and  

-_(#! , %) were the posterior means. 

 

- Root mean square error (RMSE) 

 

aZbT = c

1

X

EE4-(#! , %) − -_(#! , %)5
#

+!
 

 

- Correlation coefficient 

 

N =

∑ ∑ 4-(#! , %) − -(#F, %)eeeeeeeee
5+ 4-_(#! , %) − -_(#F, %)eeeeeeeee

5!

f∑ ∑ 4-(#! , %) − -(#F, %)eeeeeeeee
5

#
+! ∑ ∑ 4-_(#! , %) − -_(#F, %)eeeeeeeee

5

#
+! g

.
#
 

 

- Actual coverage of the 95% prediction intervals 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 7, 2021. ; https://doi.org/10.1101/2021.06.06.21258419doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.06.21258419


 19 

2.5.- Sensitivity analysis 

We conducted two sensitivity analyses. In the first place, we carried out a new 

cross-validation and, in the second place, we changed the spatiotemporal model. 

In both cases, we consider the spatial prediction of long-term exposure to NO2.  

 

As regards cross-validation, we considered, as training sets, five random 

samples from the monitoring stations in which NO2 was measured during the 

entire period 2011-2019. Specifically, we considered random samples of, 

approximately, 75% of the stations (58 out of a total of 77 stations), of 70% (55 

stations), of 50% (41 stations), of 45% (35 stations), and of 20% (18 stations). As 

a test set, we considered the rest of the stations (19, 22, 36, 42 and 59 remaining 

stations, respectively).  

 

Next, we calculated the measures’ prediction accuracy (explained previously). 

 

With respect to the spatiotemporal model above, we considered an independent 

in time Gaussian field (GF), following Camelleti et al. (2013) we assumed a 

spatiotemporal Gaussian field that changes in time according to an 

autoregressive of order one (AR(1)). 

 

Returning the measurement equation {2}: 

 

-(#! , %) = .(#! , %) + /(#! , %)   {2} 

 

the realization of the spatiotemporal process, /(. , . ), was specified as, 
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/(#! , %) = C/(#! , % − 1) + h(#! , %)   {4} 

 

where |C| < 1. 

 

Here, it was h(#! , %) what was assumed to be zero mean Gaussian and a Matérn 

covariance function: 

 

1234h(#! , %), h(#!
$
, %)5 =

%!
#"#$&(() 	(κ‖#! − #!

$
‖)

(
	Κ( 	(κ‖#! − #!

$
‖)   {5} 

 

In the addition, in the GLMM specification of the large-scale component, .(. , . ), 

in the linear predictor we included structured random effects indexed on year, 

#4536, in order to capture the long-term trend. 

 

.!,+ = D, +∑ D-F2GGH%IJ%-,!+
./
-0. + D.1IG%K%HLM! + D.2INMI! + #L_-!,3456 + !! +

#"#$%ℎ+ #4536 

 

With this analysis, our objective was to compare not only the predictive 

performance of the model {1-2}, {4-5} with the one specified above {1-3}, but, 

above all, to compare the computation time in the inference of both specifications. 

 

3.- Results 

Descriptive results are shown in Table 1. Regarding long-term exposure, we 

observed that, with the exception of O3, the daily averages of pollutants 

decreased in 2019 (PM2.5 22.39% less, NO2 12.88% less and PM10 8.48% less). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 7, 2021. ; https://doi.org/10.1101/2021.06.06.21258419doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.06.21258419


 21 

In contrast, the daily average of O3 increased by 3.97% in 2019 compared to 

2011-2018. With regard to short-term exposure, the levels of NO2 and of the PM10 

were higher from September 9 (week 37) (23.11% and 4.87%, respectively). 

Conversely, the levels of O3 and of PM2.5 (although in this case only measured in 

three stations) were lower than the levels before September 9 (19.34% and 

9.81%). When we excluded the lockdown (which took place in Spain from March 

14 - week 11- to June 21 - week 25 -, both 2020), the variation from September 

9 changed sign for PM10, it was 7.67% lower, they were moderated for NO2 (which 

was 3.64% higher) and O3 (12.48% lower), while they were increased in the case 

of PM2.5 (13.74% lower). 

 

The measures of predictive performance are shown in Table 2. With the 

exception of PM2.5, the results for long-term exposure were quite good. Achieved 

coverages of the 95% credibility intervals for predictions were greater than 90%, 

correlation coefficients were greater than 0.80, and MAPEs less than 10%. 

Furthermore, if Table 2 is compared with Table 1, it is observed that the reduction 

in the variability of the spatial prediction, measured between the ratio of the 

RMSE and the standard deviations of the pollutants observed, was, at most, one 

third of the standard deviations of the pollutants during the period 2011-2018 

(19.40% for NO2, 25.71% for O3 and 33.89% for PM10), again with the exception 

of PM2.5 (the RMSE in this case was 59.92% of the standard deviation in the 

period 2011-2018). Therefore, except for PM2.5, our method managed to 

significantly reduce the variability of the spatial prediction around fairly accurate 

predictions. Although quite good, note that, in relative terms, the results for PM10 

were somewhat worse than for gaseous pollutants (NO2 and O3).  
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The poor results obtained for PM2.5 are because of its smaller sample size. 

Although it is true that in the period as a whole up to 42 stations measured PM2.5, 

the year with the lowest number of active stations was 2018 (31 stations), with 

the rest of the years ranging between 33 and 35 active stations. No year fell below 

40 active stations for the rest of pollutants (the year with the lowest number of 

stations measuring PM10 was 2018 with 94 stations, while the other years ranged 

between 100 and 107 stations; in the cases of NO2 and O3 it was 2015 with 59 

and 44 stations, respectively, with the other years oscillating between 62 and 66, 

and 45 and 57, respectively). 

 

Regarding the short-term exposure, first, predictive performance was worse 

when we did not exclude the lockdown period (which took place in Spain from 

March 14 to June 21, 2020) than when we did. In fact, note that predictive 

performance measures were much better for gaseous pollutants (NO2 and O3). 

The results for the coarse particles, PM10, were quite poor (we did not interpret 

the results for PM2.5 as it was measured in only three stations). This was likely 

due to the lower number of stations where PM10 was measured (36 stations, 

versus 67 for NO2 and 50 for O3, see Table 1). The variability of the spatial 

prediction was reduced much less than in long-term exposure, especially for NO2. 

The RMSEs were between 33.83% for O3 and 43.49% for NO2, of the standard 

deviations of the pollutants (excluding lockdown). 

 

The results of the sensitivity analyses, when the number of stations in the training 

set was greater than 40 and when the spatiotemporal Gaussian field changed in 
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time according to an AR(1) (model {1-2}, {4-5}), were quite similar to the results 

for  the spatiotemporal process independent in time Gaussian field (model {1-3}) 

and all the stations were included in the training set (Table 3). 

 

When we varied the number of stations in the training set, but used every year 

(2011 to 2019), the predictive performance seemed to depend on the size of the 

sample. The more stations the training set had, the better the results, while 

dramatically deteriorating with a small sample size. In particular, the cut-off 

appears to be 40 stations. Below this, the predictive performance measures were 

poor. 

 

Although the predictive performance of the spatiotemporal Gaussian field model 

changed in time according to an AR (1) (model {1-2}, {4-5}) was very similar to 

that of the spatiotemporal process independent in time Gaussian field (model {1-

3}) (perhaps somewhat worse, in relative terms), the computation time was much 

longer. Using a 6-core Intel Core i9 (2.9 GHz 32 GB RAM), while the model 

inference {1-3} required on average 0.05 seconds per observation (a total of 569 

seconds on average), the model {1-2}, {4-5} required 0.354 seconds (a total of 

3,947 seconds), that is, seven times more computing time. 

 

The maps of the posterior means and the posterior standard deviations for 2019 

(in quintiles) of the spatiotemporal process independent in time Gaussian field 

(model {1-3}) for the long-term exposure of PM10, NO2 and O3 are shown in 

Figures 3. We decided not to represent the posterior means for PM2.5 because of 

its poor predictive performance. The spatial distributions of the subsequent 
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means of PM10 and NO2 were quite similar, although in the high levels of NO2, 

(fourth and fifth quintiles) there was somewhat more spatial variation. Note that, 

unlike PM10 and NO2, the lowest levels of O3 (first and second quintiles) occurred 

in the urban areas. As expected, the uncertainty, as measured by the posterior 

standard deviations, was, in general, higher in those areas with few (or no) 

monitoring stations. Note, however, that higher levels of air pollutants do not 

always coincide with higher standard deviations.  

 

4.- Discussion 

Our results were quite good in terms of predictive performance, at least for those 

pollutants that were observed in more than 40 collecting stations (PM10, NO2 and 

O3 in long-term exposure and NO2 and O3 in short-term exposure).  

 

The current coverage of the spatial predictions of these pollutants are in line with 

similar studies. Using the same model and the same data (PM10), but using two 

different methods for the inference, Camelleti et al. find coverage between 0.95 

and 0.97 (using MCMC) (Camelleti et al., 2011) and 0.897 (using INLA SPDE) 

(Camelleti et al., 2013). Mukhopadhyay and Sahu (2018) find coverage between 

0.91 and 0.92 for the spatial predictions for O3 (in our case, 0.89 for short-term 

exposure and 0.945 for long-term exposure), between 0.89 and 0.90 for PM10 (in 

our case, 0.917 for long-term exposure) and between 0.95 and 0.965 for NO2 (in 

our case, 0.905 for short-term exposure and 0.963 for long-term exposure). Note: 

we have preferred not to comment on the results in which we found poor 

predictive performance. Our coverage could also be comparable to those 
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provided by Pirani et al. (2013) for the spatial predictions for PM10 (between 0.87 

and 0.93), although it should be noted that these show the coverage at 90%.  

 

The correlation coefficients between the observed levels of air pollutants and the 

subsequent means of the spatial predictions were higher in our case than in 

Camelleti et al. (0.863 when the inferences were made with MCMC - Camelleti et 

al., 2011- and 0.702 when they were made with INLA SPDE - Camelleti et al., 

2013-, compared to 0.917 in our case), and than in Pirani et al. (2013) (between 

0.73 and 0.78), in both cases for PM10. However, they were somewhat lower than 

in Mukhopadhyay and Sahu (2018) (0.88-0.89 for PM10, 0.92-0.94 for NO2, and 

0.93-0.94 for O3). It should be said, nonetheless, that the number of observations 

in Mukhopadhyay and Sahu range between 56,625 (for PM10) and 100,138 (for 

NO2), while in our case we had 11,157 observations.  

 

The reduction in the variability of the spatial prediction, can only be compared 

with Mukhopadhyay and Sahu (2018), since they are the only ones who show 

these standard deviations. In this sense, both Mukhopadhyay and Sahu and 

ourselves achieved a similar reduction in the variability of the spatial prediction. 

 

Although good, the results of the predictive performance were less so for the 

spatial prediction of long-term exposure to PM10 (although it was being observed 

in the largest number of collecting stations, see Table 1) and for the short-term 

exposure for gaseous pollutants (NO2 and O3). 
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Regarding the spatial prediction of long-term exposure to PM10, we believe that 

it is a consequence of the location of the monitoring stations. The stations that 

measure PM10, although more abundant in urban areas, are also located in rural 

areas, while those that measure NO2 are located almost exclusively in urban 

areas. In the city of Barcelona, while 13% of NO2 is generated outside the 

municipality, it is 71% in the case of PM10 (Barcelona City Council, 2021; Saez et 

al., 2020). It is not unreasonable to suppose that these figures can be 

extrapolated to the entire Barcelona Metropolitan Area, which comprises 41.75% 

of the total population of Catalonia and where the majority of PM10 and NO2 

monitoring stations are located. In other words, while NO2 monitoring stations 

measured almost all NO2 pollution, PM10 monitoring stations did not collect all 

PM10 pollution data. This could also explain why the posterior means of the PM10 

predictions exhibited less spatial variability than the NO2 predictions (Figures 3a 

and 3b). 

 

With regard to the spatial predictions of short-term exposure, the reduction in the 

number of monitoring stations during 2020 could have led to a deterioration in the 

predictive performance. However, we believe it could also be due to the data 

behaviour during 2020. As a consequence of the lockdown to flatten the COVID-

19 pandemic curve, mobility was greatly reduced in 2020.  Specifically, mobility 

was reduced by 40% on average, compared to pre-COVID-19 levels, during the 

lockdown and did not fully recover in the September-November 2020 period 

(being 5 to 15% lower, depending on the area of Catalonia [26]). We are sure that 

this anomalous behaviour would have influenced the predictive performance of 

the spatial predictions of short-term exposure.  
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The predictive performance of our model depends on the number of stations 

where pollutants are measured. We have found that with less than 40 stations, 

probably spread throughout the territory (although not necessarily 

homogeneously), the predictive performance deteriorates considerably.  

 

Our method is quite similar to that of Camelleti et al. (2013). However, as we 

show with the sensitivity analysis, our method, in which we perform the inference 

year by year (or week by week) and then merge the subsequent ones, has a 

much shorter computation time, in addition to somewhat better results, even for 

such an atypical year as 2020. 

 

Nevertheless, we are convinced that our results might not be as good if the spatial 

and temporal dimensions were dependent and not separable, that is, if the spatial 

dependence varied over time. Fortunately, the spatial dependence of air 

pollutants does not vary over time. Even during 2020, although air pollution levels 

decreased as a consequence of the reduction in mobility, the spatial dependence 

was more or less similar to previous years. For spatial dependence to vary over 

time, major changes in infrastructures or, likewise, lasting limitations in mobility 

that were not homogeneous throughout the territory, have to be produced. Of 

course, other types of spatiotemporal data could imply other results. 

 

5.- Conclusion 

In this work, we have shown a hierarchical Bayesian spatiotemporal model that 

has allowed us to make fairly accurate spatial predictions with a low 
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computational cost. Our model provides predictions of both long-term and short-

term exposure. The only requirements of the method that we propose lie in a 

minimum number of stations being distributed throughout the territory where the 

prediction is to be made and that the spatial and temporal dimensions are either 

independent or separable. 
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Table 1.- Description of the air pollutants. 
 

 Long-term exposure Short-term exposure 
 Number 

stations 
2011-2018 2019 Number 

stations 
Week 1-36, 2020 Week 1-10 and 26-36  

(excluding lockdown), 2020 
Week 37-48, 2020 

PM10 (μm/m3) 122   36    
   mean (sd)  23.00 (7.79) 21.05 (6.37)  19.29 (9.85) 21.91 (10.96) 20.23 (11.34) 
   median [Q1-Q3]  22.32 [18.10-27.15] 20.68 [16.67-25.37]  17.83 [13.13-23.42] 20.29 [15.30-26.21] 18.08 [12.71-25.42] 
NO2 (μm/m3) 77   67    
   mean (sd)  25.00 (15.10) 21.78 (12.76)  15.49 (12.04) 18.40 (13.36) 19.07 (12.98) 
   median [Q1-Q3]  23.59 [12.87-35.61] 20.92 [11.59-30-61]  12.25 [6.54-21.46] 15.21 [7.88-26.46] 17.11 [8.71-28.13] 
O3 (μm/m3) 62   50    
   mean (sd)  53.64 (20.56) 55.77 (20.22)  55.23 (19.76) 50.90 (21.26) 44,55 (19.40) 
   median [Q1-Q3]  55.33 [37.62-68.86] 57.47 [39.60-70.15]  56.67 [43.92-68.00] 53.27 [36.58-64.79] 43.92 [30.25-58.42] 
PM2.5 (μm/m3) 42   3    
   mean (sd)  13.98 (5.12) 10.85 (2.91)  11.42 (7.54) 11.94 (8.44) 10.30 (6.58) 
   median [Q1-Q3]  13.33 [10.47-16.75] 10.48 [9.86-11.57  9.33 [5.86-14.51] 9.33 [5.66-15.34] 9.13 [5.45-14.02] 
        
Number of stations 143   78    

 
 
Daily averages 
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Table 2.- Measures of predictive performance. Spatiotemporal process 

independent in time Gaussian field 

 

Long-term exposure 
 

 MAPE RMSE Correlation Coverage 
PM10  7.429% 2.640 0.838 0.917 
NO2  4.345% 2.930 0.937 0.973 
O3  6.795% 5.287 0.916 0.945 
PM2.5 16.037% 3.068 0.696 0.750 

 
Short-term exposure – Training set Weeks 1-37 
 

 MAPE RMSE Correlation Coverage 
PM10 16.373% 6,582 0.396 0.445 
NO2 17.274% 8.020 0.796 0.849 
O3 20.604% 9.711 0.726 0.837 
PM2.5 49.897% 6.366 0.398 0.081 

 
 
Short-term exposure – Training set Weeks 1-10 and 26-36 (excluding 

lockdown) 

 
 MAPE RMSE Correlation Coverage 
PM10 14.412% 6.091 0.462 0.493 
NO2   7.521% 5.811 0.894 0.905 
O3   9.233% 7.192 0.853 0.890 
PM2.5 39.936% 5.589 0.398 0.081 

 
 
MAPE: Mean absolute percentage error  

RMSE: Root mean square error 

Correlation: Correlation coefficient 

Coverage: Actual coverage of the 95% prediction credibility intervals 
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Table 3.- Sensitivity analyses. Measures of predictive performance 
 
NO2. Long-term exposure 2011-2019.  
 
Total of active monitoring stations in the period: 77 
 
Spatiotemporal process independent in time Gaussian field 
 

 MAPE RMSE Correlation Coverage 
Training set 58 monitoring stations (75%)  4.973%   3.205 0.930 0.963 
Training set 55 monitoring stations (70%)  5.902%   6.464 0.851 0.925 
Training set 41 monitoring stations (50%)  6.072%   7.201 0.786 0.870 
Training set 35 monitoring stations (45%)  8.020%   8.088 0.776 0.633 
Training set 18 monitoring stations (20%)  8.806% 10.159 0.609 0.590 

 
MAPE: Mean absolute percentage error  

RMSE: Root mean square error 

Correlation: Correlation coefficient 

Coverage: Actual coverage of the 95% prediction credibility intervals 

 
Spatiotemporal Gaussian field that changed in time according to an 

autoregressive of order one (AR(1)) 

 
Long-term exposure 
 

 MAPE RMSE Correlation Coverage 
NO2  8.843% 3.388 0.957 0.958 
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Figure 1.- Location of Catalonia (Spain).  
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Figure 2.- Distribution in the territory of Catalonia (Spain), of the air pollution monitoring stations, according to where air 

pollutants (PM10, NO2, O3 and PM2.5) are measured.  
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Figure 3a.- Posterior mean and posterior standard deviation of PM10 for 2019. Spatiotemporal process 

independent in time Gaussian field  
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Figure 3b.- Posterior mean and posterior standard deviation of NO2 for 2019. Spatiotemporal process 

independent in time Gaussian field  
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Figure 3c.- Posterior mean and posterior standard deviation of O3 for 2019. Spatiotemporal process 

independent in time Gaussian field  

 
                                                                                                         

   

 

 
 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 7, 2021. ; https://doi.org/10.1101/2021.06.06.21258419doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.06.21258419

