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Abstract 
 
Purpose. The Vascular, Extracellular and Restricted Diffusion for Cytometry in Tumours 

(VERDICT) technique has shown promise discriminating normal from prostate cancer (PCa) 

tissue and Gleason grade 3+3 from 3+4. However, VERDICT currently doesn’t account for 

the inherent relaxation properties of the tissue that could add complementary information 

and potentially enhance its diagnostic power. The aim of this work is to introduce relaxation-

VERDICT (rVERDICT) for prostate, a model for the joint estimation of diffusion and 

relaxation parameters. 

Methods. 72 men with suspected PCa underwent multiparametric MRI (mp-MRI) and 

VERDICT MRI. Among these, 44 underwent targeted biopsy and were analysed with 

rVERDICT using deep neural networks for fast fitting (~60 times faster than non-linear least 

squares minimisation approach). A convolutional neural network classifier assessed the 

rVERDICT parameters in differentiating Gleason grades measured with accuracy, F1-score 

and Cohen’s kappa. To assess repeatability, five men were imaged twice.  

Results. There were 37 cancer lesions: 6 Gleason 3+3, 18 Gleason 3+4, and 13 Gleason 

³4+3. The rVERDICT intracellular volume fraction fic discriminated between Gleason 3+3 

and 3+4 (p=0.003); Gleason 3+4 and ³4+3 (p=0.040); and between 5-class Gleason grades 

with (accuracy, F1-score,kappa)=(8,7,3) percentage points higher than classic VERDICT, 

and (12,13,24) percentage points higher than the ADC from mp-MRI. Repeatability of 

rVERDICT parameters was high (R2=0.79–0.98,CV=1%–7%,ICC=92%-98%). T2 values 

estimated with rVERDICT were not significantly different from those estimated with an 

independent multi-TE acquisition (p>0.05). 

Conclusion. rVERDICT allows for accurate, fast and repeatable estimation of diffusion and 

relaxation properties of PCa and enables discriminating Gleason grade groups. 

 
Key words: biophysical modelling; relaxation-diffusion MRI; deep learning; convolutional 

neural network; prostate cancer diagnosis; prostate cancer grading. 
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Introduction 
 
As for many cancers, definitive prostate cancer (PCa) diagnosis relies on biopsies1. This 

invasive procedure can have serious side effects, such as infection, bleeding and urinary 

retention, significantly impacting quality of life2,3. Recent advances in medical imaging have 

played a key role in improving PCa detection. For instance, multi-parametric MRI (mp-MRI), 

consisting of T2-weighted, diffusion-weighted and dynamic contrast-enhanced imaging 

sequences has been incorporated into the National Institute for Health and Care Excellence 

(NICE) guidelines for PCa diagnosis4. However, whilst mp-MRI has a 90% sensitivity for 

detection of significant cancer, it’s specificity is moderate at 50%5; resulting in 1 in 2 men still 

needing to undergo an unnecessary biopsy2. Significant cancer is generally defined by the 

presence of Gleason pattern 4 tumour within a biopsy6-9. Reliably separating lesions on mp-

MRI that contain Gleason pattern 4 disease from those with non-significant cancer (Gleason 

3+3) or no cancer remains an unmet clinical need. 

 

To address this, microstructure imaging techniques based on diffusion-weighted MRI 

(DW-MRI)10-12 offer sensitivity and specificity to microstructure changes that correspond to 

different Gleason grades, well above the simple apparent diffusion coefficient (ADC), 

conventionally acquired as part of standard mp-MRI protocols13. In particular, the Vascular, 

Extracellular and Restricted Diffusion for Cytometry in Tumours (VERDICT) technique11,14 

was one of the first showing histological specificity both ex-vivo and in-vivo (clinically and 

preclinically)11,14-16. Preliminary results from the clinical trial INNOVATE17 reveal that the 

VERDICT intracellular volume fraction (fic) can discriminate between Gleason 3+3 and 3+4 

lesions (p=0.002, AUC=0.93). 

 

However, VERDICT is currently limited in estimating only diffusion parameters without 

accounting for the inherent relaxation properties of the tissue18-26. This leads to questionable 

accuracy of microstructural parameters, which likely limits their sensitivity. Relaxometry 

parameters such as T2 relaxation time have also shown capability to discriminate Gleason 

grades 3 and 418,21,22. Works exploiting joint relaxation-diffusion analysis26-36 have shown that 

these two types of parameters often contain complementary information. 

 

In this work, we hypothesise that a unifying model capturing both relaxation and diffusion 

effects can enhance the accuracy of both types of estimates and enable Gleason grade 

discrimination. We propose a new relaxation-VERDICT (rVERDICT) model to estimate 

jointly the diffusion and relaxation parameters in prostate while harnessing recent 
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developments in machine learning to reduce the model parameters inference times and 

enhance the potentiality of the rVERDICT for a 5-class Gleason grade classification.  

 

This work capitalizes on the VERDICT imaging protocol (feasible on clinical scanners) 

and exploits joint relaxation-diffusion analysis using machine learning, providing two 

technical innovations: 

 

I. a new approach of modelling VERDICT data which accounts for compartment-

specific relaxation times, exploiting all the information available from the multi-TE 

DW-MRI VERDICT acquisition; 

II. a deep learning framework for (a) fast, accurate and precise estimation of the 

rVERDICTparameters and (b) a 5-score Gleason grade classification.  

 

We demonstrate the new rVERDICT comparing our results with the classic VERDICT and 

ADC from mp-MRI of the same patients. We show that the new framework enables the on-

the-fly microstructure imaging of the prostate and Gleason grade discrimination. 

 

Methods 
 
This study was performed with local ethics committee approval embedded within the 

INNOVATE clinical trial17. The trial is registered with ClinicalTrials.gov identifier 

NCT02689271.  

 

Patient population and study design 
 

72 men (median age=64.8 years; range=49.5–79.6 years) were recruited and provided 

informed written consent. The inclusion criteria were: (1) suspected PCa or (2) undergoing 

active surveillance for known PCa. Exclusion criteria included: (1) previous hormonal, 

radiation therapy or surgical treatment for PCa and (2) biopsy within 6 months prior to the 

scan. All patients underwent mp-MRI in line with international guidelines37 on a 3T scanner 

(Achieva, Philips Healthcare, Best, Netherlands) supplemented by VERDICT DW-MRI (the 

clinical DCE part of mp-MRI was performed last after the VERDICT MRI). 

 

After the clinical mp-MRI and VERDICT DW-MRI, 44 participants underwent targeted 

transperineal template biopsy of their index lesion as clinically indicated. The index lesion 

was defined as the highest scoring lesion identified on mp-MRI with Likert scores (3-5).  
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The mp-MRI was used to guide cognitive targeted template biopsy (performed by 

experienced urologists). Specialist genitourinary pathologists (A.F. and M.R) evaluated 

histological specimens stained with haematoxylin and eosin from the biopsy cores and 

assigned each biopsy core a Gleason grade. Figure 1 presents a participation flow diagram.  

 

MRI data acquisition 
 

DW-MRI acquisition 

The VERDICT protocol, adapted from38, acquires DW-MRI data using pulsed-gradient spin 

echo (PGSE) at five combinations (b;d;D;TE;TR) of b-values b (in s/mm2), gradient duration 

d, separation D, echo time TE and repetition time TR (in ms): respectively, 

(90;3.9;23.8;50;2482); (500;11.4;31.3;65;2482); (1500;23.9;43.8;90;2482); 

(2000;14.4;34.4;71;3945); (3000;18.9;38.8;80;3349), in three orthogonal directions using a 

cardiac coil. For each combination, a separate b=0 image was acquired, providing a total of 

ten different measurements. For b<100 s/mm2 the number of averages (NAV)=4 and for 

b>100 s/mm2 NAV=6; voxel size=1.3×1.3×5 mm; matrix size=176×176; average signal-to-

noise ratio (SNR)=35; scan duration=12’25”. 

 

Repeatability study 

Scan-rescan repeatability study of the VERDICT DW-MRI acquisition protocol was 

performed in five participants (median age=68 years; range=50–79 years). These were 

randomly chosen among the first 40 participants recruited for the INNOVATE study17, thus 

sharing the same inclusion/exclusion criteria. Participants were imaged twice, taking them 

out of the scan with less than 5-minute break in between the scans (Figure 1). 

 
T2-relaxometry MRI 

To additionally assess the performance of rVERDICT in estimating multiple T2 relaxation 

times in prostate, a multi-TE acquisition was also acquired for an independent estimate of 

the multiple T2 relaxation times for seven participants (median age=65 years; range=49–79 

years), randomly chosen among the participants recruited for the INNOVATE study17, thus 

sharing the same inclusion/exclusion criteria. Details in Supporting Information.  

 
Image Analysis 

 

DW-MRI pre-processing 
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The DW-MRI pre-processing pipeline included denoising using MP-PCA39 with MrTrix340 

‘dwidenoise’; correction for Gibbs ringing41 with custom code in MATLAB (The Mathworks 

Inc., Natick, Massachusetts, USA); correction of motion artefacts and eddy current 

distortions by mutual-information rigid and affine registration using custom code in MATLAB.   

 

T2-relaxometry MRI data pre-processing and analysis 

The pre-processing pipeline included only registration of the images at each TE to the image 

at the first TE, using the same mutual-information rigid registration used for the DW-MRI pre-

processing. A two-compartments model was fit to the data to estimate slow and fast T2 

values (details in Supporting Information). 
 

Classic VERDICT 

The VERDICT model11 is the sum of three parametric models, each describing the DW-MRI 

signal in a separate population of water from one of the three compartments: Sic comes from 

intracellular water (including epithelium), modelled as restricted diffusion in spheres of radius 

R and intra-sphere diffusivity Dic=2 µm2/ms (value that minimised fitting error averaged over 

all PZ voxels and in agreement with recent ultra-short diffusion-time measurements42); Sees 

comes from extracellular-extravascular water adjacent to, but outside cells and blood 

vessels (including stroma and lumen), modelled as Gaussian isotropic diffusion with 

effective diffusivity Dees=2 µm2/ms (value that minimised fitting error averaged over all PZ 

voxels and in agreement with alternative measurements31,42); and Svasc arises from water in 

blood undergoing microcirculation in the capillary network, modelled as randomly oriented 

sticks with intra-stick diffusivity Dvasc=8 µm2/ms, which also accounts for any intra-voxel 

incoherent motion effects. The total MRI signal for the multi-compartment VERDICT model 

is: 

 

𝑆(𝑏)/𝑆! = 𝑓"#$%𝑆"#$%(𝐷"#$% , 𝑏) + 𝑓&%𝑆&%(𝐷&% , 𝑅, 𝑏) + 𝑓''$𝑆''$(𝐷''$, 𝑏)  [1] 

 

where fi is the proportion of signal from water molecules in population i=vasc;ic;ees, 𝑓"#$% +

𝑓&% + 𝑓''$ = 1 and 𝑆! is the b=0 signal intensity. We refer to the original VERDICT work11,14 

for the specific expressions for Svasc, Sic and Sees, and the choice and interpretation of the 

model parameters. 

 

VERDICT has three free model parameters (fees,fic,R) that we estimate by fitting equation [1] 

to the five DW-MRI measurements at nonzero b values, normalized by their corresponding 

b=0 measurements. The fvasc=1–fic–fee; the cellularity index=fic/R3. 
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The VERDICT model for prostate assumes there are three major tissue compartments that 

mostly contribute to the measured DW-MRI signal: intra-cellular, intra-vascular and extra-

cellular/extra-vascular, and these are non-exchanging (i.e. fully impermeable to water). 

Several studies11,14,15 validated these assumptions under the experimental conditions of the 

optimized DW-MRI acquisition for VERDICT in prostate43. Specifically, VERDICT fic 

correlated with only epithelial cells, while the stroma contribution was captured by the 

extracellular-extravascular compartment15. These findings were also supported by an in vivo 

VERDICT validation study44, showing very high correlation (r=0.96, p=0.002) between in vivo 

VERDICT fic and epithelial volume fraction from histology. 

 

One of the major limitations of the classic VERDICT formulation is that the signal fractions fi 

in equation [1] are T2 and T1 relaxation weighted signal fractions. Therefore, their values 

and interpretation in terms of volume fractions of corresponding tissue compartments can be 

biased by the unaccounted relaxation properties of the tissue. This occurs when the DW-

MRI acquisition includes different TE and TR values for different b values, as in the 

VERDICT DW-MRI protocol. 

 

Relaxation-VERDICT (rVERDICT) 

The new rVERDICT model parameterises the T2 relaxation of the intracellular compartment 

by T2ic, and that of vascular and extracellular/extravascular compartments by the same 

T2vasc/ees. It also includes the T1 relaxation contribution from the whole tissue as a single 

pool. Mathematically, the rVERDICT model is  

 

𝑆(𝑏, 𝑇𝐸, 𝑇𝑅) = 𝑆! 01 − 𝑒
(!"!#3 4𝑓"#$%! 𝑒

( !$
!%&'()

**( 𝑆"#$%(𝐷"#$% , 𝑏) + 𝑓&%!𝑒
( !$
!%+)𝑆&%(𝐷&% , 𝑅, 𝑏) +

𝑓''$! 𝑒
( !$
!%&'()/**(𝑆''$(𝐷''$, 𝑏)5  [2] 

 

where we adopt the same terminology as VERDICT, but here the volume fractions f0i, where 

i=vasc;ic;ees, avoid the bias in the corresponding VERDICT parameters from MR relaxation 

tissue properties22. 

 

rVERDICT has eight free parameters (S0,T1,T2ic,T2vasc/ees,f0ees,f0ic,R,Dees) that we estimate by 

fitting equation [2] to the ten DW-MRI measurements: the five nonzero b value 

measurements and their corresponding five b=0 measurements. Hence, unlike VERDICT, 
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for rVERDICT we exploit the additional TE and TR dependence of the five b=0 

measurements to estimate the T2 and T1 relaxation times.  

 

For rVERDICT, the same assumptions as VERDICT for prostate apply, with the additional 

assumptions about the MR relaxation tissue properties based on currently available 

experimental evidence23-25,27,29,30,45-47.  Our choice of a single T1 pool is supported by current 

literature, showing that it is possible to reliably identify only a single T1 compartment of 

T1~[1500–3000] ms24,25. Kjaer et al.23 also acknowledged that a longer T1 compartment 

likely exists, but lamented the impossibility to measure it within clinical SNR and time-

constraints. For the T2 relaxation, we assume the same T2vasc/ees for the vascular and 

extracellular-extravascular components. This is supported by previous work which showed 

that in prostate tissue it is possible to reliably distinguish only two compartments with 

different T2 values: a slow one, with T2~[160-1300] ms and a fast one with T2~[40-100] 

ms46. In our model we assume that the fast T2 compartment is the intracellular space and 

the slow T2 compartment the vascular (T2 of oxygenated and deoxygenated blood 

being~150-250 ms, at 3T and normal hematocrit level~0.4547) and the extracellular-

extravascular (typical luminal T2~[160-1300] ms46) space. Stroma is not explicitly modelled. 

 

To investigate the impact of these model assumptions and the stroma contribution (not 

explicitly modelled), we performed simulations using a four-compartments model accounting 

for the T2 and ADC values of epithelium, stroma, lumen and vasculature as reported by 

previous studies at 3T for PCa in the PZ (midgland) in both ex vivo (extrapolated from30) and 

in vivo (extrapolated from29). For the vasculature, we used reference values from38. Further 

details in the Supporting Information.  

 

Model fitting with deep neural network (DNN) 

We obtained quantitative maps from both VERDICT and rVERDICT by fitting respectively 

equation [1] and [2] to the VERDICT DW-MRI data, using the signal averaged across the 

three gradient directions. For fast inference, we performed the fitting using a DNN comprised 

of three fully connected layers48-50. We trained the DNN in a supervised fashion using fully 

synthetic signals generated using equation [1] or [2] with the addition of Rician noise, 

according to our experimental imaging protocol (Figure 2 and details in Supporting 

Information).  

 

The creation of the training set and training of the DNN (to be done only once) took ~100 

seconds (4 threads on Intel Core i7 processor at 2.4GHz); model parameters prediction for 

each unmasked DW-MRI dataset (~5x105 voxels) took ~35 seconds. For comparison, non-
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linear least squares minimisation, using the ‘nonlincon’ function in MATLAB, took ~8000 

seconds. 

 

DNN model fitting assessment 

To assess the accuracy and precision of the DNN estimator for a complex model as 

rVERDICT we performed numerical simulations with known ground-truth. First, to guarantee 

generalizability, we simulated signals from model parameters combinations covering the 

whole parametric space, and not just the subset of realistic prostate tissue combinations 

(see Supporting Information). The DNN was used to predict the rVERDICT model 

parameters from these signals and we evaluated accuracy and precision in terms of bias 

and dispersion of the prediction compared to the known ground-truth. For a realistic 

combination of the model parameters, mirroring values reported for PCa in PZ and TZ29,30,38 

(T1=2700 ms;T2ic=70 ms;T2vasc/ees=530 ms;f0ees=0.40;f0ic=0.40;R=8 µm;Dees=2 µm2/ms), we 

evaluated the stability of the fit with respect to possible degeneracy and local minima by 

comparing the distribution of predicted values for each model parameter with the known 

ground-truth, when the other six parameters were varied taking four values linearly spaced 

within their biophysically plausible ranges (i.e. 46=4096 different noisy realizations). 

 

As benchmark, we compared the performance of our DNN model with the MATLAB’s 

‘nonlincon’ function, using a grid-search algorithm for the initial guess. 

 

T2 estimates assessment  

To assess the differences between the T2 relaxation times estimated using rVERDICT and 

the independent multi-TE acquisition, we compared the distribution of T2 values estimated 

by the two methods for all the voxels within the prostate volume, and corresponding median 

and 25th and 75th percentiles. Statistically significant differences were assessed by a two-

sided Wilcoxon rank sum test. 

 

Given the short maximal TE used in our sequence (90 ms), we also performed numerical 

simulations to assess the accuracy of the estimation of long T2 values (see Supporting 

Information).  

 

Regions-of-interest definition 

Two board-certified experienced radiologists (reporting more than 2,000 prostate MR scans 

per year) manually placed ROIs on the VERDICT DW-MRI, guided by the standard mp-MRI 

index lesions and confirmed the ROIs with the biopsy results (further details in the 

Supporting Information).  
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Gleason grade classification 

 

All ROI voxels were assigned to one of the corresponding five different histopathologic 

categories (i.e. Gleason grade groups) reported by the pathologists: benign, and Gleason 

grades 3+3, 3+4, 4+3 and ³4+4.  

 

Gleason Grade Differentiation 

To assess the ability of rVERDICT to discriminate between Gleason grade groups and 

compare with VERDICT, analysis of variance with Bonferroni multiple comparisons 

correction was performed to determine statistically significant differences between four 

groups: benign, Gleason grades 3+3, 3+4, ³4+3 (for consistency with previous studies16), for 

all rVERDICT and VERDICT parameters (considering all the ROIs).   

 

Gleason grade groups classification with convolutional neural network (CNN) 

To assess the potential of combining rVERDICT with deep learning based classification to 

enhance Gleason grade groups discrimination, we estimated Gleason grade for each ROI 

with rVERDICT, VERDICT and ADC maps from the mp-MRI (details on the ADC estimation 

in Supporting Information), using a CNN based on the SE-Res-Net 51 trained in a supervised 

fashion using all the ROIs and the associated five histopathologic categories, i.e. a 5-class 

classification task (Figure 2).  

Specifically, we chose the SE-Res-Net51 which gives better performance with our data than 

DenseNet, another architecture that shown to provide high capacity with multi-layer feature 

concatenation52. More details in51 and Figure S1. 

 

For the data imbalance, we used 5-fold cross-validation (with test size 20%) with stratified 

randomized folds to preserve the percentage of samples for each class. For training, we 

cropped the images selecting the ROIs’ bounding box to the same size 96x96 pixels. We 

used 47 ROIs (18 from benign tissue and 29 from cancer lesions) for training and 12 ROIs 

for testing (4 from benign tissue and 8 from cancer lesions); and applied data augmentation 

using rigid transformation (affine/rotation). We trained the network for 30 epochs with cross-

entropy loss and Adam optimization (learning rate=10-5). 

 
Statistical Analysis 
 

Scan-rescan repeatability 
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We quantified repeatability using the adjusted coefficient of determination R2 between each 

estimated model parameter in the first scan with the estimates from the second scan, 

considering all the voxels within each ROI (n=179). We used subject-specific ROIs instead 

of whole prostate statistics to remove potential bias due to deformation and different position 

of the prostate between the two scans. We used Bland-Altman plots and computed the 

coefficient of variation (CV) as standard deviation over the mean and the intraclass 

correlation coefficient (ICC), calculated for two-way mixed effects, single measurement, with 

absolute agreement.  
 

Gleason grade classification performance 

We quantified the performance of the 5-class CNN classification by computing the accuracy, 

precision and sensitivity (recall). From these, we computed the harmonic mean of precision 

and recall (F1-score) and the Cohen’s kappa coefficient (kappa)53. 

 

Results 
 

There were 37 cancer lesions in the investigated cohort (n=44), and 22 regions that were 

determined as benign tissue on biopsy. Median prostate-specific antigen (PSA) level was 

7.0 ng/mL (range=1.0–71.0 ng/mL), the median time between VERDICT MRI and biopsy 

was 66.9 days (range=8–167 days). Of the 37 cancer lesions, 6 were Gleason grade 3+3, 

18 were 3+4, and 13 were ³4+3. Table 1 provides a summary of the demographic data. 
  

Repeatability  

For the diffusion and T2 relaxation parameters from rVERDICT, R2=[0.79-0.98]; CV=[1%-

7%]; and ICC=[92%-98%]. The correlation plots and Bland-Altman plots of all the rVERDICT 

parameters are reported in Figure 3.  

 

DNN model fitting performance 

Results from numerical simulations reported in Figure 4 show that the DNN had similar 

accuracy but higher precision and robustness for all the rVERDICT parameters, compared to 

conventional non-linear least squares minimisation. 

 

Comparison of T2 estimates from rVERDICT and T2-relaxometry MRI 

Comparison of the distributions of T2 values estimated with rVERDICT and independent 

multi-TE acquisition for the best and worst cases (in terms of comparable median values) in 

our cohort are reported in Figure 5. We found median values not statistically different 

(p>0.05) between the two methods and similar interquartile ranges. The estimated 
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compartmental T2 values are also in agreement with current literature, with T2ic~60 ms and 

T2vasc/ees~250 ms23,24,27,29,30,46,47.  

 
Gleason grades discrimination  

Figure 6 reports the box-and-whisker plots of the rVERDICT and VERDICT parameters for the 

four Gleason grades groups. We found the previously reported ability of VERDICT fic to 

distinguish Gleason score 3+3 from 3+4 (p=0.027), but not Gleason 3+4 from ³4+3 (p>0.05), 

in agreement with16, where the authors additionally showed that ADC does not discriminate 

between 3+3 and 3+4 (p>0.05), nor 3+4 and ³4+3 (p>0.05). In contrast, fic from rVERDICT 

improved the discrimination of Gleason score 3+3 from 3+4 (p=0.003) and additionally showed 

promises in discriminating Gleason 3+4 from ³4+3 (p=0.040). Noteworthy, fic from VERDICT 

can distinguish the PCa lesion from benign tissue better than rVERDICT (p=0.017 vs 

p=0.048). 

 

CNN Gleason grade classification 

We obtained the best performances using the 5-class CNN classifier trained with all the 

rVERDICT parametric maps, achieving accuracy=0.862, F1-score=0.859, kappa=0.815 (the 

relative contribution of each rVERDICT parameter map is reported in Table S2). For 

comparison, using the ADC map from mp-MRI we achieved accuracy=0.739, F1-

score=0.734, kappa=0.549, while using all the maps from VERDICT we achieved 

accuracy=0.785, F1-score=0.788, kappa=0.788 (Table 2). The CNN trained and tested only 

with the intracellular volume fraction f0ic map from rVERDICT still outperformed both the 

CNN trained with fic from VERDICT and the ADC from mp-MRI (Table 2).  

 

For per-class Gleason grade classification using all maps from rVERDICT, we found F1-

score=0.857, 0.750, 0.889, 0.842, 0.750 for the classes corresponding to benign, Gleason 

grades 3+3, 3+4, 4+3, >4+3, respectively. All the performances on each Gleason grade 

classification, using rVERDICT, VERDICT and the ADC from mp-MRI are in Table 3.  

 

rVERDICT parametric maps 

Three exemplar cases are shown in Figure 7 to demonstrate lesions with Gleason score 3+3 

(Figure 7A, green arrow), 3+4 (Figure 7B, yellow arrow) and 4+3 (Figure 7C, red arrow) on 

the DWI at b=2000 s/mm2, ADC, and rVERDICT f0ic, Dees, T2vasc/ees and T1 maps. A direct 

comparison of all the VERDICT parametric maps with the corresponding ones from 

rVERDICT is in Figure S5. 
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Discussion 
 

In this work, we propose a new prostate model called relaxation-VERDICT (rVERDICT) that 

provides joint estimation of relaxation and diffusion parameters, such as the intracellular T2 

relaxation time (T2ic) and the intracellular volume fraction (fic). Our hypothesis is that a 

unifying model capturing both relaxation and diffusion effects would enhance the accuracy of 

model parameters estimation and consequently the Gleason grade discrimination. As 

prostate histological components differ between Gleason grades54, we expect diffusion 

parameters, and in particular the fic from classic VERDICT that correlates with epithelial 

volume fraction15,44, to provide high biologic specificity to Gleason grade. However, classic 

VERDICT can only achieve discrimination of Gleason 3+3 from 3+416. Gleason 

discrimination for higher scores like 3+4 from ³4+3 is also important, as 4+3 cancers are 

associated with a three-fold increase in lethal PCa compared to 3+4 cancers6. Here we 

hypothesise that rVERDICT can compensate for any relaxation-induced bias that may be 

reducing the accuracy of classic VERDICT estimates, enabling more robust identification 

and discrimination of Gleason 4 components. 

 

Our results (Figure 6, Table 2 and 3, and Figure S3 and Table S3) support our hypotheses, 

showing that the new information obtained from rVERDICT enables the discrimination of 

Gleason 3+3, 3+4 and ³4+3 and the classification of five Gleason grade groups, with 

accuracy and Cohen’s kappa 8 and 3 percentage points higher than VERDICT, and 12 and 

24 percentage points higher than the ADC from mp-MRI, respectively. Most importantly, on 

the previously unattainable classification of Gleason grade 3+4 and ³4+3, rVERDICT 

achieved statistical significance (p=0.040 for f0ic) and the highest precision and sensitivity 

(both ³80%) compared to VERDICT and ADC from mp-MRI. The improved performance of 

rVERDICT over VERDICT is probably due to the compensated relaxation-induced biases on 

the signal fractions and the extra information on the relaxation times. Our numerical 

simulations showed that rVERDICT reduces the error of classic VERDICT on (fic,fees,fvasc) by 

respectively (65,93,12) percentage points for the ex vivo and (64,83,20) percentage points 

for the in vivo case (Figure S3). The analysis of the relative contribution of each rVERDICT 

parameter to the CNN classification further showed that, in addition to the intracellular 

volume fraction f0ic, other rVERDICT parameters such as f0ees, Dees, T1 and T2vasc/ees can 

offer complementary information to aid the classification of Gleason grade groups (Table 

S3).  
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In comparison with previous studies, several machine learning methods have been 

employed for PCa classification55-58 using mp-MRI. A recent survey59 reports that most 

machine learning PCa applications use mp-MRI to solve binary classification (no cancer 

versus significant cancer). For the most challenging five-class Gleason grade classification, 

the best-performing method in a prostate imaging challenge (Prostate-X2)55 achieved 

kappa=0.270, while subsequent developments using CNNs with mp-MRI achieved higher 

performances: e.g., U-Net57 (kappa=0.446); VGG-Net56 (kappa=0.473) and ProstAttention-

Net58 (kappa=0.511). Our CNN classifier outperformed these results, with rVERDICT 

yielding a 59% improvement in kappa (kappa=0.815) over these other methods.  

 

The clinical utility of rVERDICT is demonstrated by the repeatability and fitting performance 

results, alongside the application of rVERDICT to data acquired with a clinical scanner that 

are also part of an existing clinical trial (registered with ClinicalTrials.gov identifier 

NCT02689271). The fic from rVERDICT achieved higher repeatability (R2=0.98;CV=7%) 

compared to VERDICT fic (R2=0.83;CV=27%, from38), suggesting that we can achieve 

greater reproducibility by removing confounds through disentangling relaxation from diffusion 

parameters. Additionally, the fitting approach based on DNN provides accurate and precise 

estimates for all the rVERDICT parameters with dramatic reduction of the processing time 

(~2 minutes vs ~2 hours using non-linear least squares minimization, with similar stability, 

Figure S3), enabling on-the-fly rVERDICT map generation. This is a critical point that further 

enables clinical translation of the technique, as precision, robustness and computational cost 

are among the main issues that forbid advanced microstructural imaging from clinical 

adaptation. Moreover, the DNN proposed in this study is highly generalizable as it can be 

readily (and quickly) trained using simulated synthetic signals from any arbitrary dMRI 

acquisition protocol.  

 

A great advantage of rVERDICT is the possibility to obtain simultaneously diffusion and 

relaxation properties of prostate tissue using only a 12-minute DW-MRI acquisition. We 

showed that estimates of T2 and T1 relaxation times with rVERDICT match those from 

independent measurements and literature. The T1 relaxation estimates had lower values 

within tumour lesions than in benign tissue (mean 1576 vs 2754 ms, respectively, p=0.003), 

in line with estimates obtained using independent T1 measurements23-25,45. The T2 relaxation 

estimates T2ic within tumours were similar for benign tissue (mean 61 vs 67 ms, 

respectively, p>0.05) and T2vasc/ees within tumour lesions were lower than in benign tissue 

(mean 300 vs 383 ms, respectively, p=0.023), in agreement with literature23,24,27,29,30,46,47. For 

seven patients in our cohort, we performed an independent multi-TE acquisition which 

allowed for a direct comparison of the estimated T2 values using the two methods. Results 
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showed that the rVERDICT T2 values were not statistically different (p>0.05) from the 

independent T2 measurements (Figure 5). Noteworthy, measurements of T2 relaxation 

times using multi-echo spin-echo acquisitions may be affected by stimulated and indirect 

echoes60. However, our estimated relaxation times for a two-pool model are in agreement 

with the literature, including studies that use single-echo spin-echo acquisitions46 and MR 

fingerprinting45. Therefore, we believe the bias is negligible in our case. Finally, although 

multi-TE acquisitions have the advantage of offering MR images with higher resolution and 

less artefacts compared to DW-MRI (which could partly explain the differences between the 

corresponding distributions in Figure 5), diffusion-based techniques give us unique insight 

into microstructure.  

 

To demonstrate the potential of rVERDICT for improving PCa diagnosis, we present three 

example cases in Figure 7. The new information provided by rVERDICT maps can help 

improve the ability of identifying and distinguishing Gleason grades of PCa lesions in cases 

where both the ADC map and the high b-value DWI already show clear contrast (Figure 7A) 

and most importantly when these conventional measures provide ambiguous information 

(Figure 7B and 7C). The direct comparison of rVERDICT parametric maps with the classic 

VERDICT counterparts (Figure S5) showed generally higher fic and lower fees estimates, 

especially in the cancerous areas, in agreement with the simulations in Figure S3 and the 

results in Figure 6. Although the R maps show differences between the two methods (Figure 

S5), the estimated cell radius from both rVERDICT and VERDICT ranges between ~8 and 

~11 µm, in agreement with15,38,42.  

 

In comparison to recent diffusion-relaxation techniques proposed for prostate tissue 

characterization27,29,30, rVERDICT has several differences. Firstly, rVERDICT (as VERDICT) 

explicitly models and quantifies the contribution of vasculature, which is instead neglected 

in27,29,30. While the current literature is still controversial about vascularization and cancer 

aggressiveness for prostate61-64, there is general agreement that increased angiogenesis is 

an important factor in determining tumour development and prognosis64. For cases with 

aggressive cancer, showing significant vascularisation or neovascularisation, the f0vasc map 

could potentially provide higher discriminative power and/or aid early diagnosis. Also, 

unlike29,30 and similarly to42, we explicitly model restriction by considering a compartment of 

water restricted in the intracellular space, accounting for epithelium. We note that in our 

model, the signal contribution from stroma is likely captured by the 

extravascular/extracellular compartment (Figure S2). Previous investigations and histological 

validations have demonstrated the validity of these assumptions15,44, showing good 

agreement between the VERDICT estimated fic and fees with histological measurements of 
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epithelium and stroma plus lumen volume fraction, respectively. Moreover, we note that the 

results reported in30 also suggest that the stroma component does not change significantly in 

prostate cancer. In rVERDICT (as in VERDICT and42) we also model the effective apparent 

size R of the cellular component that is not modelled in29,30 and is only indirectly estimated 

in27.  

 

There are several opportunities for further improvement in the future. The analysis presented 

here was performed on retrospective data with an acquisition protocol optimised for classic 

VERDICT probing a limited range of TE and TR values. This mostly compromises the 

sensitivity to long T2 values (T2vasc/ees) and the reproducibility of measured T1 values. 

However, we have shown that our T2 estimates are still in agreement with independent T2 

measurements that cover a wider acquisition parameter space. Also, our simulation results 

in Figure S4 suggest an error in the estimated values of the long T2 within ±5% of the true 

value. Future work will explore optimization of the VERDICT MRI acquisition to explicitly 

account for T1 and long T2 relaxation times, and direct comparison with independent 

measurements of T1. Additionally, this study analysed only 44 patients for whom the biopsy 

results were available. This resulted in limited/unbalanced Gleason grades groups, 

hampering the possibility to examine differences in diagnostic performance (e.g. with 

comparison of areas under the receiver operating characteristic curve). However, we were 

still able to draw significant differences and demonstrate the potential of rVERDICT. Further 

study will include rVERDICT analysis on larger cohorts. From a modelling perspective, 

rVERDICT (as VERDICT) does not account for the effect of exchange and diffusion time 

dependence of water diffusivity27,28. However, the diffusion time used in this study was 

between 22-36 ms, a range for which previous studies have shown negligible effects due to 

permeability and time dependence27,28,65.  The contribution of stroma is not explicitly 

modelled by rVERDICT and, as in VERDICT, it is assumed to contribute to the extracellular-

extravascular compartment. Given recent experimental evidence that T2 values of stroma 

are closer to epithelium than lumen29,30, we assessed using numerical simulations how 

assuming a unique average T2 for stroma and lumen could affect the accuracy of estimating 

f0ic. We found that this assumption leads on average to underestimate the true epithelial 

signal fraction by £20 percentage points (both ex vivo and in vivo). This bias reduces to £10 

percentage points when high SNR (³100) can be achieved (Figures S2 and S3). Future work 

can explore the possibility including these effects in the model and potentially estimating 

other tissue properties such as cell membrane permeability and isolate and estimate the 

stroma contribution. Finally, the DNN used for model parameters estimation does not 

account for any spatial relationship between voxels. Future work may consider using a CNN 
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based architecture which would naturally account for such spatial relationship and regularize 

the fitting of rVERDICT to the data, perhaps providing some additional benefits in terms of 

accuracy and robustness to noise. 

 

Conclusions 
In conclusion, rVERDICT with machine learning allows for accurate, fast and repeatable 

microstructural estimation of both diffusion and relaxation properties of prostate cancer. This 

enables classification of Gleason grades, potentially allowing the utilisation of rVERDICT for 

clinical use and improved diagnosis. 

 

ACKNOWLEDGMENTS 
This work was supported by EP/N021967/1, EP/R006032/1 and by Prostate Cancer UK: 

Targeted Call 2014: Translational Research St.2, project reference PG14-018-TR2. M.P. is 

supported by the UKRI Future Leaders Fellowship MR/T020296/2. 

 

REFEREENCES 

1. Kasivisvanathan V, Rannikko AS, Borghi M, et al. MRI-Targeted or Standard Biopsy 
for Prostate-Cancer Diagnosis. N Engl J Med. 2018;378(19):1767-1777. 

2. Ahmed HU, El-Shater Bosaily A, Brown LC, et al. Diagnostic accuracy of multi-
parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating 
confirmatory study. Lancet. 2017;389(10071):815-822. 

3. Fujita K, Landis P, McNeil BK, Pavlovich CP. Serial prostate biopsies are associated 
with an increased risk of erectile dysfunction in men with prostate cancer on active 
surveillance. J Urol. 2009;182(6):2664-2669. 

4. Graham J, Kirkbride P, Cann K, Hasler E, Prettyjohns M. Prostate cancer: summary of 
updated NICE guidance. BMJ. 2014;348:f7524. 

5. Lee SI, Hectors SJ. Prostate MRI: Toward Imaging Tumor Histology. Radiology. 
2020;296(2):356-357. 

6. Stark JR, Perner S, Stampfer MJ, et al. Gleason score and lethal prostate cancer: does 
3 + 4 = 4 + 3? J Clin Oncol. 2009;27(21):3459-3464. 

7. Tomlins SA, Mehra R, Rhodes DR, et al. Integrative molecular concept modeling of 
prostate cancer progression. Nat Genet. 2007;39(1):41-51. 

8. Ross HM, Kryvenko ON, Cowan JE, Simko JP, Wheeler TM, Epstein JI. Do 
adenocarcinomas of the prostate with Gleason score (GS) </=6 have the potential to 
metastasize to lymph nodes? Am J Surg Pathol. 2012;36(9):1346-1352. 

9. Eggener SE, Scardino PT, Walsh PC, et al. Predicting 15-year prostate cancer specific 
mortality after radical prostatectomy. J Urol. 2011;185(3):869-875. 

10. Dopfert J, Lemke A, Weidner A, Schad LR. Investigation of prostate cancer using 
diffusion-weighted intravoxel incoherent motion imaging. Magn Reson Imaging. 
2011;29(8):1053-1058. 

11. Panagiotaki E, Chan RW, Dikaios N, et al. Microstructural Characterization of Normal 
and Malignant Human Prostate Tissue With Vascular, Extracellular, and Restricted 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 18, 2022. ; https://doi.org/10.1101/2021.06.24.21259440doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.24.21259440


 18 

Diffusion for Cytometry in Tumours Magnetic Resonance Imaging. Invest Radiol. 
2015;50(4):218-227. 

12. White NS, McDonald C, Farid N, et al. Diffusion-weighted imaging in cancer: physical 
foundations and applications of restriction spectrum imaging. Cancer Res. 
2014;74(17):4638-4652. 

13. Chatterjee A, Harmath C, Oto A. New prostate MRI techniques and sequences. 
Abdom Radiol (NY). 2020. 

14. Panagiotaki E, Walker-Samuel S, Siow B, et al. Noninvasive Quantification of Solid 
Tumor Microstructure Using VERDICT MRI. Cancer Res. 2014;74(7):1902-1912. 

15. Bailey C, Bourne RM, Siow B, et al. VERDICT MRI validation in fresh and fixed 
prostate specimens using patient-specific moulds for histological and MR alignment. 
Nmr Biomed. 2019;32(5):e4073. 

16. Johnston EW, Bonet-Carne E, Ferizi U, et al. VERDICT MRI for Prostate Cancer: 
Intracellular Volume Fraction versus Apparent Diffusion Coefficient. Radiology. 
2019;291(2):391-397. 

17. Johnston E, Pye H, Bonet-Carne E, et al. INNOVATE: A prospective cohort study 
combining serum and urinary biomarkers with novel diffusion-weighted magnetic 
resonance imaging for the prediction and characterization of prostate cancer. BMC 
Cancer. 2016;16(1):816. 

18. Sabouri S, Chang SD, Savdie R, et al. Luminal Water Imaging: A New MR Imaging T2 
Mapping Technique for Prostate Cancer Diagnosis. Radiology. 2017;284(2):451-459. 

19. Chan RW, Lau AZ, Detzler G, Thayalasuthan V, Nam RK, Haider MA. Evaluating the 
accuracy of multicomponent T2 parameters for luminal water imaging of the 
prostate with acceleration using inner-volume 3D GRASE. Magn Reson Med. 
2019;81(1):466-476. 

20. Devine W, Giganti F, Johnston EW, et al. Simplified Luminal Water Imaging for the 
Detection of Prostate Cancer From Multiecho T2 MR Images. J Magn Reson Imaging. 
2019;50(3):910-917. 

21. Sabouri S, Chang SD, Goldenberg SL, et al. Comparing diagnostic accuracy of luminal 
water imaging with diffusion-weighted and dynamic contrast-enhanced MRI in 
prostate cancer: A quantitative MRI study. Nmr Biomed. 2019;32(2):e4048. 

22. Hectors SJ, Said D, Gnerre J, Tewari A, Taouli B. Luminal Water Imaging: Comparison 
With Diffusion-Weighted Imaging (DWI) and PI-RADS for Characterization of Prostate 
Cancer Aggressiveness. J Magn Reson Imaging. 2020. 

23. Kjaer L, Thomsen C, Iversen P, Henriksen O. In vivo estimation of relaxation 
processes in benign hyperplasia and carcinoma of the prostate gland by magnetic 
resonance imaging. Magn Reson Imaging. 1987;5(1):23-30. 

24. Storaas T, Gjesdal KI. Assessment of biexponential T1 decay in prostate tissue. Paper 
presented at: ISMRM 20th Scientific Meeting & Exhibition2012. 

25. Baur ADJ, Hansen CM, Rogasch J, et al. Evaluation of T1 relaxation time in prostate 
cancer and benign prostate tissue using a Modified Look-Locker inversion recovery 
sequence. Sci Rep. 2020;10(1):3121. 

26. Gilani N, Malcolm P, Johnson G. A model describing diffusion in prostate cancer. 
Magn Reson Med. 2017;78(1):316-326. 

27. Lemberskiy G, Fieremans E, Veraart J, Deng FM, Rosenkrantz AB, Novikov DS. 
Characterization of prostate microstructure using water diffusion and NMR 
relaxation. Front Phys. 2018;6. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 18, 2022. ; https://doi.org/10.1101/2021.06.24.21259440doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.24.21259440


 19 

28. Lemberskiy G, Rosenkrantz AB, Veraart J, Taneja SS, Novikov DS, Fieremans E. Time-
Dependent Diffusion in Prostate Cancer. Invest Radiol. 2017;52(7):405-411. 

29. Chatterjee A, Bourne RM, Wang S, et al. Diagnosis of Prostate Cancer with 
Noninvasive Estimation of Prostate Tissue Composition by Using Hybrid 
Multidimensional MR Imaging: A Feasibility Study. Radiology. 2018;287(3):864-873. 

30. Zhang Z, Wu HH, Priester A, et al. Prostate Microstructure in Prostate Cancer Using 
3-T MRI with Diffusion-Relaxation Correlation Spectrum Imaging: Validation with 
Whole-Mount Digital Histopathology. Radiology. 2020:192330. 

31. Gilani N, Malcolm P, Johnson G. An improved model for prostate diffusion 
incorporating the results of Monte Carlo simulations of diffusion in the cellular 
compartment. Nmr Biomed. 2017;30(12). 

32. Doo KW, Sung DJ, Park BJ, et al. Detectability of low and intermediate or high risk 
prostate cancer with combined T2-weighted and diffusion-weighted MRI. Eur Radiol. 
2012;22(8):1812-1819. 

33. Gibbs P, Liney GP, Pickles MD, Zelhof B, Rodrigues G, Turnbull LW. Correlation of 
ADC and T2 measurements with cell density in prostate cancer at 3.0 Tesla. Invest 
Radiol. 2009;44(9):572-576. 

34. Langer DL, van der Kwast TH, Evans AJ, et al. Prostate tissue composition and MR 
measurements: investigating the relationships between ADC, T2, K(trans), v(e), and 
corresponding histologic features. Radiology. 2010;255(2):485-494. 

35. Gong T, Tong Q, He H, Sun Y, Zhong J, Zhang H. MTE-NODDI: Multi-TE NODDI for 
disentangling non-T2-weighted signal fractions from compartment-specific T2 
relaxation times. Neuroimage. 2020;217:116906. 

36. Veraart J, Novikov DS, Fieremans E. TE dependent Diffusion Imaging (TEdDI) 
distinguishes between compartmental T2 relaxation times. Neuroimage. 
2018;182:360-369. 

37. Weinreb JC, Barentsz JO, Choyke PL, et al. PI-RADS Prostate Imaging - Reporting and 
Data System: 2015, Version 2. Eur Urol. 2016;69(1):16-40. 

38. Bonet-Carne E, Johnston E, Daducci A, et al. VERDICT-AMICO: Ultrafast fitting 
algorithm for non-invasive prostate microstructure characterization. Nmr Biomed. 
2019;32(1). 

39. Veraart J, Fieremans E, Novikov DS. Diffusion MRI noise mapping using random 
matrix theory. Magn Reson Med. 2016;76(5):1582-1593. 

40. Tournier JD, Smith R, Raffelt D, et al. MRtrix3: A fast, flexible and open software 
framework for medical image processing and visualisation. Neuroimage. 
2019;202:116137. 

41. Kellner E, Dhital B, Kiselev VG, Reisert M. Gibbs-ringing artifact removal based on 
local subvoxel-shifts. Magn Reson Med. 2016;76(5):1574-1581. 

42. Wu D, Jiang K, Li H, et al. Time-Dependent Diffusion MRI for Quantitative 
Microstructural Mapping of Prostate Cancer. Radiology. 2022:211180. 

43. Panagiotaki E, Ianus A, Johnston E, et al. Optimised VERDICT MRI protocol for 
prostate cancer characterisation. Paper presented at: Proc. Intl. Soc. Mag. Reson. 
Med. 23rd2015. 

44. Bonet-Carne E, Tariq M, Pye H, et al. Histological Validation of in-vivo VERDICT MRI 
for Prostate using 3D Personalised Moulds. Paper presented at: Proc. Intl. Soc. Mag. 
Reson. Med.2018. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 18, 2022. ; https://doi.org/10.1101/2021.06.24.21259440doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.24.21259440


 20 

45. Yu AC, Badve C, Ponsky LE, et al. Development of a Combined MR Fingerprinting and 
Diffusion Examination for Prostate Cancer. Radiology. 2017;283(3):729-738. 

46. Storas TH, Gjesdal KI, Gadmar OB, Geitung JT, Klow NE. Prostate magnetic resonance 
imaging: multiexponential T2 decay in prostate tissue. J Magn Reson Imaging. 
2008;28(5):1166-1172. 

47. Grgac K, Li W, Huang A, Qin Q, van Zijl PC. Transverse water relaxation in whole 
blood and erythrocytes at 3T, 7T, 9.4T, 11.7T and 16.4T; determination of 
intracellular hemoglobin and extracellular albumin relaxivities. Magn Reson Imaging. 
2017;38:234-249. 

48. Golkov V, Dosovitskiy A, Sperl JI, et al. q-Space Deep Learning: Twelve-Fold Shorter 
and Model-Free Diffusion MRI Scans. IEEE Trans Med Imaging. 2016;35(5):1344-
1351. 

49. Ye C, Li Y, Zeng X. An improved deep network for tissue microstructure estimation 
with uncertainty quantification. Med Image Anal. 2020;61:101650. 

50. Barbieri S, Gurney-Champion OJ, Klaassen R, Thoeny HC. Deep learning how to fit an 
intravoxel incoherent motion model to diffusion-weighted MRI. Magnet Reson Med. 
2020;83(1):312-321. 

51. Hu J, Shen L, Albanie S, Sun G, Wu E. Squeeze-and-Excitation Networks. IEEE Trans 
Pattern Anal Mach Intell. 2020;42(8):2011-2023. 

52. Zhang C, Benz P, Argaw DM, et al. Resnet or densenet? introducing dense shortcuts 
to resnet. Paper presented at: Proceedings of the IEEE/CVF Winter Conference on 
Applications of Computer Vision2021. 

53. Cohen J. A Coefficient of Agreement for Nominal Scales. Educ Psychol Meas. 
1960;20(1):37-46. 

54. Chatterjee A, Watson G, Myint E, Sved P, McEntee M, Bourne R. Changes in 
Epithelium, Stroma, and Lumen Space Correlate More Strongly with Gleason Pattern 
and Are Stronger Predictors of Prostate ADC Changes than Cellularity Metrics. 
Radiology. 2015;277(3):751-762. 

55. Armato SG, 3rd, Huisman H, Drukker K, et al. PROSTATEx Challenges for 
computerized classification of prostate lesions from multiparametric magnetic 
resonance images. J Med Imaging (Bellingham). 2018;5(4):044501. 

56. Abraham B, Nair MS. Computer-aided classification of prostate cancer grade groups 
from MRI images using texture features and stacked sparse autoencoder. Comput 
Med Imaging Graph. 2018;69:60-68. 

57. Vente C, Vos P, Hosseinzadeh M, Pluim J, Veta M. Deep Learning Regression for 
Prostate Cancer Detection and Grading in Bi-Parametric MRI. IEEE Trans Biomed Eng. 
2021;68(2):374-383. 

58. Duran A, Dussert G, Rouviere O, Jaouen T, Jodoin PM, Lartizien C. ProstAttention-
Net: A deep attention model for prostate cancer segmentation by aggressiveness in 
MRI scans. Med Image Anal. 2022;77:102347. 

59. T JMC, Arif M, Niessen WJ, Schoots IG, Veenland JF. Automated Classification of 
Significant Prostate Cancer on MRI: A Systematic Review on the Performance of 
Machine Learning Applications. Cancers (Basel). 2020;12(6). 

60. Fatemi Y, Danyali H, Helfroush MS, Amiri H. Fast T2 mapping using multi-echo spin-
echo MRI: A linear order approach. Magn Reson Med. 2020;84(5):2815-2830. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 18, 2022. ; https://doi.org/10.1101/2021.06.24.21259440doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.24.21259440


 21 

61. Russo G, Mischi M, Scheepens W, De la Rosette JJ, Wijkstra H. Angiogenesis in 
prostate cancer: onset, progression and imaging. BJU Int. 2012;110(11 Pt C):E794-
808. 

62. Tretiakova M, Antic T, Binder D, et al. Microvessel density is not increased in 
prostate cancer: digital imaging of routine sections and tissue microarrays. Hum 
Pathol. 2013;44(4):495-502. 

63. van Niekerk CG, van der Laak JA, Hambrock T, et al. Correlation between dynamic 
contrast-enhanced MRI and quantitative histopathologic microvascular parameters 
in organ-confined prostate cancer. Eur Radiol. 2014;24(10):2597-2605. 

64. Miyata Y, Sakai H. Reconsideration of the clinical and histopathological significance 
of angiogenesis in prostate cancer: Usefulness and limitations of microvessel density 
measurement. Int J Urol. 2015;22(9):806-815. 

65. Reynaud O. Time-dependent diffusion MRI in cancer: tissue modeling and 
applications. Front Phys. 2017;5:58. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 18, 2022. ; https://doi.org/10.1101/2021.06.24.21259440doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.24.21259440


 22 

Tables 
 
Table 1 Summary of Demographic Data. Note: except where indicated, data are numbers of 

participants. Numbers in parentheses are ranges. The index lesion was defined as the 

highest scoring lesion identified on mpMRI with Likert scores (3-5). PSA = prostate specific 

antigen. 

Parameter Cohort with biopsy 

Number of Participants 44 

Median age (y) 67 (49-79) 

Median PSA level (ng/ml) 7.96 (0.83-72.11) 

Highest Gleason grade of biopsied index lesion 
 

Benign 22 

3+3 6 

3+4 18 

≥4+3 13 

Median no. of total cores 23 (6-36) 

Median no. of sites 2 (1-13) 

Median no. of positive cores 5 (1-15) 

Median maximum cancer core length (mm) 8 (1-14) 

Median maximum cancer core length (%) 75 (10-100) 

Median Prostate volume (ml) 43 (15-108) 

 
Table 2 Overall classification performances. Accuracy, precision, recall, F1-score and kappa for the 

apparent diffusion coefficient (ADC) maps obtained from multi-parametric MRI (mp-MRI), classic 

VERDICT and rVERDICT (using only the intracellular volume fraction fic maps or all the parametric 

maps).  

Input Accuracy Precision Recall F1-score Kappa 
ADC mp-MRI 0.739 0.794 0.738 0.734 0.549 

fic classic VERDICT 0.769 0.805 0.769 0.762 0.661 

f0ic rVERDICT 0.846 0.865 0.846 0.838 0.773 

All maps classic VERDICT 

(fic, fees, R) 

0.785 0.829 0.784 0.788 0.788 

All maps rVERDICT 

(f0ic, f0ees, R, Dees, T2ic, 

T2vasc/ees, T1) 

0.862 0.885 0.862 0.859 0.815 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 18, 2022. ; https://doi.org/10.1101/2021.06.24.21259440doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.24.21259440


 23 

 
Table 3 Classification report (precision, recall, and F1-score) for each Gleason grade when using only 

the apparent diffusion coefficient (ADC) map from multi-parametric MRI (mp-MRI); all the parametric 

maps from classic VERDICT and all the parametric maps from rVERDICT with 5-class CNN (SE-

ResNet). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Input Class Precision Recall F1-score 
ADC mp-MRI Benign 0.613 0.950 0.745 

3+3 0.857 0.600 0.706 

3+4 0.789 0.750 0.769 

4+3 1.000 0.600 0.750 

>4+3 1.000  0.400 0.571 

All maps      

classic 

VERDICT 

(fic, fees, R) 

Benign 0.633 0.950 0.760 

3+3 1.000  0.800 0.889 

3+4 0.882 0.750 0.810 

4+3 0.857 0.600 0.706 

>4+3 1.000  0.600  0.750 

All maps 

rVERDICT 

(f0ic, f0ees, R, 

Dees, T2ic, 

T2vasc/ees, T1) 

Benign 0.818 0.900 0.857 

3+3 1.000 0.600 0.750 

3+4 0.800 1.000 0.889 

4+3 0.889 0.800 0.842 

>4+3 1.000 0.600 0.750 
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Figures 
 

 
Figure 1 Participation flow diagram. mp-MRI = multiparametric MRI. 

 

 
Figure 2 Flowchart of relaxation-VERDICT (rVERDICT) fitting using a fully connected deep neural 

network and Gleason score classification using a convolutional neural network. We classify the pre-

specified lesion ROIs on the rVERDICT parametric maps using a SE-ResNet, whose input is a 96x96 

patch with zeros everywhere except within the lesion ROI (dashed red boxes). The model then gives 

the corresponding Gleason score to the lesion minimizing the cross-entropy loss with respect to the 

histological grading. 
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Figure 3 Repeatability of the rVERDICT parameters. A) Correlation plots for all the rVERDICT 

parameters in the scan/rescan study. The corresponding R2 and ICC are reported for each of them, 

together with the identity line. B) Bland-Altman plots of the scan/rescan estimates for all the rVERDICT 

parameters. The corresponding CV is reported for each of them, together with the average (straight red 

line) ± 1.96 standard deviation (dashed red lines) of the difference. The dimensional parameters are in 

µm (apparent cell radius R); µm-3 (Cellularity); µm2/ms (extracellular-extravascular apparent diffusivity 

Dees) and ms (T1, intracellular T2ic and vascular/extracellular-extravascular T2vasc/ees). 
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Figure 4 Accuracy and precision of model fitting. A) The mean (data points) and variance (error bars) 
of the prediction for DNN and conventional non-linear least squares optimization are plotted against the 

known ground truth from numerical simulations. The identity line is also plotted to aid appreciating the 

accuracy of the prediction from both methods (higher the accuracy, closer the mean prediction to the 

identity line). The variance of the prediction (error bars) is a good indicator of the precision of the 

estimation: smaller the variance, higher the precision. To make the results visually clear, data points for 

the non-linear least squares were purposely moved slighted to the right. B) The probability density 

distribution of the estimates of the seven rVERDICT model parameters (S0 was fixed to 1) are plotted 
for seven ground truth values representative of PCa in TZ and PZ and 4,096 different random 

realizations of the other parameters, for both DNN and conventional non-linear least squares 

optimisation. The wider the distribution, the less robust the estimation and the lower the precision due 

to degeneracy and/or spurious minima. We quantified the width of the distributions through their 

standard deviations (S.D.) reported in each plot with corresponding matching colours. 
 

A

B

S.D.. = 0.112 / 0.064 S.D.: 0.104 / 0.066 S.D.: 4.1 / 1.7

S.D.: 144 / 76 S.D.: 30 / 15 S.D.: 461 / 96

S.D.: 0.72 / 0.27
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Figure 5 Comparison of T2 estimates from rVERDICT and independent measurements using a multi-

TE acquisition. The distributions show the probability density function of the estimated T2 values for all 

the voxels within the prostate volume for the best (A) and worst (B) cases. Median and [25th, 75th] 

percentiles for each distribution are also reported, together with the p values from a two-sided Wilcoxon 

rank sum test. 

 

 
Figure 6. Box-and-whisker plots of the rVERDICT and classic VERDICT parameters as a function of 

the Gleason grade groups. Only the differences with Bonferroni corrected p<0.05 are considered 

significant and the corresponding p values reported.  

 

 

 

 

Classic VERDICTrVERDICT

rVERDICTfic
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R
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Figure 7 A-C) Apparent diffusion coefficient (ADC) maps from multi-parametric MRI (mp-MRI); 

diffusion-weighted image (DWI) at b = 2000 s/mm2, classic VERDICT intracellular volume fraction fic 

and rVERDICT maps (intracellular volume fraction f0ic; extracellular-extravascular apparent diffusion 

coefficient Dees; vascular/extracellular-extravascular T2 relaxation time T2vasc/ees; T1 relaxation time) for 

three exemplar patients with different PCa: A) age in their 60’s, PSA 4.78 Gleason 3+3 MCCL 7 mm; 

lesion in the anterior gland; B): age in their 70’s, PSA 5.21 left posterior lesion Gleason 3+4 MCCL 14 

mm, left anterior lesion Gleason 3+3; C): age in their 70’s, PSA 8.68 Gleason 4+3, MCCL 10 mm; lesion 

in the left peripheral zone. Green arrows indicate Gleason grade 3+3, yellow arrows Gleason grade 

3+4 and red arrows Gleason grade 4+3. 
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Supporting Information 
 

 
Figure S1. Scheme and details of the specific SE-ResNet architecture used for the 5-class 

classification of Gleason scores. SE-ResNet combines ResNet with embedded “Squeeze-

and-Excitation (SE)" block that adaptively recalibrates feature response. SE blocks 

intrinsically introduce dynamics conditioned on the input, helping to boost feature 

discriminability. In SE-ResNet, SE was added before summation with the identity branch. 

 

Table S1. Overall classification performances for the chosen CNN architecture, SE-ResNet 

50, and the Densenet 264, which showed high capacity with multi-layer feature 

concatenation52. Accuracy, kappa and F1-score for the maps from rVERDICT (using only the 

intracellular volume fraction f0ic maps or all the parametric maps). 

 
 

Output size SE-ResNet-50
112 x 112 Conv, 7x7,64

56 x 56 Max pool, 3 x 3

56 x 56 Conv,1x1,64
Conv, 3x3,64

Conv, 1x1, 256
FC,[16, 256]

28 x 28 Conv,1x1,128
Conv, 3x3,128
Conv, 1x1, 512

FC,[32, 512]

14 x 14 Conv,1x1, 256
Conv, 3x3, 256

Conv, 1x1, 1024
FC,[64, 1024]

7 x 7 Conv,1x1, 512
Conv, 3x3,512

Conv, 1x1, 2048
FC,[128, 2048]

1 x 1 Global average pool, FC, softmax

x 3xt

x 4xt

x 6t

x 3xt

Residual

Global pooling

FC

ReLU

FC

Sigmoid

Scale

+

X

X

Network Input Accuracy Kappa F1-score 

Densenet 264 
rVERDICT f0ic 0.831 0.776 0.816 

All maps rVERDICT 0.800 0.739 0.794 

SE-ResNet 50 
rVERDICT f0ic 0.846 0.773 0.838 

All maps rVERDICT 0.862 0.815 0.859 
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Table S2. The relative contribution of each rVERDICT parameter map for the chosen 5-class 

CNN classifier, SE-ResNet 50, in terms of Accuracy, kappa and F1-score. 

rVERDICT 
parameter map 

Accuracy Kappa F1-score 

f0ic 0.846 0.773 0.838 

f0ees 0.831 0.819 0.832 

R 0.800 0.668 0.802 

Dees 0.846 0.876 0.848 

T2vasc/ees 0.800 0.700 0.797 

T2ic 0.815 0.683 0.817 

T1 0.876 0.837 0.874 

 
 
Conventional ADC measurements 
All participants were scanned with a diffusion-weighted echo-planar imaging sequence to 

estimate the apparent diffusion coefficient (ADC) maps (as part of mp-MRI) with: 

TR/TE=2753/80 ms; slice thickness 5 mm; no interslice gap; acquisition matrix 168 × 169 mm; 

b=0, 150, 500, 1000 s/mm2; and six directions per b value. The total imaging time was 5’16”. 

ADC maps were calculated by using all b values except b=0 to reduce perfusion effects66 and 

were calculated with the Camino Diffusion MRI toolkit67. 

 
Multi-TE T2-relaxometry MRI acquisition 
The multi-TE acquisition for independent estimation of T2 relaxation times in prostate 

consisted of a multi-echo spin-echo sequence with an echo spacing of 31.25 msec and 

TR=8956 msec. The other imaging parameters were: number of echo times=32; field of view 

(FOV)=180×180 mm; acquired voxel size=2×2×4 mm; scan duration=5’50”.   

 

Details on Model fitting with deep neural network (DNN) 
In this work, we performed the model fitting using the ‘MLPregressor’ implemented in Python 

scikit-learn 0.23 (https://scikit-learn.org). The input of our DNN is the signal in each MRI voxel, 

i.e. a vector whose elements are the DW-MRI signals for each of the ten measurements at the 

different b, TE and TR combinations. Therefore, each MRI voxel is considered as an 

independent vector of measurements, and no spatial relationship between voxels is 

considered, neither during training nor during prediction. The DNN then outputs a vector of 
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eight rVERDICT model parameters (or 3 model parameters in the case of classic VERDICT 

implementation). The DNN consists of three fully-connected hidden layers with 150 units, each 

characterised by a linear matrix operation followed by element-wise rectified linear unit 

function (ReLU), and a final regression layer with the number of output units equal to the 

number of tissue parameters to be estimated. The DNN is optimised by backpropagating the 

mean squared error (MSE) between ground truth model parameters and DNN predictions. We 

performed the optimisation with the adaptive moment estimation (ADAM) method68 for 1000 

epochs (adaptive learning rate with initial value of 0.001; one update per mini-batch of 100 

voxels; early stopping to mitigate overfitting; and momentum = 0.9) on 100,000 synthetic DW-

MRI signals (split into 80% for training and 20% for validation). We generate the synthetic DW-

MRI signals using equation [2] (or similarly [1]) with different values for the model parameters 

randomly chosen between biophysical plausible intervals: S0 = [0, maximum b=0 intensity x 

2], T1 = [10, 4000] ms, T2ic = [1, 150] ms, T2vasc/ees = [150, 800] ms, fees and f0ees = [0.01, 0.99], 

fic and f0ic = [0.01, 0.99], R = [0.01, 15] µm and Dees = [0.5, 3] µm2/ms. Note that we chose a 

value of 150 ms to separate the short and long T2 components during training, according to 

the rVERDICT’s assumptions. We also added Rician noise corresponding to SNR = 35 to 

consider experimental noise effect. For the final parameter computation, we used the DNN at 

the epoch with minimum validation loss.   

 

DNN model fitting assessment 
To assess the accuracy and precision of the DNN estimator, we generated synthetic DW-MRI 

signals with equation [2] in the main text and all the possible combinations of the seven model 

parameters using four values linearly distributed in the intervals: T1 = [10, 4000] ms, T2ic = [1, 

150] ms, T2vasc/ees = [150, 800] ms, f0ees = [0.01, 0.99], f0ic = [0.01, 0.99], R = [0.01, 15] µm and 

Dees = [0.5, 3] µm2/ms. These define a 7-dimensional grid comprised of 47 = 16,384 unique 

combinations of the seven model parameters and uniformly covering the whole parametric 

space of rVERDICT model. 

 

Multi-TE T2-relaxometry MRI analysis 
To provide an independent T2 estimation of the relaxation times T2ic and T2vasc/ees assumed 

in rVERDICT, we fitted the following equation to the multi-TE data:  

 

𝑀(𝑇𝐸) = 𝐴&% exp ;−
)*
)++)

< + 𝐴"#$%/''$ exp 0−
)*

)+&'()/**(
3 + 𝜀  [S1] 
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where Ai are the relative signal intensities of the compartment i=ic;vasc/ees, T2i are the 

corresponding T2 values, with T2ic<T2vasc/ees, and e is a plateau constant, accounting for non-

zero noise floor in magnitude images and found to improve significantly the T2 estimates46. 

 

For the fitting of equation [S1] to the T2-relaxometry MRI data, we used the same DNN 

described in the previous section, trained on 100,000 synthetic signals obtained using 

equation [S1] with different random values between reasonable intervals: Ai=ic,vasc/ees = [0, 

maximum b=0 intensity x 2], T2ic = [1, 150] ms, T2vasc/ees = [150, 800] ms, and e = [0.01, 0.20]. 

We added Rician noise with SNR = 25 to match experimental noise conditions. 

 
Assessing rVERDICT assumptions for the extracellular-extravascular compartment 
In this work we proposed rVERDICT as extension of classic VERDICT to account for 

compartmental relaxation properties. As such, in rVERDICT we keep the same assumptions 

as in classic VERDICT. One of these is that the stroma is associated to the extracellular-

extravascular compartment. In the original VERDICT work 11, this choice was motivated by 

experimental evidence that the diffusion-weighted MR signal from diffusion restricted in 

spheres highly correlates with epithelial tissue compartment and it was validated with histology 
15,44. Since VERDICT is a three-compartment model having one compartment explicitly 

modelling vasculature, the only other compartment able to account for tissue contributions 

different from diffusion restricted in spheres (e.g. stroma) is the extracellular-extravascular 

compartment. Hence, stroma and lumen were assumed to both contribute to the signal of this 

compartment. Here we performed numerical simulations showing that indeed the overall 

diffusion-weighted signal decay from stroma is closer to that of lumen, further support this 

assumption. 

We used a complete four-compartment model: 

 

𝑆-.- =	𝑆'/&-0'1&23 + 𝑆$-4.3# + 𝑆123'5 + 𝑆"#$%21#-24' = 

=	𝑓'/&-0'1&23𝑒
( !$
!%*-+./*0+12𝑒(6789*-+./*0+12 + 𝑓$-4.3#𝑒

( !$
!%(.342'𝑒(6789(.342' +

𝑓123'5𝑒
( !$
!%012*5𝑒(6789012*5 + 𝑓"#$%21#-24'𝑒

( !$
!%&'()10'.13*𝑒(6789&'()10'.13* [S2] 

 

with the TE and b values used in our experiments and the tissue model parameters reported 

by previous studies at 3T for PCa in the PZ (midgland) in both ex vivo (extrapolated from 30) 

and in vivo (extrapolated from 29). For the vasculature component, we used reference values 

from 38. These values are summarized in the table below and the results of the simulated 
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signals are reported in the Figure S2, together with the mean squared error computed between 

Sepithelium and Sstroma, mseepithelium-stroma, and Slumen and Sstroma, mselumen-stroma. 

 

 
ex vivo PCa - PZ (midgland) in vivo PCa - PZ (midgland) 

 
f T2 [ms] ADC [𝜇m2/ms] f T2 [ms] ADC [𝜇m2/ms] 

Epithelium 0.405 80.000 0.250 0.485 80.000 0.430 

Stroma 0.350 50.000 0.800 0.355 50.000 1.480 

Lumen 0.220 145.000 2.000 0.135 665.000 2.800 

Vasculature 0.025 175.000 9.000 0.025 175.000 9.000 

 

 
Figure S2. Comparison of the individual signal contributions to the total diffusion-weighted 

MRI signal (Stot) predicted according to the equation [S1] and the protocol used in this study. 

We focus on Sstroma and the assumption of classic VERDICT that its signal signature is more 

like Slumen (lower mse) than Sepithelium (higher mse).  

 

We found that in both the ex vivo and in vivo simulated cases, the signal decay from stroma 

is closest to that of lumen (i.e., lowest mse), suggesting that, if only three compartments are 

modelled, then the lowest error can be achieved by coupling the signal from lumen and stroma, 

as the VERDICT model assumes.  

 

Recent experimental evidence points towards stroma compartment having a T2 value closer 

to that of the epithelium 29,30, we also assessed using these numerical simulations how 

assuming a unique average T2 for stroma and lumen could affect the accuracy of estimating 

f0ic. We have fitted rVERDICT to the Stot we simulated for these two PCa conditions, adding 

Rician noise with SNR = 35 like in our experiments, and evaluated the average error of our 

estimates with respect to the ground-truth value of epithelial signal fraction over 1,000 different 
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noisy instances. The results are reported in Supplementary Figure S3. We found that this 

assumption leads on average to underestimate the true epithelial signal fraction by ~14 

percentage points in the ex vivo case and by ~20 percentage points in the in vivo case. This 

bias reduces to ~7 and ~10 percentage points, respectively, when high SNR = 100 can be 

achieved. 

However, these results also show that in both cases, rVERDICT (red boxes in Figure S3) 

reduces the error of classic VERDICT (black boxes in Figure S3) on the estimated signal 

fractions modelling intracellular (fic), extracellular/extravascular (fees) and vascular (fvasc) 

compartments by respectively ~65, ~93 and ~12 percentage points for the ex vivo and ~64, 

~83 and ~20 percentage points for the in vivo case.  

 
Figure S3. Comparison of the error (i.e. difference with the ground-truth values known by 

simulation design) in the estimated signal fractions modelling intracellular (ic), 

extracellular/extravascular (ees) and vascular (vasc) compartments using classic VERDICT 

(black boxes) and rVERDICT (red boxes), for ground-truth values representative of PCa in the 

PZ in both ex vivo and in vivo conditions, reported in the table above. 

 

Accuracy of estimating the long T2 relaxation times 
As we have also highlighted in the limitation section in Discussion, the estimates of long T2 

components may not be very accurate due to the limited maximal TE used in our sequence 

(90 ms). To assess how accurate our estimates of long T2 values are, we have performed 

simulations of a two-compartment system with a short (<=150 ms) and a long (>=150 ms) T2 

component using equation [S1] and evaluated the accuracy and precision of the bi-exponential 

fitting using maximal TE of 90 ms and different SNR by adding corresponding Rician noise. 

We simulated 30x30x30 = 27,000 different combinations of short and long T2, with different 

signal fractions of short T2 component, obtained sampling a uniform grid with 30 steps: [signal 

fraction of short T2, short T2, long T2] = ndgrid(linspace(0,1,30), linspace(1,150,30), 
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linspace(150,800, 30)). The results of these simulations are shown in Figure S4 and they 

suggest an error in the estimated values of the long T2 within ±5% of the true value for SNR 

= 35 (case of our experiments). 

 
Figure S4. Accuracy and precision of the estimates of the two major T2 components in the 

prostate tissue using maximal TE of 90 ms, as in our experiments. The red solid lines show 

the identity lines; the red dashed lines the ±10% interval; the solid blue lines the mean 

estimates of the three parameters over different noisy instances; the blue shadows the 

corresponding standard deviation. We found that up to SNR ~ 60, we have very good accuracy 

for all the model parameters as well as small standard deviation (i.e. within ±10% of the true 

value), suggesting high precision. For progressively lower SNR values, the accuracy 

decreases, with underestimation of the long T2 components for T2 values >~ 400 ms. 

However, the error in the estimation of the long T2 component is within  ±5% of the true value 

for SNR = 35 (case of our experiments). 

 
Additional information on the regions of interest (ROI) definition 
The ROIs were informed by the biopsy locations determined by two reads of the participant's 

multiparametric MRI by uro-radiologists at our specialist centre. Differences in reports were 

resolved in a multi-disciplinary meeting. The biopsy targets were indicated on a pictorial report, 

which was used by a board-certified radiologist to draw ROIs on the lesions on the parameter 

maps. The radiologist was blinded to histology results. The pictorial reports were used by 
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experienced urologists to carry out MRI-targeted biopsies using ultrasound guidance. MRI 

targets were matched to real-time ultrasound imaging using cognitive visual registration. This 

method has been used successfully at our centre for several years and results published in 

multicenter trials such as the PRECISION prostate trial 1. Unexpected biopsy results were also 

discussed at a multi-disciplinary meeting and repeated if there was a concern for sampling 

error. We did not include any false positives in this study. Most of the ROIs were 2D. Only in 

a few cases (less than 6 ROIs) the observable lesions extended to neighbouring slices and in 

those cases 3D ROIs were considered, but always 2D patches ( one for each slice) were fed 

to the CNN. 

 

 
Figure S5. Exemplar comparison of fic, fees, and R maps from classic VERDICT and 

corresponding ones from rVERDICT for the patient in Figure 6b: age in their 70’s, PSA 5.21 

left posterior lesion Gleason 3+4 MCCL 14 mm (yellow arrow), left anterior lesion Gleason 

3+3 (green arrow). We observe generally higher fic estimates, and lower fees estimates, 

especially in the cancerous areas, in good agreement with the simulations results reported in 

Figure S3 and Figure 7 from the main text. Regarding R, the estimates of cell radius from both 

rVERDICT and VERDICT ranges from ~8 to ~11 µm, but their spatial distribution over the 

whole prostate tissue is different between the two methods.    
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