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Abstract

Alzheimer’s Disease (AD), the sixth leading cause of death in the US, and cardiovascular disease
(CVD), the first leading cause of death in the US, are frequently associated. Past studies
hypothesize that amyloid deposits damage organs, causing this association. Examining how
vascular factors can influence AD pathogenesis can help in understanding the link between the
blood to the brain, which can provide alternative paths of exploration for disease treatment. This
study analyzes gene expression and shared biological processes between AD and CVD,
specifically myocardial infarction and heart failure, via bioinformatic approaches and published
datasets from the Gene Expression Omnibus (GEO). First, 73 differentially expressed genes
(DEGs) were identified among four datasets using blood samples from AD and CVD patients.
Panther’s Gene Ontology Analysis validated several biological processes such as xylulose
biosynthetic process and toll-like receptor TLR1:TLR2 signaling pathway along with molecular
functions, cellular components, and pathways to be significantly enriched in the list of 73 DEGs.
Analysis of protein-protein interactions and the associated gene network indicated that from the
list of 73 DEGs, only six (MAPK14, TLR2, HCK, GRB2, PRKCD, PTPN6) had eight or more
degrees. Next, those six genes were identified in a normalized dataset containing different brain
regions of AD and non-AD patients. Two-sample t-tests for differences in mean showed
statistically significant differences in GRB2 and PRKCD, supporting a blood-brain relationship
in the association between AD and CVD. This study can help in developing new medications to
target AD and CVD susceptible genes.
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https://doi.org/10.1101/2021.06.15.21258992
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.06.15.21258992; this version posted June 18, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Table of Contents

Introduction 2
Alzheimer’s Disease (AD) Background 2
Cardiovascular Disease (CVD) Background 2
CVD and AD Association 3
Research Goals 3

Materials and Methods 3
Bioinformatics Resources Used 3
Data Collection 4

Results 6
Blood Analysis 6
Brain Analysis 10

Discussion 13

Limitations 14

Future Directions 15

Conclusions 15

Acknowledgments 15

References 15

Appendix 18


https://doi.org/10.1101/2021.06.15.21258992
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.06.15.21258992; this version posted June 18, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Introduction
Alzheimer’s Disease (AD) Background

Over 5 million people live with AD in the U.S. in 2020 making it the 6th leading cause of
death in the U.S. Even though the rate of mortality with AD is higher than that of breast cancer
and prostate cancer combined, the amount of AD research is minimal compared to that of cancer
research and other diseases [1]. The symptoms associated with AD are memory loss, confusion,
difficulty completing familiar tasks, and inability to understand basic images and words [2].
Current researchers have discovered that the accumulation of proteins like beta-amyloid and tau
in neural tissue has been the root cause of the disease. There are many genes associated with AD
such as the amyloid precursor protein (APP), apolipoprotein (APOE), and phospholipase D3
(PLD3) [3].

Studies conducted with pluripotent stem cells and clustered regularly interspaced short
palindromic repeats (CRISPR) have showcased a strong correlation between some genes and
late-onset AD [4]. For instance, the apolipoprotein (APOE) gene, which functions in the
transport of brain cholesterol and promotion of lipoprotein clearance from circulation, has been
heavily studied recently. It has three alleles: E2, E3, and E4. The E2 allele is considered
protective and has a worldwide frequency of 4.2%, while E3 is the most common allele with a
frequency of 77.9%. Finally, the E4 allele has been found to be the strongest risk factor
associated with AD with a 13.7% worldwide frequency but a ~40% frequency with patients who
have AD. Since identifying the risk of the development of AD-related to APOE4, researchers
have studied a lot about the gene’s function, structure, and sequence. All three alleles have one or
two different amino acid substitutions. For instance, between E3 and E4, the amino acid
difference lies in position 112 where E3 has cysteine and E4 has arginine [5]. Infants that carry
the APOE4 gene have been found to have less gray matter than normal infants. Less gray matter
typically translates to limited communication between neurons and other cells [6].

Cardiovascular Disease (CVD) Background

CVD or heart disease is the leading cause of death in the U.S. with about 655,000 people
dying from CVD every year, costing roughly $219 billion in terms of healthcare services,
medicines, and lost productivity due to death. CVD includes coronary heart disease (CAD), heart
attack (also called myocardial infarction), heart failure, stroke, atherosclerosis, and others [7].
For many of these diseases, DNA inheritance plays a role in its pathogenesis. Many studies have
established this, for instance, Lloyd-Jones et al concluded that parents who have CVD increase
the risk of it inheriting to their offspring by 3 times [§].

The two primary types of cardiovascular disease that this study focuses on are myocardial
infarction (MI) and heart failure. MI occurs when blood flow to the heart is blocked either from
buildup of fat, cholesterol, or other substances in coronary arteries [9]. Every year in the U.S.
about 805,000 Americans have heart attacks [7]. Heart failure occurs when heart muscles don’t
pump as much blood as needed [10]. About 6.2 million adults in the U.S. have heart failure [11].
Several CVDs have common risk factors such as age, obesity, tobacco and drug usage, and
stress. The most notable risk factor in relation to this study is family history.

One significant gene studied in the past and has shown a link with CVD is low-density
lipoprotein (LDL), which is a major cholesterol-carrying lipoprotein [12]. A deficit of LDL
receptors and transport promotes cholesterol absorption and LDL synthesis, thus increasing the
onset of vascular pathologies. In a study focused on MI, Yamada et. al. found a statistically
significant association of specific single-nucleotide polymorphisms (SNPs) in the connexin 37
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gene in men and the plasminogen-activator inhibitor type 1 gene and the stromelysin-1 gene in
women. The SNPs analyzed may signal a correlation of susceptibility to MI in those patients
[13]. Another study on congestive heart failure in African Americans suggests that the presence
of both the a2c-adrenergic receptor, associated with norepinephrine release at cardiac
sympathetic-nerve synapses, and 1-adrenergic receptor, associated with increased sensitivity of
cardiomyocytes to norepinephrine, increase heart failure risk [14].

CVD and AD Association

Past studies have demonstrated a significant link between CVD and AD. For instance,
research with AD autopsies showed an association between microvascular ischemic lesions and
Alzheimer lesions [15]. Another relevant association that may indicate a relationship between
CVD and AD is the one between carotid artery wall thickness, ankle-arm index, and AD which
was studied in the prospective Cardiovascular Health Study [16]. This may be largely due to the
hypothesis that the underlying mechanisms are hypoperfusion and emboli. This association
between CVD and AD is also possibly related to the fact that both diseases involve amyloid
deposits [17]. Other studies regarding the relationship between CVD and AD hypothesize that
the connection maybe due to the common risk factors, or that CVD indirectly damages the brain
and thus influences neurodegeneration, or that CVD directly affects AD development due to
neuron death or accumulation of amyloid plaques, similar to the hypothesis of the first study
mentioned [18]. More recently, beta-amyloid aggregations, a strong indicator of AD, have been
found in the hearts of patients with idiopathic dilated cardiomyopathy. This finding further
encourages a genomic analysis for the link between CVD and AD [19]. Because both CVD and
AD are linked with genetics, an integrated analysis can help to further explore the connections
between the brain and heart by studying the correlation between CVD and AD.

Research Goals

The goal of this project is to identify the biological processes, molecular functions, and
cellular components of common genes among AD and CVD to understand why these diseases
overlap in many patients. Another goal is to understand the relationship between AD and CVD to
allow for future developments towards treating AD by managing CVD.

Materials and Methods
Bioinformatics Resources Used

This study primarily consists of bioinformatic approaches using published datasets,
software, and tools. To comprehensively analyze the association between AD and CVD, two
phases of research were conducted: 1) in the blood and 2) in the brain. The data for this study
were retrieved from the National Center for Biotechnology Information’s (NCBI) Gene
Expression Omnibus (GEO) database, which contains gene expression datasets published for the
public to use. GEO’s analytical tool GEO2R was used to obtain quantitative data to filter out
statistically significant genes to be further analyzed in the study. Microsoft Excel was used to
screen out non-statistically significant genes and sort overexpressed and underexpressed genes
together in sheets. The Search Tool for the Retrieval of Interacting Proteins (STRING), a
database of known and predicted protein-protein interactions obtained from genomic context
predictions, high throughput lab experiments, co-expression, automated textmining, and previous
knowledge in database, was used in order to better understand the relationships between genes
and analyze their active roles on the risk of CVD and AD. STRING also calculates statistically
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significant Gene Ontology processes and pathways. Cytoscape, a software for visualizing
complex networks, was used to obtain specific data on the STRING network (degrees, clustering
coefficient). The gene ontology (GO) resource powered by Panther displayed the false discovery
rate (FDR), a measure of how many expected false discoveries there are (rate of type I errors),
and significant biological processes, allowing for better analysis. The SOURCE tool, a search
tool created from the compilation and collection of genomic databases like UniGene, Swiss-Prot,
OMIM, and Entrez Gene that captures the genetics and molecular biology of genes of several
organisms into a GeneReport, was used to obtain detailed information on individual genes.

All tables were generated by Excel. Figures illustrating protein-protein interactions were
obtained from String DB. To identify the common genes among different datasets, Venny 2.1, an
interactive tool for comparing lists with Venn diagrams powered by Bioinformatics for Genomics
and Proteomics (BioinfoGP), was used. JMP Pro 12, a software for data analysis, was used to
obtain powerful statistical analysis of the brain dataset. The graphs and figures provided by JMP
Pro 12 of the brain dataset analysis were copied into this paper.

For gene query, the GEO dataset browser’s data analysis tool to find genes was used.
After the genes of interest are identified from a specific dataset, the graph and gene expression
table for the experimental and control units from the dataset were retrieved to analyze. The data
was then divided based on brain region (hippocampus, frontal cortex, temporal cortex) and AD
or non-AD patients. Afterward, a 2-sample t-test for difference in mean was conducted on JIMP
Pro 12 to determine statistically significant differentially expressed genes in the brain regions.

Data Collection

For analysis of the blood, a total of seven datasets, four CVD and three AD datasets, were
retrieved from the GEO database by using search terms like “Alzheimer’s Disease,” “dementia”
combined with “cardiovascular disease,” “heart disease,” “coronary artery disease,” “myocardial
infarction,” and “heart failure.” All datasets consist of only homo sapiens, blood samples,
expression profiling by array, and display a normal distribution without outliers and/or have
more than 30 samples.

The two datasets chosen for analysis of AD blood were ai) GSE63060, aii) GSE63061.
Dataset ai) which was submitted November 6, 2014, and updated on May 3, 2019, is by Angela
Hodges and Robert Howard. This dataset contains 329 samples: 145 AD patients, 80 mild
cognitive impairment (MCI) patients, and 104 age and gender-matched controls. For consistency,
the MCI patients were omitted from the analysis. Dataset aii) is also by Angela Hodges and
Robert Howard, submitted November 6, 2014, and updated on May 3, 2019, since this is batch
two of their study. This dataset contains 388 samples: 139 AD patients, 109 MCI patients, 3
borderline MCI patients, 134 controls, and 3 miscellaneous samples. For consistency, only the
AD and controls were used in this analysis.

The two datasets chosen for analysis of CVD blood were bi) GSE48060, and bii)
GSE9128. Dataset bi) which was submitted June 18, 2013, and updated March 25, 2019, is by
Rahul Suresh et. al. This dataset contains 52 samples: 21 control samples and 31 experimental
MI samples. Dataset bii) which was submitted September 21, 2007, and updated August 10,
2018, is by Monica Napolitano and Maurizio C Capogrossi. This dataset contains 11 samples: 3
control samples and 8 experimental heart failure samples.
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A Serles_; Disease of Interest Control = Experimental Author Total Samples
ccession
GSEB63060 Alzheimer's Disease 104 145 Hodges A, Howard R 329
GSE63061 Alzheimer's Disease 134 139 Hodges A, Howard R 388
Suresh R, Li X, Chiriac A, Goel
GSE48060 Myocardial Infarction 21 31 K, Terzic A, Perez-Terzic C, 52
Nelson TJ
GSE9128 Heart Failure 3 8 Napolitano M, Capogrossi MC 11

Table 1. Dataset information for GSE63060, GSE63061, GSE48060, and GSE9128. In datasets
GSE63060 and GSE6306, the control and experimental samples don’t add up to the total samples
because they included mild cognitive impairment patients that were omitted from this study.

After the datasets were identified, GEO’s analytical tool GEO2R was used to define the
groups in each dataset into control and experimental, ensuring that the experimental groups were
defined first then the control so that the logFC numbers were accurate. Afterward, any genes that
had a p-value > 0.05 were omitted from the study because they weren’t statistically significant.
Afterward, the genes that were statistically significant were sorted into overexpressed and
underexpressed genes based on logFC values. Genes with logFC values > 0 were classified as
overexpressed and genes with logFC values < 0 were classified as underexpressed. After the
underexpressed and overexpressed genes were labeled, underexpressed genes in all 4 datasets
(GSE63060, GSE63061, GSE48060, GSE9128) were compared to identify the common
underexpressed genes and the same process was done with the overexpressed genes.

The list of the common 73 underexpressed and overexpressed genes was entered into
STRING which was able to identify all 73 of the inputted genes. STRING constructed a network
of the protein-protein interactions of the genes. The settings were changed so that disconnected
nodes were hidden from the network in order to improve clarity. The minimum required
interaction score was medium confidence (0.400).

The STRING network was then sent to Cytoscape for deeper analysis. The Network
Analyzer tool in Cytoscape calculated metrics such as node degree and clustering coefficient that
STRING did not have. Genes that had a degree (the number of genes connected to a certain
gene) of eight or larger were considered genes of interest as they showed significant interactions
with other genes. The list of the 73 underexpressed and overexpressed genes was then entered
into the Gene Ontology (GO) enrichment analysis. The settings of GO were set to GO biological
process complete, Fisher’s Exact, and Calculate False Discovery Rate (FDR). A list of biological
processes and pie charts illustrating the details were retrieved for further analysis.

For analysis of the brain, the dataset chosen was GSE36980 titled “Expression data by
post mortem Alzheimer’s Disease brains” by Yusaku Nakabeppu et. al. which was submitted
April 2, 2012, and updated September 6, 2020. The study used an interspecies comparative
microarray analysis using RNAs prepared from postmortem human brain tissues donated for the
Hisayama study, which was a population-based prospective cohort study [20]. This dataset
contains 80 samples: 15 samples of frontal cortex (FC) with AD, 18 samples of FC non-AD, 8
samples of hippocampus (HI) with AD, 10 samples of HI non-AD, 10 samples of temporal
cortex (TC) AD, and 19 samples TC non-AD. All brain regions originally contained 33,298
genes, but after the non-statistically significant data was filtered out, there were only 8441 in the
hippocampus, 3828 in the frontal cortex, and 4834 in the temporal cortex.
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Figure 1. Boxplot detailing dataset analysis of GSE36980 that shows a normal distribution with
no strong outliers or skewness. Figure retrieved from GEO DataSet Browser’s data analysis tool
for experiment design and value distribution.

Results
Blood Analysis

After filtering out the non-statistically significant genes, there were a total of 73 shared
genes (Appendix) from the four datasets (GSE63060, GSE63061, GSE48060, GSE9128) used to
analyze blood from AD and CVD patients. The list of 73 shared genes among all 4 datasets
consisted of 31 shared underexpressed genes and 42 shared overexpressed genes. There were
also 367 underexpressed genes and 432 overexpressed genes shared in at least 3 datasets. For
clarity, only the list of 73 shared genes in all 4 datasets was studied in this blood analysis.

GSE63061 GSE9%128 GSE63061 GSE9128

494

462
(9.2%) (8.6%)
965
(18%)
’ 1700
46 (3L7%)
(0.9%)
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Figure 2. Venn diagrams of common genes in AD and CVD made by Venny 2.1. 1) on the left
shows the 42 common overexpressed genes in all 4 datasets. ii) on the right shows the 31
common underexpressed genes in all 4 datasets.

GSE48060

The STRING analysis of the final gene list showed 84 edges in comparison to the
expected 50 edges, which meant that the network had significantly more interactions than
expected for a random set of genes of similar size. This signifies that these genes are likely to be
partially connected as a group. Functional enrichment in the network showed xylulose
biosynthetic process, cellular response to triacyl bacterial lipopeptide, and toll-like receptor
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TLR1:TLR2 signaling pathway as the top three out of 159 biological processes. The top three
enriched molecular functions out of twelve in the network were transferase activity, scavenger
receptor binding, and N-formyl peptide receptor activity. The top three cellular components
enriched out of 22 were ficolin-1-rich granule membrane, ficolin-1-rich granule, and
ficolin-1-rich granule lumen.

Term Description Otg:rfl‘:d Bacorounc Strength Dils:(?(l)?ery Maiens Erolemnsin
Gene Count the Network
Count Rate
Biological Processes
xylulose biosynthetic process 2 2 243 0.0041 TALDO1,TKT
toll-llkg receptor TLRI1:TLR2 ) 3 235 0.0054 TLR2.CD14
signaling pathway
cellular response to t}'lacyl ) 3 595 0.0054 TLR2.CD14
bacterial lipopeptide
Molecular Function
Nttty pentice recepion 2 4 213 00240 FPR2,FPRI
activity
scavenger receptor binding 2 4 2.13 0.0240 FPR2,FPR1
transferase activity,
transferring aldehyde or 2 4 2.13 0.0240 TALDOI1, TKT
ketonic groups
Cellular Component
sk S 3 61 1.12 00214  SIRPA FPR2.FPRI
membrane
MAPK 14,GNS,
ficolin-1-rich granule 9 186 1.11 1.34E-05 ?%E;’l;lf@f ’
PSMD6,FPR2 FPR 1
MAPK14,GNS,
ficolin-1-rich granule lumen 6 125 1.11 0.00057 PSMBI1,HSPAG6,

YPELS, PSMD6

Table 2. Functional enrichments in biological processes, molecular function, and cellular
components retrieved from STRING ranked by strength, which is measured by log10
(observed/expected), showing how large the enrichment factor is.

The network was then sent to Cytoscape which calculated the degree (the number of
genes connected to the gene of interest), clustering coefficient (a measure of how clustered nodes
are around a single node with 1 being the densest and 0 being least dense), topological
coefficient (a measure of how many shared neighbors are around a node with more than 1
neighbor), and expression of the gene in different tissues such as blood, heart, and nervous
system [21]. Cytoscape found that the MAPK 14 gene was the most connected node in the
network with 14 degrees. From a SOURCE search, we found that MAPK 14 (mitogen-activated
protein kinase 14) is involved in proliferation, differentiation, transcription regulation, and
development and activated by various environmental stresses and proinflammatory cytokines.
MAPK14 was overexpressed in all datasets.
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Figure 3. Diagram of the protein interactions between 73 differentially expressed genes retrieved
from STRING. The nodes represent proteins and the edges represent the protein-protein
interaction. The color of the nodes has no significant meaning but the colors of the edges
represent how the interaction was determined (for example, blue is from curated databases, and
pink is experimentally determined). The bottom left of the diagram shows a concentration of
interactions, especially around MAPK 14. Disconnected nodes, or genes with no interactions,
were removed from the diagram for clarity.
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Gene of Blood Heart hslervtous Clustering Topological o
Interest Tissue Tissue 'I)!i:seun; Coefficient Coefficient egree

MAPK14 4623546 2.990975 4.460733 0.1538461538 0.1942857143 14

TLR2 4.745894 3.101069 2.934081 0.3111111111 0.2636363636 10
HCK 3.606493 2.126198 4.459929 0.4418604651 0.28 9
GRB2 4643225 3.082949 4.974375 0.2777777778 0.2393162393 9
PRKCD  4.634836 2684684 4.568752 0.25 0.2608695652 8
PTPNG6 4807801 1.899331 2.404745 0.1071428571 0.2142857143 8

Table 3. Analysis from Cytoscape of the genes of interest ranked by degree.

The gene list was then entered into Gene Ontology (GO) enrichment analysis (powered
by Panther), which identified statistically significant biological processes, including 9 processes
that had a fold enrichment >100: xylulose biosynthetic process, cellular response to triacyl
bacterial lipopeptide, response to triacyl bacterial lipopeptide, pentose biosynthetic process,
cellular response to diacyl bacterial lipopeptide, response to diacyl bacterial lipopeptide, toll-like
receptor TLR6:TLR2 signaling pathway, toll-like receptor TLR1:TLR2 signaling pathway, and
xylulose metabolic process. Of these biological processes, the xylulose biosynthetic process had
the smallest p-value (7.76E-05) and smallest FDR (1.85E-02). Enrichment is calculated by
taking the number of genes in the list that belong to a specific biological process and dividing
them by the expected number of genes that would belong if taken from a random sample of
genes. A higher enrichment value indicates that a greater amount of genes in a list are involved
in a certain GO process. Cellular response to bacterial lipopeptide, response to bacterial
lipopeptide, and pentose-phosphate shunt, non-oxidative branch were also enriched.

The enriched biological processes shown by GO were largely in agreement with what
was found by STRING: xylulose biosynthetic process, toll-like receptor TLR1:TLR2, and
cellular response to triacyl bacterial lipopeptide. Panther showed no statistically significant
enriched molecular functions; however, it did show 15 enriched cellular components, which were
also largely in agreement with what was found by STRING with ficolin-1-rich granule and
ficolin-1-rich granule lumen having a fold enrichment over 13. Panther GO enrichment analysis
also showed enriched pathways, which is helpful in understanding what the genes are involved in
in the body. The most enriched reactome pathways were Insulin effects increased synthesis of
Xylulose-5-Phosphate, Formyl peptide receptors bind formyl peptides and many other ligands,
MyD88 deficiency (TLR2/4). The most enriched panther pathways were Pentose phosphate
pathway, B cell activation, Ras Pathway.
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Termi Dascrivtion Genesin Expected Fold Raw P- Dizztlii
P List Genes @ Enrichment  value Y
Rate
Biologial Processes
xylulose biosynthetic process 2 .01 > 100 7.76E-05 1.85E-02
cellular response to triacyl bacterial 5 01 > 100 1 29E-04 2 45E-02
lipopeptide ' ' '
response to triacyl bacterial lipopeptide 2 .01 > 100 1.29E-04 2.42E-02
pentose biosynthetic process 2 .01 > 100 1.93E-04 3.04E-02
cellular response to diacyl bacterial > 01 > 100 1 93E-04 3.01E-02
lipopeptide i ’ :
response to diacyl bacterial lipopeptide 2 .01 > 100 1.93E-04 2.98E-02
toll-like receptor TLR6:TLR2 signaling > 01 > 100 1 93E-04 2 96E-02
pathway ' ' '
toll-like receptor TLR1:TLR2 signaling 5 01 > 100 1 93E-04 2 93E-02
pathway ' ' '
xylulose metabolic process 2 .01 > 100 1.93E-04 2.90E-02
Cellular Component
ficolin-1-rich granule 9 0.67 13.36 3.46E-08 3.45E-05
ficolin-1-rich granule lumen 6 0.45 13.29 7.78E-06 3.88E-03
tertiary granule 5 0.6 8.37 3.74E-04 4.98E-02
Reactome Pathways
Insulin effects increased synthesis of % :
Xylulose<5-Phiosshate 2 0.01 > 100 7.76E-05 1.11E-02
Formyl peptide receptors bind formyl 5 0.03 68 65 5 74E-04 3.36E-02
peptides and many other ligands ' ' ' '
MyD&88 deficiency (TLR2/4) 2 0.04 54.92 8.37E-04 4.67E-02
Panther Pathways
Pentose phosphate pathway 2 0.03 61.02 7.00E-04 1.17E-02
B cell activation 4 0.25 15.69 1.52E-04 6.34E-03
Ras Pathway 4 0.27 15.05 1.77E-04 5.91E-03

Table 4. Panther Classification System’s GO enrichment analysis of various biological processes,
cellular components, rectome and panther pathways ranked by fold enrichment.

Brain Analysis

Six genes of interest identified by Cytoscape (MAPK14, TLR2, HCK, GRB2, PRKCD,
PTPNG6), and the associated data were extracted in the dataset GSE36980 using NCBI’s dataset
browser and data analysis tools. The gene expression levels displayed in the tables provided in
the browser were copied into Excel and were divided into six groups within each gene (AD HI,
non-AD HI, AD FC, non-AD FC, AD TC, non-AD TC) in order to examine the pair differences
between AD and non-AD by brain region. The mean and standard deviation for all pair groups
within each gene were calculated using 2-sample t-tests for difference in mean between AD and
non-AD units. The null hypothesis was that there was no difference between the AD mean and
the non-AD mean. The alternate hypothesis was that there was a significant difference between
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the AD mean and the non-AD mean. If the p-value was less than 0.05, then the result was
statistically significant. The genes that passed the t-test were GRB2 and PRKCD.

Firstly, the raw data from each group of GRB2 and PRKCD are imported into JMP for
overall variability analysis shown as in Figure 4. It indicates that the overall gene expression of
GRB2 is stronger than that of PRKCD. The gene expression for GRB2 shows FC< HI < TC for
each pair of AD and non-AD. The FC<HI<TC trend is seen within the PRKCD gene as well.
AD_HI is significantly smaller than non-AD_HI for PRKCD. AD is lower than non-AD for all
groups (FC, HI, and TC) and for both genes.

Subgroup
® AD_FC

:
10 l 4 { - :ig:?é

S 95 ‘I- ® non_AD_HI
g . — ® non-AD_FC
g 9 | ® non-AD_HI
@ o TR~ non-AD_TC
g 85 -
g
15
TTETE R E 2R 2 e L E 2 E ¢
=, i ( | i = | | . | Subgroup
g 2/ 9/2|¢9 9/ ¢/ 9 9 ¢|9|¢2
& e = c E c
g e 2 2 e 2
FC HI TC FC - TC Group
GRB2 PRKCD Gene

Figure 4. Figure showing the individual data points for the six groups, which were compared by
first gene (GRB2, PRKCD), then brain region (FC, HI, TC), then the experimental group (AD,
non-AD). The blue line compares the experimental pairs by mean.

Secondly, the means, standard deviation, standard error mean, lower 95% of the data, and
upper 95% of the data along with the two-sample t-tests, such as p-value, degrees of freedom
(df), test statistic, difference, and density curve for each subgroup are calculated for further
analysis. As shown in Figure 5 to Figure 7, there is a statistically significant difference for FC
and HI subgroups between AD and non-AD pairs, which is consistent for GRB2 and PRKCD
genes. The TC also shows a statistically significant difference in PRKCD but not GRB2.
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Figure 5. GRB2 Gene Expression in a) on the left in the HI and b) on the right in the FC. P<0.05
indicates a significant difference between AD and non-AD pairs for HI and FC subgroups. Upper
CL Dif and Lower CL Dif give the 95% CI for the true difference. Note that the difference in the

HI is visibly larger than the FC.

Based on SOURCE, GRB2 is a growth factor receptor-bound protein 2, which has two
SH3 domains that direct complex formation with proline-rich regions of other proteins, and also
has SH2 domain that binds tyrosine phosphorylated sequences.
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Figure 6. PRKCD Gene Expression a) on the left in the HI and b) on the right in the FC. Upper
CL Dif and Lower CL Dif give the 95% CI for the true difference. Note that the difference in the
HI is visibly larger than the FC.
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Figure 7. PRKCD gene expression in the TC a) on the left including all data points and b) on the
right excluding outliers. Before modification of data, the data was already statistically
significant, but after excluding outliers, the p-value was less than 0.0001.

Based on SOURCE, PRKCD is protein kinase C delta, which is a part of the protein
kinase C (PKC) family and is involved in B cell signaling and in the regulation of growth,
apoptosis, and differentiation of a variety of cell types.

Discussion

AD is a neurodegenerative disease that involves tau tangles and amyloid plaques in the
brain. On the other hand, the blood and heart play a significant role in CVD development. There
is a genetic predisposition in both diseases as well as similar risk factors. Analyzing the
blood-brain relationship could be a potential path for treatment of AD by preventing CVD.

Two microarray datasets of AD and two microarray datasets of CVD, specifically
myocardial infarction and heart failure, were analyzed to identify 73 differentially expressed
genes (Appendix 1). All these genes were statistically significant, having a p-value less than
0.05, and were grouped into underexpressed (logFC<0) or overexpressed (logFC>0) genes.
There were 31 common underexpressed and 42 common overexpressed genes in all 4 datasets.
The genes that had the most protein-protein interactions were MAPK 14, TLR2, HCK, GRB2,
PRKCD, and PTPNG6, signifying their importance in the relationship between AD and CVD.

MAPK14 (mitogen-activated protein kinase 14) had the most interactions of all the genes
with a degree of 14. Another study identified MAPK 14 as a possible Alzheimer’s therapeutic
target [22] in regards to microglial activation and inflammation-induced synaptic toxicity
reduction, which can help in clearing amyloid plaques. MAPK 14 also mitigates defects in the
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autophagy-lysosomal system, which is a critical component of the pathogenesis of AD.
Additionally, there has not been convincing evidence of brain developmental defects from
neuronal deficiency of MAPK 14, but research on humans will provide verification on using
MAPK14 as a therapeutic target in AD. On the other hand with CVD, MAPK 14 has been
identified as a biomarker for cardioembolic stroke [23], which was not included in this study but
still provides support for targeting MAPK 14 in AD and CVD pathogenesis.

TLR2 (toll-like receptor 2) had the second most interactions of all the genes with a
degree of 10. Another study identified TLR2 as a primary receptor for beta-amyloid to trigger
neuroinflammatory activation. Liu et. al. concluded that TLR2 inhibition in microglia can be
favorable in Alzheimer's disease pathogenesis [24]. For CVDs, studies have reported toll-like
receptors to play a role in heart failure (HF) and thus inhibition of TLRs can be beneficial in
progression of HF [25]. TLR2 specifically contributes to activation of innate immunity in injured
myocardium, which then contributes to myocardial inflammation, having a direct effect on HF.

The six genes of interest with the highest degrees were then analyzed in specific brain
regions of AD and non-AD units. After conducting two-sample t-tests for differences in AD and
non-AD mean, only two genes passed: GRB2 and PRKCD. The only common brain region in
both genes that were statistically significant was the HI, which is expected since the HI plays a
prominent role in memory. These two genes may indicate a relationship between the blood and
brain as well as CVD and AD.

Previous studies have identified GRB2 as fundamental in atherosclerotic lesion formation
[26], cardiac hypertrophy and fibrosis [27], all of which are in support of GRB2’s involvement in
CVDs pathogenesis. Zhang et. al. hypothesizes that GRB2 promotes cardiac hypertrophy via a
Gab1-PI3K-Akt pathway, which is highly expressed in heart tissue. Because GRB2 couples
growth factor receptor activation to downstream mitogen-activated protein kinase cascades,
GRB?2 is linked with MAPK 14, another gene of interest previously explored. In regards to AD,
research has shown that GRB2 mediates trafficking of AbetaPP intracellular domain (AICD)
"adaptor" protein that gets concentrated in neuronal cell bodies in AD patients [28].

In previous studies on PRKCD, it was identified that after an ischemic stroke, the altered
protein kinase C (PKC) plays a role in blood brain barrier (BBB) disturbance and reperfusion
damage. Furthermore, in people with obesity, PKC also plays a role in aortic contraction and
adipocyte apoptosis. Following neural damage, PRKCD is increased, which aids in the formation
and progression of AP disease like AD. Targeting PKCs pharmacologically could maintain the
BBB and reduce ischemic infarct. PRKCD is heavily involved in mediating AB42
processing,which can result in cell lysis and the release of reactive oxygen species [29].

Genes involved in xylulose biosynthetic process, toll-like receptor TLR1:TLR2, and
cellular response to triacyl bacterial lipopeptide were over 100 times enriched. The pathways,
insulin effects increased synthesis of xylulose-5-phosphate,formyl peptide receptors bind formyl
peptides and many other ligands, MyD88 deficiency (TLR2/4), pentose phosphate pathway, and
the cellular components ficolin-1-rich granule and ficolin-1-rich granule lumen were
significantly enriched as well. The available literature on these areas is limited, so future research
could look at targeting these biological pathways.

Limitations

Because of the lack of published datasets on AD and CVD patients, the size of the data
pool is limited. The generalization of CVDs to heart attack and heart failure in this study may not
be comprehensive. Future studies could focus on other types of CVDs such as coronary artery
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disease, cardiomyopathy, atherosclerosis, etc. Another potential area of limitation is the samples
from the data used in this study aren’t consistent with the general population’s characteristics.
For instance, in the dataset GSE36980, all samples came from Japan and the study is from the
1960s, so the updated datasets may be helpful for future more accurate study. The lack of
distinction between female and male samples may be a caveat since the different sexes may yield
slightly different gene expressions, which should be taken into account for treatment. The genes
identified by this study were not compared to other neurodegenerative diseases, so it is not
confirmed that these genes are unique only to AD.

Future Directions

Instead of focusing on the peripheral blood and the brain, future studies could study
specifically the connection between heart tissue and the brain for a more comprehensive analysis
of the link between CVD and AD. Studying SNPs in the identified genes from this study could
also help to further understand how genetic variants contribute to the association or development
of both diseases. Future plans for this study could include a deeper study on the molecular
structures of the genes of interest (GRB2, PRKCD). This could provide potential alternative
paths of exploration for the development of medications to diminish the pathogenesis of AD.

Conclusions

The underlying mechanism governing the association between AD and CVD may be
related to GRB2 and PRKCD because both genes are differentially expressed in the brain and
blood of AD and CVD patients; however, more research is required to validate that these genes
can be used in the treatment or diagnosis of the diseases. Though these two genes may be of
primary interest, the other 4 genes that had the most protein interactions in the gene network
(MAPK14, TLR2, HCK, PTPNG6) are notable. The 73 shared genes in all four datasets indicate
commonality between AD and CVD as well. Other possible avenues for treatment of disease are
in the upregulated pathways (insulin effects increased synthesis of xylulose-5-Phosphate, formyl
peptide receptors bind formyl peptides and many other ligands, MyD88 deficiency (TLR2/4),
pentose phosphate pathway) and biological processes (xylulose biosynthetic process, toll-like
receptor TLR1:TLR2, and cellular response to triacyl bacterial lipopeptide).
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Appendix
Underexpressed Overexpressed
Gene Symbol Gene Symbol
KLRB1 CLK1 COIL GRN ARAP3 TLR2
PSMB1 YPELS RABGGTB LILRB3 SP110 MAPK14
ATP5C1 CGGBP1 GTF3A NCF4 LILRA2 ENO1
NACA PPP1R2 CCNH FPR2 PTPN6 SUOX
SSBP1 HNRNPDL MGAT4A DCUN1D1 NSFL1C PLEC
DCTN6  TMED10 TRMO RNF24 TALDO1 DUSP3
UBE3A NET1 SLC25A36 DUSP1 TNFRSF1A  TMCO3
WDRG61 INF277 HSF2 HSPAG RPS6KA1 FKBP15
EIF3M ZNF451 IDI1 FPR1 MCL1 SPIDR
PSMD6 APIS GTPBPS8 TLR5 HCK ETS2
AKT3 CD14 GNAI2 GRB2
PRKCD WDR1 DHPS
GNS H2AFY LILRAG
TKT SIRPA PAFAH1BA1

Appendix 1. Final gene list (total 73 genes) consisting of 31 underexpressed and 42
overexpressed genes that were shared among all 4 datasets for the blood analysis (GSE63060,

GSE63061, GSE48060, and GSE9128)

Appendix 2. Link to STRING Network:
https://string-db.org/cgi/network?taskld=bybBUQuqgPsTj&sessionld=bgRPit3Lat8J
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