Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Interpretable gender classification from retinal fundus images using BagNets

Indu Ilanchezian, View ORCID ProfileDmitry Kobak, Hanna Faber, Focke Ziemssen, Philipp Berens, View ORCID ProfileMurat Seçkin Ayhan
doi: https://doi.org/10.1101/2021.06.21.21259243
Indu Ilanchezian
1Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
2Tübingen AI Center, University of Tübingen, 72076 Tübingen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dmitry Kobak
1Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Dmitry Kobak
Hanna Faber
3University Eye Clinic, University of Tübingen, 72076 Tübingen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Focke Ziemssen
3University Eye Clinic, University of Tübingen, 72076 Tübingen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Philipp Berens
1Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
2Tübingen AI Center, University of Tübingen, 72076 Tübingen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Murat Seçkin Ayhan
1Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Murat Seçkin Ayhan
  • For correspondence: murat-seckin.ayhan{at}uni-tuebingen.de
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Article Information

doi 
https://doi.org/10.1101/2021.06.21.21259243
History 
  • June 25, 2021.
Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

Author Information

  1. Indu Ilanchezian1,2,
  2. Dmitry Kobak1,
  3. Hanna Faber3,
  4. Focke Ziemssen3,
  5. Philipp Berens1,2 and
  6. Murat Seçkin Ayhan1,*
  1. 1Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
  2. 2Tübingen AI Center, University of Tübingen, 72076 Tübingen, Germany
  3. 3University Eye Clinic, University of Tübingen, 72076 Tübingen, Germany
  1. ↵* Corresponding author; email: murat-seckin.ayhan{at}uni-tuebingen.de
Back to top
PreviousNext
Posted June 25, 2021.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Interpretable gender classification from retinal fundus images using BagNets
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Interpretable gender classification from retinal fundus images using BagNets
Indu Ilanchezian, Dmitry Kobak, Hanna Faber, Focke Ziemssen, Philipp Berens, Murat Seçkin Ayhan
medRxiv 2021.06.21.21259243; doi: https://doi.org/10.1101/2021.06.21.21259243
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Interpretable gender classification from retinal fundus images using BagNets
Indu Ilanchezian, Dmitry Kobak, Hanna Faber, Focke Ziemssen, Philipp Berens, Murat Seçkin Ayhan
medRxiv 2021.06.21.21259243; doi: https://doi.org/10.1101/2021.06.21.21259243

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Ophthalmology
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)