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Abstract 
The within-host viral kinetics of SARS-CoV-2 infection and how they relate to a person’s 
infectiousness are not well understood. This limits our ability to quantify the impact of 
interventions on viral transmission. Here, we develop data-driven viral dynamic models of SARS-
CoV-2 infection and estimate key within-host parameters such as the infected cell half-life and the 
within-host reproductive number. We then develop a model linking VL to infectiousness, showing 
that a person’s infectiousness increases sub-linearly with VL. We show that the logarithm of the 
VL in the upper respiratory tract (URT) is a better surrogate of infectiousness than the VL itself. 
Using data on VL and the predicted infectiousness, we further incorporated data on antigen and 
reverse transcription polymerase chain reaction (RT-PCR) tests and compared their usefulness in 
detecting infection and preventing transmission. We found that RT-PCR tests perform better than 
antigen tests assuming equal testing frequency; however, more frequent antigen testing may 
perform equally well with RT-PCR tests at a lower cost, but with many more false-negative tests. 
Overall, our models provide a quantitative framework for inferring the impact of therapeutics and 
vaccines that lower VL on the infectiousness of individuals and for evaluating rapid testing 
strategies. 
 
 
Significance 
Quantifying the kinetics of SARS-CoV-2 infection and individual infectiousness is key to 
quantitatively understanding SARS-CoV-2 transmission and evaluating intervention strategies. 
Here we developed data-driven within-host models of SARS-CoV-2 infection and by fitting them 
to clinical data we estimated key within-host viral dynamic parameters. We also developed a 
mechanistic model for viral transmission and show that the logarithm of the viral load in the upper 
respiratory tract serves an appropriate surrogate for a person’s infectiousness. Using data on how 
viral load changes during infection, we further evaluated the effectiveness of PCR and antigen-
based testing strategies for averting transmission and identifying infected individuals.   
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Introduction 
SARS-CoV-2 is a new human pathogen that causes COVID-19 (1). It is highly contagious and 
spread rapidly across the globe and has caused more than 3.8 million deaths worldwide as of June 
2021. Extensive efforts to develop effective treatments and vaccines are underway, with some 
successful vaccines already in use (2, 3). At the molecular level, SARS-CoV-2 enters host cells 
via the cell surface receptor ACE-2 (angiotensin converting enzyme 2) (4). Structural analysis 
suggests that SARS-CoV-2 binds to the receptor >10-fold more efficiently than SARS-CoV-1 (5), 
partially explaining the comparatively high contagiousness of the virus (6-8).  
 
It is likely that the ability of the virus to effectively infect cells in the upper respiratory tract (URT) 
allows the virus to reach a high viral load (VL) and be effectively transmitted even before symptom 
onset (9, 10). However, it is not clear how VL, infectiousness and symptom onset are quantitatively 
related. Previously, both VL and log10 VL have been used as surrogates for infectiousness of 
influenza (11) and SARS-CoV-2 (12, 13). A quantitative understanding of the relationship is 
critical for both non-pharmaceutical and pharmaceutical interventions. First, it would allow for 
more precise predictions of the infectiousness of infected individuals, including children and 
asymptomatic individuals, based on their VL measurements (14, 15). This would in turn help to 
better inform public health policy decisions. Second, as administration of vaccines or effective 
therapeutics should lead to lowered VLs (16), a quantitative understanding will inform how these 
changes impact infectiousness and, in turn, SARS-CoV-2 transmission (17). This becomes 
particularly important in current outbreaks such as that in India where increases vaccination has 
been proposed as one means of controlling the epidemic. Third, it would provide better insight into 
a person’s infectiousness throughout the course of infection and thus inform test strategies for 
work/school reopening, travel, etc. The effectiveness of test, trace and quarantine as control 
strategies heavily depends on the sensitivity and specificity of the tests and rate of testing being 
implemented (18). It was recently proposed that antigen tests with low sensitivity are preferred 
over highly sensitive RT-PCR tests, because of their potential for wide coverage and short turn-
around time (12). However, the effectiveness of this strategy has not been evaluated based on VL 
and infectiousness dynamics inferred from data.  
 
Here, we construct viral dynamic models of SARS-CoV-2 upper respiratory tract (URT) infection 
and a model linking VL to infectiousness. Mathematical modeling has been applied, by us and 
others, to understand SARS-CoV-2 infection in hospitalized patients and the potential impact of 
therapy (19-22). However, there were large uncertainties in model parameter estimates because in 
almost all studies, viral dynamic models were fit to data that were taken days after symptom onset 
without knowledge of the patients’ infection dates. We resolve this issue by using two unique sets 
of data to quantify key within-host parameters, and by using a variety of clinical and 
epidemiological data to inform the quantitative relationship between VL and infectiousness. Using 
this relationship, we further evaluate the effectiveness of testing strategies using either antigen or 
RT-PCR tests at different testing frequencies. 
 
Results 
Datasets. We collected two unique sets of URT VL data for model inference. The first, the 
“German dataset”, contains VL measurements from 9 individuals in the first cluster of infections 
in Germany (23). All individuals had mild symptoms. VLs were measured longitudinally starting 
several days after symptom onset. We excluded one individual (Patient 16 in Ref. (24)), because 
their first VL measurement was too long after infection. A unique feature of this dataset is that the 
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detailed transmission history, including the infection dates and dates of symptom onset, were 
reported (24). However, this data does not have good sampling during the initial expansion before 
the peak VL. Thus, we include a second data set, the NBA (National Basketball Association) 
dataset, which was taken from a study where individuals (staff and players) were regularly tested 
during an NBA tournament in 2020 (25). We selected 9 individuals sampled frequently, including 
during the virus expansion phase. Below, we show that these unique features of the two datasets 
allow us to jointly infer the within-host SARS-CoV-2 dynamics.  
 
Dynamics of early infection. The SARS-CoV-2 dynamics in the URT are typical of an acute 
respiratory infection, i.e., VLs increase to a viral peak and decline afterwards (Fig. 1). Thus, we 
constructed a target cell limited (TCL) model and an innate response model using frameworks 
developed for influenza infection (26, 27) (see Methods and SI Appendix). In particular, in the 
innate response model, we assumed that innate immune mediators, such as interferons, put target 
cells into an antiviral state that is refractory to viral infection (27). We first fit these two models to 
the NBA dataset to estimate the time of infection. Because multiple measurements were taken 
before peak VL in the 9 individuals we chose to study, the times of infection can be estimated 
relatively reliably. Both the TCL and the innate response model gave similar estimates of infection 
time (Table S1). 
 
We then fit the TCL model and the innate response model to the data from both datasets 
simultaneously using a nonlinear mixed effect modeling approach (see Methods). We also tested 
variants of the innate response model that assume the innate immune mediators block infection of 
target cells or reduce virus production from infected cells (see SI Appendix). According to the 
Akaike information criterion (AIC) scores, the best model overall is the original model assuming 
the innate immune mediators convert target cells into refractory cells (Table S2). This model fits 
both datasets well (Fig. 1) and it describes both the upslope and downslope of the viral dynamics 
in the NBA dataset. This gives confidence in our model predictions of the early viral dynamics for 
individuals in the German dataset. We then tested if there is any difference in estimated parameter 
values between the two datasets by including the source of the dataset, i.e., the NBA or the German 
dataset, as a covariate in the model fitting. We found that there was no statistical support for 
including the origin of the datasets as a covariate (Table S2). Therefore, we use the innate response 
model without the covariate for further analysis and term this model the innate response model for 
short. 
 
According to the best-fit parameter values, the infected cell death rate 𝛿 is 1.7 d-1 on average (Table 
1). Because the model includes an eclipse phase of length 1/k, where k=4 d-1, the average lifespan 
of infected cells is  !

"
+ !

#
= 0.84  days. We estimated that the within-host basic reproductive 

number, R0,within, varies over a range between 2.6 and 14.9, with mean 7.4 (SD: ±3.8) (Table S3).  
 
We further tested how robust our estimates are with respect to variations in the fixed parameter 
values in the model by varying each of those in the ranges shown in Table 2 and then re-fitting the 
model to the data. Across the scenarios examined, the estimates of the death rate of infected cells 
were very consistent between 1.6 and 1.9 d-1 and the mean R0,within ranged between 5.8-8.9 (Table 
S4). Overall, the estimated parameters and viral dynamic characteristics were robust against 
variations in the fixed parameters (Tables S4). 
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Probability of transmission. We next examine how VL is related to the infectiousness of a person 
by constructing a probabilistic model to describe the various steps in viral transmission from viral 
shedding to establishment of infection (see Fig. 2A for a schematic). We define infectiousness as 
the probability that an infected person, i.e., a donor, will shed one or more infectious viral particles 
leading to successful infection of a recipient for a typical contact of relatively short duration, 𝜏. 
The typical contact here is defined the same as in the epidemiological survey study in Mossong et 
al. (28). Note that the probability defined here only characterizes the infectiousness of a person 
arising from virus dynamics in the URT given a contact, and it does not assume any frequency of 
typical contacts. The expected number of transmissions that a person causes can be calculated if 
the contact pattern of the person is known. 
 
During a contact, the donor sheds both infectious and non-infectious viruses, and a transmission 
event occurs when one or more infectious viruses reach the recipient and establishes an infection 
(Fig. 2A). We first consider the relationship between the number of infectious viruses, 𝑉$%&, and 
the measured VL, 𝑉, in a patient sample, e.g. a swab, using three sets of cell culture positivity data, 
i.e. Jaafar et al. (29), Jones et al. (30) and Kohmer et al. (31). In these three datasets, a total of 
3790, 631 and 75 RT-PCR positive nasopharyngeal samples, respectively, with known cycle 
threshold (Ct) counts or VLs were tested for the presence of infectious virus using cell culture 
assay.  
 
We examined the following three models describing the relationship between 𝑉$%& and V: 1) 𝑉$%& 
is proportional to V,  2) a power-law 𝑉$%& = 𝜔𝑉' , where 𝜔 and h are constants and 3) a Hill 

function: 𝑉$%& = 𝑉(
)!

)!*+"!
, where 𝑉(  and 𝐾(  are constants. The probability of a cell culture 

testing positive can be expressed as 𝑝,-.$/$01 = 1 − exp3−𝑉$%&𝜚5, where 𝜚 is the probability an 
infectious virus will establish infection in the cell culture (see SI Appendix). Note that because 𝜚 
always appears as a product with 𝜔 or 𝑉(  in the expression of 𝑝,-.$/$01 , 𝜚 and the number of 
infectious particles, 𝑉$%&, cannot be independently estimated from the data we used here. However, 
the estimated values of ℎ or 𝐾( describes how 𝑉$%&  changes with V. 
 
Fitting the three versions of this model to the datasets (SI Appendix), we found that the linear model 
describes all datasets poorly (Fig. 2B). The saturation model is the best model to describe the data 
from Jaafar et al. (Fig. 2B and Table S5), and the best fit parameter values are ℎ = 0.51 and 𝐾( =
8.8 × 102  RNA copies/ml (Table S6). Both the power-law model and the saturation model 
describe the data from Jones et al. and Kohmer et al. well (Fig. 2B). The parameter h is estimated 
to be 0.53 and 0.45, respectively (Table S6), consistent with the exponent h estimated from fitting 
the saturation model to the Jaafar et al. data. This strongly suggests that the level of infectious 
viruses increases sub-linearly with increases in viral load (with the exponent h likely being 
between 0.4-0.6). Because the saturation model describes all datasets well, we will mainly use this 
model for the analyses below. However, we reason that the evidence is not strong enough to rule 
out the power-law model, because the saturating behavior observed in Jaafar et al. may arise from 
other factors that are not part of the transmission process, such as assay noise. In addition, another 
study estimating transmissibility from viral load and contact tracing data did not find a saturation 
effect on viral load (32).  
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We next consider viral shedding from a donor and the establishment of infection in a recipient. 
We first used the saturation function above and assumed that the mean amount of infectious virus 
shed is proportional to the amount in a sample, 𝑉$%& , that the exact amount is Poisson distributed 
and infection involves binomial sampling (see Methods). Then, the probability of one or more 
virions generating a successful transmission event for a typical contact at time 𝑡 as 

𝑝(𝑡) = 1 − 𝑒
34 #(%)!

#(%)!'("
! ,        [1] 

where 𝜃 is a composite parameter incorporating the fraction of infectious viruses reaching to the 
recipient and the probability of establishing an infection (SI Appendix). Note that when 𝜃  is 
small, 	𝑝(𝑡)  can be approximated by the Hill function 𝜃 )(/)!

)(/)!*+"!
. A Hill function was used 

previously to model the transmission probability for human immunodeficiency virus (33), 
influenza (34, 35), and more recently SARS-CoV-2 (21). 
 
The values of ℎ and 𝐾( are determined using the cell culture data above. 𝜃 is a constant such that 
the maximum transmission probability, i.e., the maximum infectiousness, is 1 − 𝑒34 , which is 
approximately 𝜃 for 𝜃 <<1. Multiple epidemiological studies indicate that the secondary attack 
rate per typical contact is low (i.e., less than 20%) (36-38). We thus set 𝜃 = 0.20 in the analysis 
below so that the maximum transmission probability is approximately 20% for a typical contact. 
 
Setting 𝜃 = 0.20 , ℎ = 0.51 and 𝐾( = 8.9 × 102  RNA copies/ml, we calculated how 
infectiousness depends on viral load (Fig. 2C) and how infectiousness varies over time post-
infection, p(t), i.e., the infectiousness profile, for each individual (Fig. 2D and Fig. S1). If we 
define the infectious period as the period when the infectiousness, p(t), is above 0.02 (i.e. 10% of 
the maximum probability), the infectious period ranges between 1.9 and 7.9 days with a mean of 
5.5 days across thee 17 individuals (Fig. S1). For the individuals in the German dataset where the 
date of symptom onset is known, we calculated the presymptomatic fraction of infectiousness by 
dividing the area under the infectiousness curve 𝑝(𝑡) before symptom onset by the total area under 
the infectiousness curve. This fraction represents the expected fraction of presymptomatic 
transmissions (if a person is not rapidly isolated after symptom onset). We found that the fraction 
ranges between 0% and 20% (Fig. 2D and Fig. S1). Interestingly, there is a statistically significant 
association between the duration of the incubation period, i.e., the time between infection and 
symptom onset, and the predicted probability of presymptomatic transmission (Fig. 2D; p-
value=0.03). This suggests that the longer the incubation period, the more likely presymptomatic 
transmission occurs, and presymptomatic transmission is mostly driven by individuals who have 
an incubation period greater than 5 days.   
 
To further cross validate this choice of parameters in the infectiousness model, we compared our 
model predictions with data from other epidemiological studies. First, from the infectiousness 
profiles predicted by our model, we calculated using Eq. [6] (see Methods) the expected serial 
interval for each individual (assuming random contacts) and found the mean serial interval across 
all 17 individuals studied to be 7.1 days. This is consistent with a mean serial interval of 6.5-8 days 
in the absence of active tracing and isolation efforts as estimated in Ref. (39). Second, from the 
infectiousness profile, we calculated using Eq. [7] (see Methods) the number of potential 
transmissions for each individual assuming that there are on average 13.4 typical contacts per day 
according to the estimates from several European countries reported in Mossong et al. (28).  We 
then estimated the expected reproductive number of SARS-CoV-2 at the epidemiological level, 
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𝑅7,1,$, by taking the mean of the numbers of potential transmissions. We estimated that 𝑅7,1,$ is 
5.2 for the 17 individuals (see Methods), within the range of 𝑅7,1,$ 	values estimated previously for 
European countries (7). Therefore, these independent validations support our infectiousness model 
in Eq. 1. 
 
Similarly, we derive the probability of transmission using the power-law function as 

𝑝(𝑡) = 1 − 𝑒39)(/)!.         [2] 
where 𝜙  is a constant. We estimated ℎ = 0.53  from the data by Jones et al. (30), and 𝜙 =
0.000024  such that the model predicted mean serial interval and 𝑅7,1,$  (6.9 days and 5.1, 
respectively) are consistent with epidemiological studies as was the case for the saturation model. 
In general, the model predictions of infectiousness are similar to the predictions using the 
saturation model when VL is lower than 107 copies/ml; however, the predictions of the two models 
diverge when the VL is higher (Fig. 2C). The power function estimates similar levels of 
infectiousness to the estimates of the saturation model except for one individual with a high 
infectiousness (Fig. 2D,E, and Figs. S2 and S3). It estimates similar fraction of presymptomatic 
infections as the saturation model (Fig. 2E). Again, the model predicts that the fraction of expected 
presymptomatic transmission increases with incubation period. 
 
Lastly, we tested whether the linear model is consistent with epidemiological data by assuming 
that 𝑉$%&  is a constant fraction of V (Fig. S4). The model predicts that the fraction of 
presymptomatic infections is extremely small, i.e., less than 8% in each of the patients in the 
German dataset (Fig. S4B), inconsistent with epidemiological data (9, 10, 40). Therefore, datasets 
from cell culture experiments as well as epidemiological studies suggest that the fraction of virus 
particles that are infectious is not a constant over the course of infection.  
 
Log VL is a better surrogate measure of infectiousness than VL. There are two commonly used 
surrogate measures of infectiousness (11): the VL and the logarithm of VL. The total 
infectiousness of a person is then approximated by the area under the VL curve (AUC) and the 
area under the log10 of the VL curve (AUClog), respectively.  
 
To identify the appropriate surrogate measure for SARS-CoV-2 infection, we first compared the 
predictions of these two measures with the epidemiological evidence that a large fraction (>30%) 
of transmissions occur during the presymptomatic stage of SARS-CoV-2 infection (9, 10, 40). 
Because the dates of infection and symptom onset are only available in the German dataset (23), 
we focused our analysis on this dataset. When AUC is used as a surrogate for infectiousness, this 
is very similar to using the linear model for infectiousness above. Therefore, AUC predict very 
small fractions of presymptomatic transmission, i.e., less than 8% in each of the patients in the 
German dataset, inconsistent with epidemiological data (9, 10, 40). This suggests the VL and its 
AUC are not good surrogates for infectiousness.   
 
In contrast, when AUClog is used as a surrogate, we predict a sizable fraction of presymptomatic 
transmissions, between 2% and 27%, which is near the lower bound estimate in Ref. (10). We then 
correlated AUClog with the cumulative infectiousness curve calculated from the probability model 
based on us saturation function, i.e. Eq.1, and found that there exists a strong correlation between 
the two (Fig. S5A). In addition, the fractions of presymptomatic infections predicted by AUClog 
are very close to those predicted using the probability model (Fig. S5B). Therefore, the logarithm 
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of VL, and its corresponding AUClog, serve as a better surrogate for infectiousness than the VL 
and its corresponding AUC. 
 
Implications for testing strategies. Using our best-fit model of how VL (Fig. 1) and 
infectiousness (Fig. 2D) vary with time since infection, we analyzed the impact of possible testing 
strategies used to reduce the potential for SARS-CoV-2 transmission. We considered two different 
types of tests: 1) RT-PCR, generally considered the gold standard, because of its very high 
sensitivity and specificity, although its performance depends on the VL and also on the quality of 
the sample collected (41); and 2) antigen tests, which although less sensitive, generally have faster 
turn-around time (minutes instead of hours to days) and can be self-administered.  
 
We studied a hypothetical medium-sized college setting (as described in Paltiel et al. (41)). In this 
scenario, during a 12-week semester in a cohort of 5000 students/staff, we assume that there were 
500 people infected at random times. We implemented four testing frequencies (every person 
every day, or every 3, 5, or 7 days), using RT-PCR or antigen testing. We assumed the sensitivity 
for each test varied with time since infection as in Fig. S6 (adapted from Refs. (31, 42)), and that 
the turnaround time was 1 day for RT-PCR and minutes for the antigen test. Given that whether 
infection is detected or not, as well as the time of detection, is probabilistic, for each scenario we 
ran 100 simulations using the best-fit model parameter values for each of the 17 individuals. We 
summarized the fraction of the 500 infections detected, the number of false negatives (some people 
may be false negatives multiple times), the average time of infection until detection, as well as the 
fraction of total infectiousness averted by detecting someone (assuming that person is isolated) in 
Fig. 3. The fraction of total infectiousness averted was defined as the area under the infectiousness 
curve from time of detection until resolution of infection in detected individuals divided by their 
total infectiousness (AUC) averaged over the 500 people infected. 
 
We found that with a RT-PCT test, a large fraction (>80%) of infected individuals can be detected 
even with a testing frequency of every 7 days (Fig. 3A); whereas with an antigen test, testing at 
least once every 3 days is needed to achieve >80% of detection. Frequent tests (every 3 days for 
RT-PCR tests and every day for antigen tests) are needed to identify and isolate infected 
individuals early and thus avert a large fraction of infectiousness (Fig. 3C and D). 
 
Overall, the results of these simulations show that although RT-PCR tests perform better than 
antigen tests in detecting infected individuals and preventing transmission, more frequent antigen 
testing, e.g. every day or every 3 days, is comparable to less frequent RT-PCR tests, at the expense 
of many more false-negative tests (Fig. 3B). This indicates that frequent antigen tests, potentially 
self-administered at home could be an important tool in combating spread of infection.  
 
Discussion 
In this study, we constructed mathematical models to describe the VL kinetics of SARS-CoV-2 in 
the upper respiratory tract, and their relationship with the infectiousness of an individual. Fitting a 
viral dynamic model that included an innate immune response to data from Refs. (23) and (25), 
we estimated several key parameter values. The death rate of productively infected cells was 
estimated to be around 1.7 d-1. Thus, once infected cells start producing viruses they live on 
average 0.6 days. We estimated the mean within-host reproductive number, R0,within, in the URT 
to be 7.4 with variation among individuals examined, ranging between 2.6 and 14.9. For 
individuals with known dates of infection and symptom onset, we found that longer incubation 
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periods had higher potential for presymptomatic transmission. A similar finding was reported in a 
recent study estimating the fraction of presymptomatic transmissions by the duration of the 
incubation period from transmission pair data (43). 
 
To model viral transmission, we estimated the relationship between the number of infectious 
viruses in a sample and the sample VL by fitting models to three datasets on infectious virus cell 
culture positivity (29-31). This led to several interesting findings. First, a consistent finding across 
the three datasets was that the number of infectious viruses does not increase linearly with 
increases in viral load, suggesting viral load itself or the area under the viral load curve is not a 
good surrogate for infectiousness. Instead, we found that the number of infectious viruses increases 
sub-linearly with increases in viral load. This makes log VL or area under the log VL curve good 
surrogates for infectiousness. It is not clear what causes this sublinear relationship. One possible 
mechanism is the development of neutralizing antibodies when VL is high (44), which renders 
some viruses non-infectious. Further experiments are needed to understand this sublinear 
relationship. Second, a saturation effect on the infectious viruses when viral load is very high, 
e.g., >109 copies/ml, is needed to explain data from Jaafar et al. (29); however, saturation is not 
needed to explain the data from Jones et al. (30) and Kohmer et al. (31). The saturation effect, if 
present, could be due to assay inaccuracies at very high VLs or could arise from processes in vivo 
such as viral neutralization due to neutralizing antibodies in high VL samples. In fact, van Kampen 
et al. (45) showed that a neutralizing antibody titer of 1:20 or more in hospitalized patients was 
independently associated with the isolation of non-infectious SARS-CoV-2 in the respiratory tract. 
This inconsistency in results vis à vis saturation leads to uncertainties in predicting infectiousness 
when viral load is very high. Further experiments measuring the infectious virus concentration 
especially from samples with high VLs is needed to address this issue. In our study, irrespective 
of the model used, we found that the risk of transmission for a typical contact of relative short 
duration becomes high when the VL exceeds between 106 and 107 RNA copies/ml. This is 
consistent with the results from Wolfel et al. (23), where infectious viruses were recovered only 
when VL exceeded 2×105 RNA copies/swab and the results from Ref. (46) where infectious virus 
was mainly isolated from specimens with ≥ 106 virus N gene copies/ml. The results are also 
consistent with the findings in van Kampen et al. (45) where in hospitalized patients with COVID-
19 VLs > 107 copies/ml were associated with isolation of infectious virus.  
 
Using the predicted infectiousness over time for each individual, we evaluated the effectiveness of 
two testing platforms: RT-PCR and antigen tests. RT-PCR tests are highly sensitive; however, they 
are costly and may take days to obtain the result. On the other hand, antigen tests are less sensitive, 
but are easy to administer and provide results in less than an hour. Our modeling suggests that RT-
PCR tests are better than antigen tests at both detecting infected individuals and effectively 
reducing total infectiousness when testing is used as a tool for safe reopening of schools and 
workplaces. However, when frequent RT-PCR testing, say every 7 days, is not feasible due to its 
high cost and complexity in properly administering these tests, more frequent antigen tests (i.e., 
every 1-3 days) could be used instead; however, this will lead to higher number of false negative 
results due to the large number of antigen tests performed. 
 
There are limitations to our models. First, the data we used for model inference were from infected 
individuals with relatively mild or no symptoms (23, 25), who rapidly cleared the virus. The 
parameter values and relationships we estimated between VL and infectiousness thus may be 
biased towards mildly symptomatic and asymptomatic individuals. Further work is needed to 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 30, 2021. ; https://doi.org/10.1101/2021.06.26.21259581doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.26.21259581
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

extend our analysis to individuals with different levels of symptom severity (47). However, we 
note that people with severe symptoms will likely often be quarantined and contribute less to the 
spread of the virus. Second, the relationship between VL and the number of infectious particles is 
inferred from data aggregated from many individuals, and thus it assumes homogeneity across 
individuals. Further work measuring individual level heterogeneity in the relationship between 
infectious viral shedding and VL will help to characterize heterogeneity in individual 
infectiousness and help make more precise predictions of the impact of testing strategies on 
transmission. 
 
Overall, our model linking within-host VL dynamics to infectiousness provides a crucial tool for 
evaluating both non-pharmaceutical and pharmaceutical interventions, and aiding public health 
policy decisions (48). For example, there is an emerging need to quantify the extent of transmission 
of asymptomatic individuals and particularly of school-aged children (49), who may have a similar 
range of VLs as adults (30). Administration of vaccines or effective therapeutics may lead to 
reduced VLs in the upper respiratory tract (16). Our model will help to quantify the impact of 
vaccination on the infectiousness of a person.   
 
Methods 
Target cell limited (TCL) model 
We first study a within-host model based on target cell limitation (TCL). The model keeps track 
of the total numbers of target cells (T), cells in the eclipse phase of infection (E), i.e., infected cells 
not yet producing virus, productively infected cells (I) and viruses measured in swab samples (V). 
The ordinary differential equations (ODEs) describing the model are  

𝑑𝑇
𝑑𝑡 = −𝛽𝑉𝑇 

𝑑𝐸
𝑑𝑡 = 𝛽𝑉𝑇 − 𝑘𝐸 
𝑑𝐼
𝑑𝑡 = 𝑘𝐸 − 𝛿𝐼 
𝑑𝑉
𝑑𝑡 = 𝜋𝐼 − 𝑐𝑉 

 

[3] 

In this model, target cells are infected by virus with rate constant 𝛽. Cells leave the eclipse phase 
and become productively infected at per capita rate 𝑘. Productively infected cells die at per capita 
rate 𝛿. We use V to describe viruses measured in pharyngeal swabs, which are a proportion of the 
total virus in the URT. Therefore, the rate, 𝜋, is the product of the viral production rate per infected 
cell and the proportion of virus that is sampled in a swab. Viruses are cleared at per capita rate c. 
See SI Appendix for further details.  
 
From this model, we calculate the within-host reproductive number for SARS-CoV-2,	𝑅7,:$/'$%, 
as 

𝑅7,:$/'$% =
;<
=#
𝑇7   [4] 

 
where 𝑇7 is the initial number of target cells. 
 
Innate response model 
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We extend the TCL model by including a prototypical innate response (e.g., type-I interferon) 
following the framework presented in previous models for influenza infection dynamics (26, 27, 
50). Immune mediators are produced from infected cells and bind to receptors on target cells 
stimulating an antiviral response that makes cells refractory to viral infection (R). Such cells are 
said to be refractory cells or cells in an antiviral state (51). In addition to the compartments in the 
TCL model, the innate response model keeps track of cells refractory to infection (R). For 
simplicity and due to a lack of data, we do not explicitly consider the specific immune mediators 
(e.g., cytokines) or their concentration. Instead, we make the quasi-steady-state assumption that 
the dynamics of these mediators are fast and thus their concentration is proportional to the number 
of infected cells (see SI Appendix for details).   
 
The ODEs for the innate response model are  

𝑑𝑇
𝑑𝑡 = −𝛽𝑉𝑇 − Φ𝐼𝑇 + 𝜌𝑅 

𝑑𝑅
𝑑𝑡 = Φ𝐼𝑇 − 𝜌𝑅 
𝑑𝐸
𝑑𝑡 = 𝛽𝑉𝑇 − 𝑘𝐸 
𝑑𝐼
𝑑𝑡 = 𝑘𝐸 − 𝛿𝐼 
𝑑𝑉
𝑑𝑡 = 𝜋𝐼 − 𝑐𝑉 

[5] 

where Φ is a constant describing the rate that innate signaling makes a target cell refractory and 𝜌 
is the rate that refractory cells transition back into target cells.  
 
Data, estimating time of infection, parameter fitting and analysis  
For the German dataset, we digitalized longitudinal VL data from throat swabs of the 9 infected 
individuals reported in Wolfel et al. (23). The infected individuals are young to middle-aged 
professionals, without underlying disease, who were identified because of known close contact 
with an index case.  All patients were hospitalized but had a comparatively mild clinical course of 
disease. For the NBA dataset, we used data reported in Kissler et al. (25). We included 9 
individuals for whom multiple detectible VL measurements were available before the viral peak. 
Note that VLs were reported in copies/swab by Wolfel et al. (23) and in copies/ml in Kissler et al. 
(25). Since we did not find significant difference in parameter estimates between the two datasets 
(see main text), the unit of choice/reporting may not strongly impact our results. For consistency, 
we use copies/ml as the reporting unit.  
 
We use a population approach, based on non-linear mixed effect modeling (unless specified 
otherwise), to fit the model simultaneously to VL data from the two datasets, using the software 
Monolix (Lixoft, SA, France). We calculated correlations between the incubation periods and the 
fractions of predicted presymptomatic transmission using Pearson correlation. 
 
The model for infectiousness 
To calculate the probability of transmission given a typical contact of duration 𝜏 , we assume that 
𝜏 is small enough (on the order of minutes or hours) that the total VL in the URT of the donor and 
thus the level of infectious viruses, 𝑉$%&, is approximately constant during the contact between 
time 𝑡 and 𝑡 + 𝜏. We then assume that the number of infectious viruses shed per unit time is 𝜇𝑉$%&, 
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where 𝜇 is a constant. Of these, a fraction, 𝜑, reaches the URT of the recipient. Then on average 
the total number of infectious viruses reaching the recipient for a contact of duration τ, is 𝑛 =
𝜑𝜇τ𝑉$%&. Airborne pathogens tend to be randomly distributed in the air (52). Thus, we assume the 
number of infectious viruses reaching the recipient during a contact is a random variable X that is 
Poisson distributed with parameter n. We further assume that each infectious virus that reaches the 
recipient has a probability 𝜈 to successfully establish infection and that if X viruses reach the 
recipient the probability to establish an infection is given by the binomial distribution Bin(X,	𝜈). 
However, since X follows a Poisson distribution one can show the distribution of the number of 
viruses that successfully establish an infection follows a Poisson distribution with parameter 𝜆 =
𝑛𝜈 = 𝜑𝜇τ𝑉$%&𝜈 = 𝜃 ))(/)!

))(/)!*+"!
, for the saturation model where 𝜃 = 𝜑𝜇τ𝑉(𝜈. Then, the probability 

of one or more virions generating a successful transmission event for a typical contact at time 𝑡 is 
given by Eq. [1].  
 
Estimating the expected serial intervals and 𝑹𝟎,𝒆𝒑𝒊 from infectiousness profiles 
To calculate the expected serial interval (or the generation interval), we assume that contacts are 
randomly distributed over time. Then the expected serial interval for the ith individual, SIi, can be 
calculated as 

𝑆𝐼$ =
∫ /	,*(/)D/
+
,
∫ ,*(/)D/
+
,

                 [6] 

 
where 𝑝$(𝑡) is the probability of transmission (Eq. 1) given a typical contact for individual i. The 
mean serial interval across all individuals in our study is calculated as the mean of the SIs 
calculated for individuals in the two datasets. 
 
To calculate the expected epidemiological reproductive number, we assume that there are on 
average 13.4 contacts of a relatively short duration, per day according to the estimates in Mossong 
et al. (28). Then the expected epidemiological reproductive number for individual i is calculated 
as 

𝑅7,1,$,$ = 13.4 ∫ 𝑝$(𝑡)𝑑𝑡
E
7                       [7] 

 
The mean epidemiological reproductive number across all individuals in the two datasets, 𝑅7,1,$, 
is calculated by taking the average of 𝑅7,1,$,$ across all individuals. 
 
Note that the calculation of 𝑅7,1,$ above is a rough approximation, because it implicitly makes the 
simplifying assumption that contacts are randomly distributed over time and every individual has 
the same number of contacts per day. This is used in our study to show that the choice of parameter 
values (for 𝜃, ℎ and 𝐾() are broadly consistent with estimates of epidemiological parameters such 
as the mean serial interval and 𝑅7,1,$. However, it should not be treated as an exact expression. 
See Ref. (53) for discussion of formally calculating 𝑅7,1,$  in the context of SARS-CoV-2 
transmission. 
 
Model and assumptions for evaluating testing strategies 
Several studies have remarked that testing sensitivity in clinical practice can be much lower than 
the theoretical detection limit would indicate. For example, Kucirka et al. (42) suggested that the 
sensitivity of a RT-PCR test depends on the time since infection (a reflection of the VL) and that 
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it is never more than 80%. Although there are many RT-PCR test platforms and protocols in use, 
the general sensitivity over infection stages is likely not substantially different. To examine testing 
protocols under the best of circumstances, we assume much better performance for RT-PCR tests 
than suggested by Kucirka et al. (42), with no detection if the VL is below 103 copies/ml, but 90% 
sensitivity for any VL above that (Figure S4A). We compare this test, with an antigen test with 
characteristics as presented in Kohmer et al. (31), who compared the performance of several 
antigen tests with the results of RT-PCR. Based on their data for the SARS-CoV-2 Rapid Antigen 
Test (Roche Diagnostics) versus the VL in the sample, we fit the performance of the test to a 
logistic type relation between VL and positivity detection yielding the curve shown in Figure S5B 
(see the SI Appendix for further details). An infected person’s probability of being detected is a 
Bernoulli trial based on the sensitivity of the test (as in Fig. S4). 
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Figures  
 

 
Figure 1. Fitting results of the innate response model to the VL data from two studies. (A) 
Fitting results to data from 8 individuals in the Germany study, i.e., Wolfel et al. (23). The model 
(solid lines) was simulated using the best-fit individual parameter values estimated by a non-linear 
mixed effect modeling approach (Table 1 and 2). Symbols (red dots and circles) show the data 
from pharyngeal swabs. Circles indicate data points below the limit of detection. Vertical grey 
lines denote the time of symptom onset as reported in Ref. (24). Horizontal dashed black lines 
show the limit of detection (LoD). (B) Fitting results to data from 9 individuals in the NBA study 
as reported in Kissler et al. (25) with symbols and colors as in (A). 
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Figure 2. The relationship between VL and host infectiousness. (A) A schematic of the 
probabilistic model describing the steps in a transmission event. A donor sheds both infectious and 
non-infectious viruses, of which some infectious viruses may reach a recipient during a close 
contact and establish an infection. (B) Best-fit of the three models, i.e. the linear model (grey), the 
power-law model (blue) and the saturation model (red), to the data from Jaafar et al. (29), Jones et 
al. (30) and Kohmer et al. (31). Open circles denote the percentage of cell culture positivity 
reported, and vertical lines denote the 95% confidence intervals calculated assuming a binomial 
distribution for the number of positive cultures. For the datasets from Jones et al. (30) and Kohmer 
et al. (31), viral loads are binned into half-log10 intervals. Solid lines are used for models that 
describe the data well. (C) The predicted probability of transmission for a typical contact as a 
function of log10 VL given by the saturation model in Eq. [1] with 𝜃 = 0.20, ℎ = 0.51, and 𝐾( =
8.8 × 102 RNA copies (red) or by the power model in Eq. [2] with 𝜙 = 2.4 × 103F and ℎ = 0.53 
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(blue). (D and E) The infectiousness profile (lines in upper panels) predicted by the infectious 
model assuming a saturation function (Eq.1) or a power-law function (Eq. 2), respectively. Lower 
panels show the relationship between the duration of the incubation period (x-axis) and estimated 
presymptomatic area under the infectiousness curve. Irrespective of the model used, expected 
presymptomatic transmission is more likely in individuals with a longer incubation period. 
 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 30, 2021. ; https://doi.org/10.1101/2021.06.26.21259581doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.26.21259581
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

Figure 3. Comparison of eight testing protocols using RT-PCR or antigen tests. For each of 
these we considered that every person is tested every 1, 3, 5 or 7 days, as indicated in the x-axis 
by the number after the test type (e.g., Ag3 corresponds to antigen testing every 3 days). We plot 
the number of people detected (top left), the number of false negative tests (top right, note that 
some people may be false negatives multiple times), the fraction of total infectiousness averted 
(bottom left), and the average time post-infection to detection (bottom right). 
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Tables 
 
Table 1. Estimated population parameter values from the best model, i.e., the innate response 
model. The means and standard deviations are derived assuming that individual parameters follow 
log-normal distributions. 

Parameter Description Mean (population 
estimate) 

Standard 
deviation  

𝛽 Infectivity parameter constant 3.2 x 10-8 ml/RNA 
copy/day 

0.50 

𝛿 Death rate of infected cells  1.7 /day 0.23 
𝜋 Composite parameter for virus production 

and sampling  
45.3 /ml/day 0.24 

Φ Rate constant for the interferon-induced 
conversion of target cells to refractory 
cells 

1.3 x 10-6 /cell /day 1.95 

𝜌 Rate at which refractory cells become 
target cells again 

0.0044 /day 0.20 

 
 
 
Table 2. The fixed parameters in the viral dynamic models and their values. 

 

Parameter Description Values Values tested in sensitivity 
analyses 

𝑇! Total number of (infection free) target cells  8×107 cells NA 
𝐸! Initial number of infected cells 1 cell 5, 10 cells 
c Virus clearance rate 10/day 5 and 20/day 
k 1/the eclipse phase duration 4/day 3 and 6/day 
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