
PathML: A unified framework for whole-slide image1

analysis with deep learning2

Adam G. Berman,1 William R. Orchard,1 Marcel Gehrung,1 Florian Markowetz1,∗

1Cancer Research UK Cambridge Institute, University of Cambridge, UK

∗To whom correspondence should be addressed; E-mail: florian.markowetz@cruk.cam.ac.uk

3

Abstract4

The inspection of stained tissue slides by pathologists is essential for the early5

detection, diagnosis and monitoring of disease. Recently, deep learning meth-6

ods for the analysis of whole-slide images (WSIs) have shown excellent per-7

formance on these tasks, and have the potential to substantially reduce the8

workload of pathologists. However, successful implementation of deep learn-9

ing for WSI analysis is complex and requires careful consideration of model10

hyperparameters, slide and image artefacts, and data augmentation. Here we11

introduce PathML, a Python library for performing pre- and post-processing12

of WSIs, which has been designed to interact with the most widely used deep13

learning libraries, PyTorch and TensorFlow, thus allowing seamless integra-14

tion into deep learning workflows. We present the current best practices in15

deep learning for WSI analysis, and give a step-by-step guide using the PathML16

framework: from annotating and pre-processing of slides, to implementing17

neural network architectures, to training and post-processing. PathML pro-18

vides a unified framework in which deep learning methods for WSI analysis19

can be developed and applied, thus increasing the accessibility of an important20

new application of deep learning.21

1

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:florian.markowetz@cruk.cam.ac.uk
https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

1 Introduction22

In histopathology, tissue biopsies are fixed, embedded, sectioned, stained, and placed on a glass23

slide before being examined under a microscope. Examination of tissue slides to identify patho-24

logically relevant features has been an essential tool for early detection, diagnosis and disease25

monitoring in medical practice and research for decades. Pathological features can be anything26

from the presence or absence of certain cell types or populations, changes in cellular or nuclear27

morphology, changes in the arrangement of cells in a tissue, to changes in the intensity of cer-28

tain tissue stains. Until recently only expert pathologists have been able to perform this task,29

requiring years of training, and with individual slides often having to be evaluated by multiple30

pathologists before a judgement can be made (1). However, with a shift towards digitisation in31

pathology, tissue-slides are now routinely scanned to produce high-resolution whole-slide im-32

ages (WSIs). Such images are amenable to automated image analysis and in the last decade the33

field has undergone a revolution. Deep learning methods for image analysis have shown excel-34

lent performance on diagnostic tasks (1–3), rivalling that of pathologists and further stimulating35

efforts to digitise glass slides. Recent work has even shown the capability of deep learning36

approaches to find correlations between tissue appearance and genomic features (4).37

Pathologists have high inter-observer concordance rates on some diagnostic tasks, but in38

others they frequently disagree (5). This is compounded by high workload, necessitating rapid39

screening of individual cases, increasing the risk of introducing diagnostic errors (6). Deep40

learning methods are fast, often requiring only a few minutes to evaluate a slide, and give con-41

sistent evaluations. Thus, deep learning has the potential to substantially reduce the workload42

of pathologists, improve the inter-observer concordance rates and accelerate the evaluation of43

tissue-slides.44

Despite this potential, deep learning based approaches have not yet seen widespread uptake45

2

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

in medical practice. This is in part due to a lack of a unified framework in which WSI neu-46

ral network implementations are developed and applied, meaning that individual researchers47

often must re-implement their own pre- and post-processing pipelines in-house for each new48

histopathology task. Furthermore, successful implementation of deep learning to WSI analy-49

sis requires careful consideration of model hyperparameters, slide and image artefacts and data50

augmentation beyond those encountered in standard image analysis, and thus application of51

the latest advances in computer vision to WSI analysis is hampered without a framework for52

streamlined WSI processing into which such advances can be incorporated.53

Here we introduce PathML, a new Python library for performing pre- and post-processing54

of WSI data in a unified framework. PathML simplifies and streamlines many of the steps55

required to tackle the unique challenges posed by WSIs. In particular, WSIs are very large, typ-56

ically multiple gigabytes in size (7), and thus it is necessary to break up WSIs into ‘tiles’ before57

they can be analysed by contemporary deep learning architectures (see Tiling). Tiling, however,58

introduces further difficulties as WSIs are often labelled (e.g. cancerous or non-cancerous) at59

the slide level, not at the tile level, and so a deep learning approach must be adopted which60

accounts for how tiles inherit labels from slides (see Annotation). Furthermore, WSIs can61

contain unique artefacts introduced during slide preparation and imaging, which are not found62

in other image analysis settings, such as pen marks left by the pathologists reviewing them,63

or cracks and bubbles in the slide. All of these artefacts must be removed or accounted for64

when training a deep learning model (see Deep tissue detector). In addition, the staining and65

imaging protocols can differ widely between institutions, which if not accounted for can have66

a profound impact on a deep learning model’s ability to generalise across institutions (8). If an67

approach is to be successfully implemented in medical practice, it is essential that it is able to68

perform reliably across institutions. As such, data augmentation approaches aimed at account-69

ing for WSI-specific issues have been developed, however, these introduce further important70

3

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

considerations (see Data augmentation). Finally, WSI datasets frequently encompass only a71

small number of slides, and occurrences of pathological features may be rare. To avoid over-72

fitting in this setting, steps must be taken during data augmentation and training (see Data73

augmentation). PathML has been designed to interact with current popular deep learning li-74

braries, PyTorch and TensorFlow (9, 10), allowing it to be seamlessly incorporated into deep75

learning workflows. By tackling the unique challenges posed by WSIs, PathML can help to76

translate deep learning methods into the clinic more easily, providing a broad method to replace77

ad hoc solutions. We made extensive use of PathML in our recent publication (11) applying78

deep learning to early detection of Barrett’s oesophagus in WSIs. PathML is available from79

https://github.com/markowetzlab/pathml.80

In this article we explain key concepts and best practices in deep learning for image analy-81

sis, and give a step-by-step guide for performing WSI analysis with PathML: from annotating82

and pre-processing slides, to implementing neural network architectures, to training and post-83

processing (fig. 1). We do not discuss more general neural network theory, such as optimisers84

and choosing an appropriate learning rate, as these are very well covered elsewhere (12–14).85

We envisage this article to be useful both for users experienced with Python, but having only86

basic experience with deep learning and WSIs, as well as users who have extensive experience87

with deep learning and standard image analysis, but not with WSI analysis. The order of the88

following sections roughly follows the order in which each concept is encountered in a typical89

data analysis project.90

1.1 Deep learning91

In medical imaging, there are three sorts of tasks for which deep learning models are widely92

used: classification, segmentation or regression. Classification tasks involve training a model to93

be able to predict which label, out of a predefined set, should be assigned to a given image. For94

4

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://github.com/markowetzlab/pathml
https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

Figure 1: A deep learning pipeline with PathML (A) Creating PathML Slide objects, exporting and
adding annotations, and extracting tiles and segmentation masks. (B) Data partitioning, data augmenta-
tion, and model training. (C) Inferring on the trained model and stitching together overlapping segmen-
tation results (if required).

5

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

Term Description
Annotation A digital line drawn around a region of interest in a WSI
Architecture The specific structure of a neural network
CNN A convolutional neural network, a type of neural network

amenable to learning from image data
Data augmentation A series of methods to reduce model overfitting by ran-

domly altering tiles before each epoch
Epoch One full pass of a model through all training examples, of-

ten split up into mini-batches
H&E Hematoxylin and Eosin, a general histological stain to high-

light cell nuclei blue and cytoplasm pink
Hyperparameter Adjustable parameter that influences how training happens
Kernel A pattern that is is scanned across the image input into a

convolutional neural network and at each point compared
(by taking the dot product) to the underlying image. Also
called a ‘filter’.

Label A category or class into which a piece of data falls; what the
neural network is trying to learn to predict. Also called the
‘ground truth’.

Loss function The algorithm used to compute the difference between a
model’s predicted output and the ground truth

Mini-batch A subset of the dataset from which the model learns during
training

Overfitting A model learns a representation that corresponds too closely
to the training dataset, such that the model generalises
poorly to new examples

Optimisation function The algorithm used to modify the weights in a model ac-
cording to the loss accumulated during a mini-batch.

Tile A small square subregion of a WSI with side length gener-
ally between 100 and 1000 pixels. Also called a ‘patch’.

Training A series of passes a model makes through training examples
to learn a generalisable correlation between examples and
their labels

Transfer learning Using knowledge acquired on one machine learning task
to a different one. Often means: starting with an already
trained model (‘pretrained’) to solve an unrelated problem.

WSI Whole-slide image, a very high resolution image of a tissue
slide taken with a specialised machine

Table 1: A short glossary of important terms for deep learning on whole-slide images.

6

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

example, within a WSI, one may want to predict whether the tissue within a given tile should be95

labelled as ‘cancerous’ or ‘healthy’. Training is performed in a ‘supervised’ manner, meaning96

that the model is given examples for which a ground-truth label is already known and trained to97

correctly predict that label. During training, the parameters of the model, called ‘weights’, are98

adjusted to minimise the difference between the prediction the model makes and the ground-99

truth, with the discrepancy being computed using a ‘loss function’. The choice of loss function100

is dependent on the task being performed, and for classification tasks, the loss typically takes101

the form of a cross-entropy (see table 1 for a short glossary of terms for deep learning on102

WSIs). In medical imaging, in the supervised setting, segmentation is a closely related task to103

classification. Segmentation tasks involve training a model to be able to divide an image up into104

a patchwork of regions, or ‘segments’, at the pixel-level, such that the pixels within a segment105

all belong to the same class. For example, a segmentation model might indicate which pixels of106

a WSI are tissue and which are background. In this case the model is trained with ground-truth107

‘segmentation masks’: pixel-level bounded regions delineating segments from one another, and108

the loss function computes the degree of overlap between the predicted segmentation mask,109

and the ground-truth segmentation mask. A common choice is the ‘Dice loss’ (15). Finally,110

regression is similar to classification, however, instead of an image belonging to one of a finite111

set of classes, an image is instead assigned a continuous value. For example, one may train a112

model to predict the number of weeks survival from a WSI of a tumour tissue biopsy taken from113

a patient (16). Likewise, the ground-truth in this case is also a continuous value, and a different114

loss function used; typically the L2-distance between the predicted value and the ground-truth.115

Which of these tasks is the goal of the deep learning model influences many of the deci-116

sions that the user needs to make. Each task requires different ground-truth annotations (see117

Annotation), and different neural network architectures are best suited for each task (see Neu-118

ral network architectures), and how training and model evaluation is performed will differ119

7

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

too (see Training, inference and validation). Despite this, the general workflow in PathML120

will remain unchanged, and where there are differences, they will be explicitly highlighted and121

explained.122

1.2 Whole-slide Image formats123

When glass slides are digitised by digital whole-slide image scanners, high-resolution images124

are taken at multiple magnifications. WSIs therefore have a pyramidal data structure, with the125

images taken at each magnification each forming a ‘layer’ of the WSI. The maximum magni-126

fication of these images is frequently 200X (using a 20X objective lens at 10X magnification)127

or 400X (using a 40X objective lens at 10X magnification). Several different file formats have128

been developed to store pyramidal WSIs, some of which are proprietary and specific to the scan-129

ning machine, while others, such as the NDPI and pyramidal TIFF, are open source. Several130

open source software projects have been developed for reading and performing operations on131

pyramidal whole slide image files, including OpenSlide and Bio-Formats, which have libraries132

for many programming languages including C, C++, Ruby, and Python (17, 18).133

PathML uses the pyvips library for reading WSIs (19), and so supports a wide range of for-134

mats, including NDPI and pyramidal TIFF. WSIs are instantiated as Slide objects by calling135

the Slide class on the file path to the WSI and specifying which layer you would like to access136

with the level argument. It is through Slide objects that the user interacts with their data137

and performs the pre-processing and post-processing steps described below and in detail in the138

Procedure.139

1.3 Tiling140

WSI images are very large; for example, an image scanned at 40X objective power of a 20 x 20141

mm sample of tissue has 80,000 x 80,000 pixels; at standard 24-bit colour this would produce a142

8

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

flat image 19.2GB in size. Current neural network architectures are unable to process images of143

this size in one go. Thus, WSIs are broken up into ‘tiles’ or ‘patches’ upon which the model is144

trained: small square regions of the original image, typically 32 to 1000 pixels in height. Tiles145

can be chosen with or without overlap with neighbouring tiles. Choice of tile dimensions and146

overlap are some of the most important hyperparameters to choose when analysing WSIs (7).147

Tiles should be large enough that features relevant to the task are visible to the model to learn.148

For example, if nuclear morphology is a crucial feature for distinguishing healthy cells from149

cancerous ones, tiles should not be smaller than the width of a nucleus in the image. In the150

case of cytological images, a tile covers a single cell (5-10 µm). In histopathology, broader151

architectural features of the tissue need to be considered and so tiles need to be larger (10-152

250 µm). A rule of thumb is that a pathologist should be able to readily classify or segment the153

ground-truth class by examining only each tile in isolation. Deep learning architectures have154

pre-defined input sizes to which a tile will need to be resized, and thus a tile should also not be155

too large as this may cause the relevant features to appear overly coarse after resizing to fit the156

input shape of the deep learning model. Furthermore, if tiles are being classified, then larger157

tiles will also decrease the resolution at which classification labels are assigned to the WSI,158

and the presence of multiple classes within a single tile may mean features are ‘diluted’ and159

missed. Choosing tiles which do not overlap has the advantage of reducing the numbers of tiles160

extracted from an image, decreasing both training and inference times. The risk, however, is161

that without overlap, relevant features will be split between adjacent tiles. During training, this162

will mean that the feature is not available in full for the model to learn from. During inference,163

a feature which would be identified by the model if visible in full may not be identifiable in164

any of the tiles individually when split. The size of tile overlap is therefore frequently chosen165

to encompass roughly half the length of a typical feature, for instance, half the length of an166

average cell of the tissue type being analysed.167

9

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

In PathML, tile dimensions and overlap are chosen by calling the168

Slide.setTileProperties() method, and setting the tileSize and tileOverlap169

arguments, enabling users to easily experiment with different tiling strategies. Here one can170

also specify how tiles should be stored, and how they will be accessed during training.171

By calling Slide.extractAnnotationTiles(), one can extract and store each tile172

in individual images files in advance of training or inferring. PathML will automatically173

store tile image files according to their class (see Annotation below) and slide of origin in174

a directory structure appropriate for use with PyTorch (see Procedure step 7 and fig. 3).175

Although functional, storing each individual tile image file may pose data storage issues.176

PathML stores the coordinates of each tile rather than the tile image itself, accessible with177

Slide.getTile() using the tile address as argument (all tile addresses can be iterated178

over with Slide.iterateTiles()), making it easy to build a dataset such that tiles are179

accessed on-the-fly, saving the need to extract each tile to an image file in situations where this180

would be too memory intensive. Apart from being substantially less disk memory intensive,181

this approach also makes it easier to experiment with different tiling strategies without having182

to re-extract tiles for each combination of tile size and overlap. The trade off is that on-the-fly183

tile accession approaches are typically much slower to train with, so are not recommended184

except in datasets where tiles number in the hundreds of thousands or millions and disk185

memory for these tile images is not available.186

1.4 Deep tissue detector187

WSIs can contain unique artefacts introduced during slide preparation and imaging which are188

not found in other image analysis settings. Tissue may tear and fold during slide preparation,189

the image may be unevenly illuminated or stained, and parts of the image may be out of focus.190

Tissue slides also often contain pen marks left by the pathologists reviewing them, and may191

10

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

contain cracks and bubbles. Left unaccounted for, such artefacts can have severe detrimental192

effects on a deep learning model. For instance, pen marks are often left by pathologists to193

indicate the presence of a pathological feature of interest, such as the presence of cancerous194

cells. If not removed, a deep learning model may simply learn to recognise the presence of195

a pen mark in slides containing cancer, and thereby be completely inapplicable in medical196

practice where no such annotation will be available. Beyond artefacts, WSIs will typically197

contain large portions of background, i.e. regions without any tissue, which do not contain198

any pathologically relevant information. After tiling your WSI, tiles which contain artefacts or199

which simply display background should therefore be removed speed up the training process200

and potentially improve performance.201

PathML provides a built-in deep tissue detector: a DenseNet neural network architecture202

trained to classify tiles as either ‘artefact’, ‘background’, or ‘tissue’. PathML’s deep tissue203

detector was trained using 9,071 tiles extracted from 393 individual annotations from 61 WSIs204

scanned across a variety of machines, time periods, and tissue types, and two different species to205

account for a broad range of the variation of WSI artefacts, background, and tissue appearances206

(see fig. 2A). The deep tissue detector is applied by calling the Slide.detectTissue()207

method (see Procedure step 5 for details), enabling robust detection of tissue tiles. The outputs208

are the probabilities, for each tile, of belonging to each of the three classes. In addition to the209

deep tissue detector included in PathML, a number of other approaches have been developed to210

detect and remove artefacts and background tiles which we briefly review in Related methods211

below.212

There may be applications where the artefacts encountered are not well covered by the213

deep tissue detector in PathML, and thus one should always review examples of its output to214

verify that the detector is behaving as expected (see Procedure step 6 and fig. 4). Where215

the user wishes to make use of the curated catalogue of WSIs and corresponding annotations216

11

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

Triangle Otsu Deep tissue detector

Training

human and mouse

artefacts

pen marks bubbles

slide edges

folded tissue

9071 tiles
background

tissue

Across multiple tissues

61 WSIs
TCGA

CAMELYON
OCCAMS
OSCAR

Data augmentation
Rotation

Reflection

Input Data Pre-processing

Data split

Training set (85%)

Validation set (15%)

A

B

background

tissue

artefact

DenseNet architecture

Stochastic gradient descent
Learning rate = 0.001

(decaying by factor of 10 every 7 epochs)
Momentum = 0.9
25 total epochs

Re-colour

Transfer learning from ImageNet

Figure 2: Tissue, artefact, and background detection with PathML (A) Tiling, augmenting, and
training a DenseNet CNN to classify tissue, artefact, and background regions on WSIs from a ro-
bust dataset representing multiple tissue and species types. This already-trained deep tissue detector
can be applied to any PathML Slide object with PathML’s Slide.detectTissue() function. (B) The re-
sults for the task of background filtering on a CAMELYON16 WSI (tumor 021.tif) using the trian-
gle algorithm, Otsu’s method, and PathML’s deep tissue detector. The triangle algorithm incorrectly
calls slide artefacts tissue, Otsu’s method excludes lighter-coloured tissue regions (calling them back-
ground), and PathML’s deep tissue detector makes neither mistake while identifying artefact regions
separately from background. The triangle algorithm and Otsu’s method can be applied with PathML’s
Slide.detectForeground() function. Visualisations of filtering performance like these can be created with
PathML’s Slide.visualizeForeground() and Slide.visualizeTissueDetection() functions.

12

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

used for training the Deep tissue detector, see Data availability. Furthermore, PathML makes217

it easy to apply a user-provided tissue detection model trained on additional, or alternative,218

annotated images by setting the modelStateDictPath and architecture parameters219

when calling Slide.detectTissue(), to the path to the custom model and its neural220

network architecture, respectively. In certain cases, users may want to make use of classical221

foreground filtering approaches in place of or in addition to the deep tissue detector. In PathML,222

this can be achieved by calling the Slide.detectForeground() method; specifying the223

desired approach with the threshold argument. PathML currently supports Otsu’s method224

(20), the triangle algorithm (21), as well as simple intensity thresholding (see Procedure step225

5). In general, however, these approaches are far less robust to the diversity of artefacts observed226

in WSIs, as well as appearances of background and tissue, often requiring careful supervision227

for each application (7). Figure 2B compares the performance of Otsu’s method, the triangle228

algorithm, and PathML’s deep tissue detector on an example slide: whereas Otsu’s method is229

too strict (excluding lighter-coloured tissue regions as background) and the triangle algorithm230

is too permissive (including artefacts around the edge of the slide as tissue), the deep tissue231

detector makes neither of these mistakes, correctly identifying all true tissue while demarcating232

artefact and background appropriately.233

1.5 Annotation234

Ground-truth labels for a WSI may exist either at the region-level, wherein they are local to235

particular regions within the WSI, or at the slide-level, wherein a label applies to the WSI236

as a whole. Region-level labels typically take the form of digital annotations on the WSI,237

delineating the regions belonging to certain classes. Specialised software, such as QuPath238

and Automated Slide Analysis Platform (ASAP), allow users to draw digital annotations onto239

WSIs and then export them for use in image analysis workflows (22, 23). PathML supports240

13

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

the use of annotation files in the GeoJSON format as well as the XML format output by241

ASAP (24). QuPath annotations can be exported as GeoJSON files using the Groovy script,242

qupath_to_geojson.groovy provided in https://github.com/markowetzla243

b/pathml-tutorial.244

Whether classifying or segmenting or segmentation labels, it is important to consider245

how to derive the ground truth labels of individual tiles from slide-wide label data. For246

segmentation tasks the principle is straightforward, because the ground-truth is at the pixel-247

level and thus whole-slide segmentation masks can also be tiled and directly inherited by248

the individual image tiles. PathML allows the user to easily create tile-level binary seg-249

mentation masks given an annotation file. An annotation file is added to a correspond-250

ing Slide object by calling the Slide.addAnnotations() method, providing the251

file path to the annotationFilePath argument. The annotations do not need to252

cover the entire WSI, instead PathML creates a binary segmentation mask by designat-253

ing all pixels bounded by an annotation for a given class as being positive for that class,254

and all other pixels as negative. PathML provides a flexible framework for annotations:255

When applying the Slide.extractAnnotationTiles() method, binary segmentation256

masks are created by the extractSegmentationMasks argument set to True, and the257

classesToExtract argument set to the name of the class (or list of classes) for which the258

binary segmentation mask (or masks) should be created. By default, segmentation mask tiles for259

all classes found in the annotation file will be extracted if extractSegmentationMasks260

is utilised. The tile-level masks are then saved to a ‘masks’ directory in the location speci-261

fied by the outputDir argument of Slide.extractAnnotationTiles(). Further-262

more, the numTilesToExtractPerClass argument can be set to the maximum num-263

ber of tiles to extract per class from the slide (default is 100 for each class) when there264

are more extractable tiles per class than the user desires. In addition, after calling the265

14

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://github.com/markowetzlab/pathml-tutorial
https://github.com/markowetzlab/pathml-tutorial
https://github.com/markowetzlab/pathml-tutorial
https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

Slide.detectTissue() method on a given Slide object, each tile will be inferred266

on the deep tissue detector, and the resulting tissue probability will be saved at each tile.267

This will then allow the tissueLevelThreshold argument can to be used in subsequent268

functions such as the tile extraction functions (Slide.extractAnnotationTiles()269

and Slide.extractRandomUnannotatedTiles()) to set a minimum threshold270

for this probability for a tile to be used (recommended value of 0.995). Likewise,271

foregroundLevelThreshold can be used to only extract tiles with the desired simple272

foreground detection techniques such as (20) (set the argument to ‘otsu’) or the triangle algo-273

rithm (21) (set the argument to ‘triangle’). Simple average greyscale intensity filtering can be274

achieved by setting foregroundLevelThreshold to an integer between 0 and 100 (see275

Procedure step 7).276

For classification tasks the situation is more complicated. For region-level labels, PathML277

applies a simple heuristic: a tile inherits the label of any annotations that cover more than a278

given threshold fraction of the area of the tile. Tiles which are not covered above this thresh-279

old for any annotations are ignored entirely. To achieve this in PathML, one begins as for280

segmentation, but when using the Slide.extractAnnotationTiles() method, the281

tileAnnotationOverlapThreshold argument (default = 0.5) should be set to282

the fraction of the area of a tile that must be covered by an annotation for it to inherit the283

corresponding label (see Procedure step 7). The appropriate threshold is determined by how284

precisely the annotation demarcates the region of interest, and how large a fraction of the area285

of a tile it is expected to occupy. If annotations are imprecise, encompassing not only the re-286

gion of interest, but also surrounding tissue, then the threshold should be large enough that tiles287

which overlap an annotation, but which do not display an instance of the class, are not labelled288

as such. In contrast, if an entire region of interest only occupies a small fraction of the area289

of a tile, then the threshold should be small enough that the tile containing it is appropriately290

15

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

labelled. However, if the tile size has been properly chosen, this is unlikely to be a concern.291

In histopathology, region-level ground-truth labels are frequently not available, and instead292

labels exist only at the slide-level. In the ‘strongly supervised’ setting, it is assumed that all293

the tiles in a slide (excluding background and artefact tiles) inherit the slide-level label. This294

may be appropriate in cases where all of the tiles in a slide, or at least a large majority, display295

representative features of the slide-level label. For example, if nearly all the tissue in a tumour296

biopsy slide is disease tissue, it may be appropriate that all tiles inherit a slide-level patient sur-297

vival label, as the majority of the tiles likely display features predictive of prognosis. However,298

often the strongly supervised setting is not appropriate; for instance, if a tissue biopsy consists299

mostly of healthy tissue with only small regions of metastasis, a slide-level label of ‘metastasis’300

should not be inherited by all tiles. In these cases a ‘weakly supervised’ method is preferable.301

The weakly supervised setting borrows from multiple instance learning, where it is instead as-302

sumed that a slide-level label implies the presence of at least k instances, i.e. tiles, within the303

WSI which correspond to the slide-level label. Particular neural network architectures have304

been designed to exploit this assumption in order to perform weakly supervised learning (see305

Neural network architectures) (25–27). Although weakly supervised learning can be a very306

powerful paradigm, and often the only option, it is less robust, performs less well, and requires307

more data than when performing strongly supervised learning with region-level labels (28, 29).308

1.6 Data augmentation309

Data augmentation describes a collection of techniques used to create additional training data310

by performing small transformations on existing data. Data augmentation serves to regularise311

deep learning models and reduce overfitting (see table 1) by artificially expanding the amount312

and diversity of the data they are trained on. For image data, common transformations include313

adding random noise, introducing random rotations and reflections, randomly adjusting bright-314

16

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

ness, contrast, saturation and hue, and randomly resizing and cropping the images.315

Data augmentation is particularly important for WSI analysis due to two primary factors:316

Firstly, staining and imaging protocols can differ widely between institutions, producing WSIs317

which vary substantially in terms of their hue, contrast and stain intensity. As such, deep learn-318

ing models which have been trained only on WSIs produced at a single institution may gen-319

eralise poorly to WSIs produced elsewhere. Secondly, WSI datasets tend to be small, often320

consisting of only a few hundred slides. The combination of having a wide diversity in the321

appearance of WSIs, and the fact that datasets typically only sample a small portion of that322

diversity, means that deep learning models are at particular risk of overfitting.323

Many ‘standard’ image analysis data augmentation techniques are recommended for WSI324

analysis in most settings. Random rotations and reflections help to train deep learning models325

to ignore the orientation of pathological features, e.g. a metastasis should still be identified326

as such independent of its orientation. Random cropping involves cropping out a small area327

of an image, and resizing the remainder to fit the original size. This helps the model become328

robust to features being cut off (for instance, by the edge of the tile), and to changes in their329

scale caused by small variations in the magnification the slide was scanned at. Augmentations330

consisting of random adjustments of the brightness, contrast, saturation and hue are collectively331

called ‘colour augmentations’, and are crucial in WSI analysis for making the model robust to332

changes in imaging and staining protocols between institutions. All of these data augmentation333

techniques can be easily applied to WSI data through PyTorch (see Procedure steps 10 and334

25). Colour augmentation approaches specific to WSI analysis have also been developed, such335

as those proposed by Tellez et al (8) and Bug et al (30) for hematoxylin and eosin (H&E) stained336

slides, which have been tailored to mimic true H&E stain variations. It is also common to apply337

‘Gaussian blur’ augmentations to mimic small out-of-focus regions, an image artefact often338

encountered in WSIs. In contrast to excluding such artefacts from analysis altogether (see Deep339

17

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

tissue detector), data augmentation instead allows the user to train the model to become robust340

to their presence, potentially making more efficient use of the data.341

It is important, however, that data augmentation is applied with care. In general, aug-342

mented data should not deviate significantly from a ‘realistic’ range, otherwise one may in-343

advertently train their model to ignore informative features, causing underfitting and poorer344

performance (31). For example, by applying heavy colour augmentations to WSIs, one can345

produce images which do not resemble images produced with any imaging or staining protocol.346

In this case, the deep learning model is likely to learn to discard colour and intensity informa-347

tion when making a prediction, as it appears uninformative. In settings where it is desired that348

colour information is discarded, for instance when a pathological feature is largely (or entirely)349

characterised by morphological characteristics, deliberate use of extreme colour augmentations350

can be beneficial. In settings where stain intensity information is highly informative, such as for351

Imaging Mass Cytometry (IMC) data, even mild colour jittering could therefore be highly detri-352

mental. Likewise, morphological features are often important for distinguishing healthy tissue353

from diseased tissue, and so applying data augmentations which warp morphological features in354

the image, such as an elastic transform, would likely be detrimental for most histopathological355

tasks. It is therefore recommended that the user always visualises samples of augmented data356

to assess whether it appears to be within the expected range (see Procedure steps 12 and 26,357

fig. 5, and fig. 6).358

Another data augmentation technique important in WSI analysis is ‘synthetic oversam-359

pling’. It is common in WSI analysis to have large class imbalances. For example, in early360

cancer detection screening, a pathologist may be looking for a single instance of an atypical361

cell within a tissue slide. In this case, most tiles extracted from a WSI will display only healthy362

cells, and thus a model trained on this data will be exposed to many more examples of healthy363

tissue than atypical tissue. As a result, the model will tend to overfit to the healthy tissue,364

18

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

and have a poor accuracy when classifying atypical tissue. To address this class imbalance,365

synthetic oversampling involves re-sampling from the data for a minority class such that the366

training data becomes balanced. The issue with synthetic oversampling is that because tiles367

from the minority class are simply randomly duplicated, the model does not learn more robust368

features, and may become overfit to the minority class instead. Consequently, this technique369

does not perform well with highly imbalanced data (32).370

With its functions Slide.extractAnnotationTiles() and371

Slide.extractRandomUnannotatedTiles(), PathML generates tile im-372

ages into a directory structure that can be used as direct input to PyTorch’s373

torchvision.datasets.ImageFolder dataset creator (33), enabling easy access374

to the data augmentation solutions provided by PyTorch. Furthermore, by allowing users375

to request exactly how many tiles they would like extracted from each class using the376

numTilesToExtractPerClass of the two tile extraction functions above, PathML makes377

it straightforward to avoid massive class imbalance issues.378

1.7 Neural network architectures379

Convolutional neural networks (CNNs) have revolutionised the field of computer vision, and are380

the class of neural networks at the centre of deep learning approaches in WSI analysis. CNNs381

have become the state-of-the-art for image analysis because they exploit three properties which382

are found in imaging data: locality, stationarity and compositionality (34). Locality describes383

the fact that in images, the pixels close to each other give more information about each other than384

pixels which are far apart. Stationarity describes the fact that the same ‘patterns’, for instance385

shapes and textures, often reoccur within and across images. Compositionality describes the fact386

that objects in images are composed of combinations of increasingly complex patterns. CNNs387

are able to exploit these properties by making use of ‘convolutional layers’. In a convolutional388

19

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

layer, a kernel, or filter, which describes a pattern, is scanned across the image and at each point389

compared (by taking the dot product) to the underlying image. The more the pattern and the390

underlying image match, the larger the score at that point. The size of the kernel is a tunable391

hyperparameter in a CNN, but exploits locality by being relatively small (e.g. 3x3 or 5x5),392

collecting information only from nearby pixels. Scanning the same kernel across the image393

exploits the stationarity property, as a reoccurring pattern will be detected wherever it is in394

the image. Finally, compositionality is exploited by having the neural network contain multiple395

convolution layers, the inputs of each being (transformed) outputs from the layers before. In this396

way, deeper convolution layers capture complex compositions of patterns detected in previous397

layers. In classical image analysis, similar kernel convolution operations are used, but in this398

case each kernel has been handcrafted by researchers. In CNNs, each kernel is learned during399

training, enabling highly complex and abstract information to be captured.400

There is a large variety of CNN architectures to choose from which differ in the sizes of401

kernels they apply, and the number and types of layers they contain. Different architectures402

are more suitable for certain tasks than others, and so choosing the most appropriate for a403

particular application is a key consideration. For tile-level classification tasks, popular CNN404

architectures include ResNet (35), Inception (36), VGG (37), and DenseNet (38). Though these405

architectures have all shown excellent performance, their main drawback is their size: they406

contain large numbers of layers and millions of parameters. Without a sufficiently large dataset,407

such large architectures are susceptible to overfitting to the training data. One option in this case408

is to use a smaller architecture, and many have been designed to give competitive performance409

with fewer layers and parameters. For example, SqueezeNet (39) has proven to be effective410

for training on WSI tiles across a variety of studies. For regression tasks, the final layers of411

these architectures are typically adapted to output a continuous value and the loss function412

changed to one appropriate for regression. Although any of these architectures can also be413

20

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

adapted to perform segmentation tasks, the U-Net architecture (40) was specifically developed414

for segmentation of medical images, and is one of the most popular architectures for performing415

segmentation of WSIs.416

For classification in the weakly supervised setting, certain specialised architectures have417

been developed, such as CHOWDER (41). However, simple approaches to weakly supervised418

learning can still make use of the aforementioned architectures when combined with a modified419

training procedure. For example, one approach makes use of two assumptions: first, that for420

a WSI with a negative slide-level label, all tiles inherit the negative label, and second, for a421

WSI with a positive slide-level label, only the top k tiles, as predicted by the model, inherit the422

positive label. This means: for a WSI with a slide-level label of ‘healthy’, it is assumed that all423

tiles extracted from the image display healthy tissue; while for a WSI with a slide-level label424

of ‘cancerous’, only the top k tiles predicted by the model to be cancerous inherit the label.425

These assumptions define an approach for slide-level label inheritance during training, enabling426

standard classification architectures to be applied, but do not generally make efficient use of the427

data. In WSIs where there are more than k tiles displaying a positive feature, these additional428

tiles are simply discarded. In contrast, specialised architectures like CHOWDER aim to make429

more efficient use of the data.430

Once a model has been trained, PathML supports the use of any conventional CNN archi-431

tecture in PyTorch for inference on Slide objects with its Slide.inferClassifier()432

and Slide.inferSegmenter() functions for classification and segmentation mod-433

els, respectively. The trained model file is used as an argument, and PathML then434

infers each tile that passes the user’s requested tissue and foreground filtering stan-435

dards through the model. The inference results of each tile are saved directly into436

the Slide object, enabling use of downstream analysis functions to evaluate in-437

ference performance, such as Slide.classifierMetricAtThreshold(),438

21

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

Slide.segmenterMetricAtThreshold() (to check an inference statis-439

tic at a threshold or thresholds), Slide.visualizeClassifier(), and440

Slide.visualizeSegmenterInference() (to generate a visual inference map441

at a class of inference). See Training, inference and validation, Procedure steps 17, 19, 30,442

and 32, and Anticipated results for more details of the these functions, their application, and443

their results.444

1.8 Transfer learning445

We have already discussed using data augmentation and small CNN architectures as strategies446

to reduce the risk of overfitting. Another very important approach, particularly widespread in447

computer vision, is transfer learning. Typically when training a neural network, one will first448

initialise its weights by sampling from a standard normal distribution. In transfer learning,449

instead of beginning training with random weight values, the weights are instead given their450

values by learning on a separate dataset first, typically from a different domain. The rationale451

for transfer learning in CNNs is that, whether the model was trained to distinguish cats from452

dogs, or healthy cells from cancerous ones, many of the kernels learnt during training will be453

similar, particularly in early convolutional layers. For example, it is likely that kernels for de-454

tecting edges would be learnt in both settings. By initialising the weights in this way, we can455

therefore transfer this knowledge from one domain to another, without having to relearn it. Most456

of the CNN architectures discussed in the previous section have been previously trained on the457

ImageNet dataset (42) to be able to detect the presence of thousands of different objects, includ-458

ing over a hundred different breeds of dog. Although ImageNet images are quite different from459

WSIs, many publications have found transfer learning improves training times and validation460

accuracy for tasks in other domains (43). Transfer learning also reduces the risk of overfitting461

as it, in effect, increases the size of the training dataset, and so is particularly useful when the462

22

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

training dataset is small. PyTorch and TensorFlow both provide methods to initialise weights463

for the most popular CNN architectures with those learnt on ImageNet (see Procedure step464

13) (9, 10).465

1.9 Training, inference and validation466

In the previous sections, we have discussed the major pre-processing steps and most important467

considerations one has to make when performing deep learning on WSIs. In this subsection468

we give a brief introduction to some further considerations that need to be made when training469

a deep learning model, and how PathML can help, before discussing applying the model and470

assessing its performance.471

1.9.1 Data partitioning472

As in any machine learning setting, one’s data should be split into three disjoint subsets: a473

training set, validation set and test set. The training set is used to train the deep learning model.474

The validation set is used to assess the performance of the trained model on an independent475

dataset, and enable the selection of optimum hyperparameter values. Once the model has been476

trained, and the hyperparameters chosen which give the best performance on the validation set,477

the final assessment of the model is performed on the test set. Applying the model to the test set478

gives an estimate for how it will likely perform when encountering new, unseen data, and thus479

how it is expected to perform when applied in the clinic. Once the model has been assessed480

on the test set, no further modifications can be made. A typical split might allocate 70% of481

the available data for training, 15% percent for validation and 15% for testing; which we will482

call a ‘70-15-15 split’. For smaller datasets, the validation and test sets are frequently made a483

larger fraction of the dataset, a 60-20-20 split for example, and for larger datasets more data are484

apportioned for training, such as a 90-5-5 split, but there are no final, agreed upon ratios (44).485

23

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

For WSIs, although the model is trained at the tile-level, it is important that the partition486

between training, validation, and test sets is at the patient-level. If there are multiple WSIs for487

a single patient, all of them should be partitioned into the same set. Likewise, all tiles from488

the same slide should be part of the same set (7). As tiles taken from a single patient are more489

likely to be similar to each other than tiles from a different patient, having tiles from the same490

patient appear in both training and test sets could lead to artificially inflated estimates of model491

performance. It is good practice then to partition patients between the three sets as a first step492

before training.493

1.9.2 Training494

Building a dataset with labels that can be interpreted by a deep495

learning library is an important training consideration. PathML’s496

tile extraction functions (Slide.extractAnnotationTiles() and497

Slide.extractRandomUnannotatedTiles()) output tiles and labels in a498

directory structures that are by default compliant for direct input into PyTorch’s499

torchvision.datasets.ImageFolder dataset constructor (see fig. 3), mak-500

ing it incredibly straightforward to load the tiles PathML has extracted into a for-501

mat ready for training (see Procedure step 11). For classification tasks, per502

torchvision.datasets.ImageFolder, tile labels are stored as directory names503

within a parent directory containing the slide or case name (33). For segmentation tasks, we504

have included in PathML a custom dataset, PathmlSegmentationDataset, that takes505

as arguments the paths to the tile and mask directories output by PathML’s tile extraction506

functions, as well as the desired augmentation transformations, to make a PyTorch-ready507

segmentation dataset that correctly pairs and parallel-augments tiles and masks (see Procedure508

step 27 for an example of its use).509

24

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

1.9.3 Inference510

After a model has been trained, the next step is inferring the final model on the validation511

and test sets to verify that the model learned appropriately and compute some statistics. Com-512

monly, a metric is measured on the validation set in order to subsequently apply it to the test set513

(see Validating the model). PathML has two functions that infer a trained model on all tissue-514

filter passing tiles in a Slide object, saving the results into the tile dictionary internal to it:515

Slide.inferClassifier() and Slide.inferSegmenter(), which take as input a516

trained PyTorch model file (Procedure steps 17 and 30).517

To ensure that the model learned roughly the correct patterns during inference,518

it is important to visual inference results by plotting the inference predictions of519

tiles spatially as they appear in the WSI. Once inference has been performed on520

the Slide objects, PathML’s Slide.visualizeClassifierInference() and521

Slide.visualizeClassifierInference() functions create these plots for the user522

overlaid atop a low-resolution image of the WSI below it (Procedure steps 18 and 31), taking523

the class to visual as an argument. If the regions highlighted by the model seem not to corre-524

spond to what is expected given the ground truth, trying different training configurations, tile525

sizes, or other parameters is recommended to solve this issue before proceeding.526

For segmentation tasks, it is often important to create a pixel-wise inference mask that527

is the same pixel dimensions as the WSI (at the pyramid level that was used for tile ex-528

traction). If tile overlap was used during inference, it is necessary to merge the overlap-529

ping pixel predictions into one prediction to create a single two-dimensional output matrix.530

PathML’s Slide.getNonOverlappingSegmentationInferenceArray() handles531

all of these tasks, returning an overlap-corrected inference array (see Procedure step 36 for a532

usage example).533

25

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

1.9.4 Validating the model534

In addition to visual verification, numeric methods are frequently used to interpret model535

performance. In particular, performance on the test set is often used as a final check of536

the model’s efficacy. There are two main scenarios that can occur when using WSIs as537

data depending on whether test set ground truth is present at the level of tiles or at the538

level of patients or slides. In the former case, determining test set performance is more539

straightforward, as tile-level results can be compared to tile-level ground truth, and then av-540

eraged across tiles to give patient- or slide-level results. Still, it is often first necessary to541

determine an operating threshold, both for classification and segmentation tasks. As most542

conventional CNN architectures output continuous prediction probabilities between 0 and 1,543

whereas most ground truth labels derived from WSI annotations are discrete class assign-544

ments, a method is required to discretise model predictions for comparison to the ground545

truth. Commonly, a range of prediction probability thresholds are used to discrete predic-546

tions, and then the prediction probability that is most performant on the validation set is ap-547

plied to the test set to measure the model’s success. Once inference has been performed548

on the validation set, PathML’s Slide.classifierMetricAtThreshold() and549

segmenterMetricAtThreshold() functions are purpose-built to do this task; users sim-550

ply input a list of probability thresholds to try as arguments to these functions, as well as which551

performance metric to measure (accuracy, balanced_accuracy, f1, precision,552

and recall are options for Slide.classifierMetricAtThreshold() and553

dice_coeff is available for segmenterMetricAtThreshold()) and which class (ar-554

gument classToThreshold) to measure it on, and they return that metric computed at each555

inputted probability threshold performance metric (see Procedure steps 19 and 32 for usage556

examples). The threshold that produced the best performance on the validation set can then be557

applied to the test set with the same two functions, just inputting the single best threshold in the558

26

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

probablityThresholds argument.559

In the case where only slide-level labels are present for the test set (very common in medical560

contexts where manual annotation of WSIs is time-intensive) a method is needed to bridge gap561

between the tile-level predictions output by the model and the slide-level ground truth of the562

patient so that they can be compared to measure performance. For example, for classification563

tasks, a count of the number of tiles positive for the class of interest is compared with slide-level564

ground truth via AUC analysis to measure test set performance. PathML was made to accommo-565

date such techniques. Its Slide.numTilesAboveClassPredictionThreshold()566

function returns the total number of tiles in the Slide whose inference prediction probabilities567

for a given class (classToThreshold) lie at or above the probability thresholds inputted568

into the probablityThresholds argument. These class-positive counts per slide can then569

be used to generate an AUC compared to slide-level ground truth. As above, often a range of570

probability thresholds are tried, and the one which yields the largest AUC on the validation set571

is then applied to the test set to give the final AUC. AUC-ROC can also be plotted as a curve.572

(see Procedure steps 22–23).573

1.9.5 Interpretability methods574

Since deep convolutional neural networks take raw image data as an input, as with other deep575

models, they are frequently criticised for lacking transparency, since it can be difficult to inter-576

pret what local features of the images the model learned during training (45,46). To assuage this577

lack of clarity, some methods have been developed to visualise what local aspects of a trained578

image a model uses to make its predictions. These so called ‘attention’ methods, or discrimina-579

tive localisation methods, reveal what local aspects of images a model focuses its attention on580

to classify it into a certain class (47).581

One of the most popular attention methods for interpreting trained deep CNNs is the class582

27

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

activation mapping (CAM) methods, which produce course localisation maps highlighting the583

regions of an image that were most important for the model’s prediction of that image (48, 49).584

This popularity extends to tile-based WSI deep learning studies, many of which from the last585

few years have included CAM analyses of their tiles after training to verify or discover which586

regions of a tile the model learned to be relevant for the classification task (50–53).587

Among CAM methods, the Gradient-weighted CAM (Grad-CAM) method of Selvaraju et588

al is among the most frequently used in studies that train deep CNNs on WSI tiles. Grad-CAM589

uses the gradient of a target concept (for example, a class) as it passes to the last convolutional590

layer of an architecture to produce its localisation maps. Grad-CAM is unique among CAM591

methods in that it is generalisable to many different kinds of CNNs so is usable across a wide592

range of frequently used architectures (49). Due to their its architecture-agnostic design, Grad-593

CAM heatmaps can be implemented with relatively minor additions to PyTorch or TensorFlow594

model code.595

1.10 Related methods596

Several tools have been developed which also provide support for some of the functionalities597

available in PathML. Providing a complete description and comparison of these tools is beyond598

the scope of this protocol. Here we briefly describe these tools and direct the reader towards the599

articles presenting them for more details.600

HistoQC (54) is a Python-based tool for performing quality control of WSIs, aiding users601

in the identification slides containing potential technical artefacts and affected by batch effects.602

By providing the user with modules for performing a wide range of classical image analysis603

techniques, HistoQC enables the construction of custom pipelines for performing foreground604

filtering, detection of slide artefacts such as pen marks, and identification of batch effects such605

as slides with darker staining compared to the rest. In HistoQC, this is achieved using a com-606

28

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

bination of approaches including inspection of colour distributions, application of edge and607

smoothness detectors, and classical filters such as Gabor and Frangi filters for texture analysis.608

For example, if the background of a WSI is uniformly white, by applying a threshold to the609

colour distribution which excludes white pixels can be used to perform foreground filtering.610

Similarly, a bright green pen mark may be clearly distinguishable from tissue by inspection of611

the green colour distribution of the WSI. In addition, HistoQC provides an interactive user inter-612

face for exploring one’s data. These approaches can achieve competitive results when carefully613

tuned by the user, but may struggle in more complex cases, such as uneven background, and614

pen marks with similar colour to the tissue. HistoQC is therefore a useful tool, complementing615

the wider functionality of robustness of PathML, and enabling rapid quality control processing616

of one’s data.617

HistomicsTK (55) is a Python library for performing a number of image analysis tasks618

specific to WSIs including stain colour deconvolution, normalisation and augmentation, as well619

as cell/nuclei segmentation and even a user interface for manual annotation of WSIs. Like620

HistoQC, all image analysis techniques are performed using classical approaches. HistomicsTK621

is highly complementary to PathML, and in particular, we envisage that users may make use of622

HistomicsTK for performing WSI-specific colour augmentations within a PathML workflow.623

Histolab (56) is a Python library combining features found both in HistoQC and Histomic-624

sTK, including functions for performing classical image analysis techniques to facilitate tissue625

detection and artefact removal, cell/nuclei segmentation, and colour transformations such as626

colour deconvolution. In addition, Histolab, like PathML, supports the extracting of tiles from627

WSIs, and enables one to easily test alternative tiling strategies, including random extraction of628

tiles according to tissue detection score thresholds.629

Unlike PathML, none of these tools implement deep tissue detectors, nor do they implement630

tools for importing annotations for WSIs to facilitate labelling of tiles or generation of tile-631

29

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

level segmentation masks. Furthermore, while all of these tools provide support for the pre-632

processing of WSIs, none provides tools for model evaluation and post-processing, such as the633

stitching together of tile-level segmentation masks to produce a slide-level mask.634

1.11 Limitations635

PathML is a library that was made to be as intuitive and user-friendly as possible, but cer-636

tain functions can take a be time intensive or memory intensive, particularly if many tissue-637

dense slides are used for segmentation tasks. In particular, Slide.inferSegmenter()638

will add an array of pixel-level predictions to each suitable tile in the Slide. This can result639

in .pml files that are over 10 gigabytes for large WSIs. If float-level precision isn’t required640

for segmentation predictions, setting the dtype argument of Slide.inferSegmenter()641

to int to can mitigate this issue by scaling predictions to integers from 0 to 255 to pro-642

duce a much smaller .pml file. Furthermore, computing the Dice coefficient for each tile643

in a large Slide with Slide.segmenterMetricAtThreshold() can take tens of644

minutes per slide. Generating a WSI-sized pixel-wise segmentation inference array with645

Slide.getNonOverlappingSegmentationInferenceArray() also required tens646

of minutes and up to 30 gigabytes of RAM for larger Slide objects. It should also be noted647

that the deep tissue detector built into PathML currently does not support IHC images.648

1.12 Materials649

1.12.1 Equipment650

Hardware It is recommended that PathML users either work on a machine with at least651

32 GB of RAM and enough disk space to hold the number of number of tiles they would652

like to extract (tiles are not large, but if thousands are extracted, a proportional amount653

of disk space is required. At least four cores are recommended. WSIs tend to be 0.5–5654

30

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

GB in size, so if tens or hundreds are used in an analysis, disk space to store them is re-655

quired (external hard drives work well). Users that wish to utilise the inference functions656

of Slide, Slide.inferClassifier() and Slide.inferSegmenter() are highly657

recommended to have a CUDA-compatible Graphics Processing Unit (GPU). PathML also658

works well in high performance computing environments that meet these conditions.659

Software and data660

• A whole-slide image viewer with support to extract annotations into either ASAP-661

compliant .xml format or GeoJSON format; we recommend ASAP (https://co662

mputationalpathologygroup.github.io/ASAP/) or QuPath (https:663

//qupath.github.io/). Only necessary if you intend to generate or modify any664

annotations.665

• Python version 3.7 or above (https://www.python.org/downloads/)666

• Anaconda (recommended, https://www.anaconda.com/products/indivi667

dual)668

• The PathML Python library and associated dependencies (https://github.com/m669

arkowetzlab/pathml)670

1.12.2 Equipment setup671

PathML installation with its dependencies672

• Install Anaconda (follow instructions at https://docs.anaconda.com/anacon673

da/install)674

• Clone the PathML GitHub repository:675

676
git clone https://github.com/markowetzlab/pathml677678

31

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://computationalpathologygroup.github.io/ASAP/
https://computationalpathologygroup.github.io/ASAP/
https://computationalpathologygroup.github.io/ASAP/
https://qupath.github.io/
https://qupath.github.io/
https://qupath.github.io/
https://www.python.org/downloads/
https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual
https://github.com/markowetzlab/pathml
https://github.com/markowetzlab/pathml
https://github.com/markowetzlab/pathml
https://docs.anaconda.com/anaconda/install
https://docs.anaconda.com/anaconda/install
https://docs.anaconda.com/anaconda/install
https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

• Install PathML’s dependencies by creating an Anaconda environment using the679

pathml-environment.yml with the following command (including the path to the680

pathml-environment.yml file in the PathML repository that was just cloned) and681

then activate that environment:682

683
conda env create -f /path/to/pathml/pathml-environment.yml684

conda activate pathml-env685686

Please note that pathml-environment.yml installs Python version 3.7, PyTorch687

version 1.4, Torchvision version 0.5, and CUDA version 10.0. Stable versions above688

these should also work as long as the versions are cross-compatible. Be sure that the689

CUDA version matches the version installed on your GPU; if not, either update your690

GPU’s CUDA or change the cudatoolkit line of pathml-environment.yml to691

match your GPU’s version before creating your pathml-env environment.692

(Optional) Procedure tutorial preparation693

• Clone the PathML tutorial GitHub repository:694

695
git clone https://github.com/markowetzlab/pathml-tutorial696697

• Create a directory called wsi_data where there is at least 38 GB of disk space.698

Download the following 18 WSIs from the CAMELYON16 dataset into wsi_data699

(downloadable in the tumor and normal folders at the following link: https:700

//drive.google.com/drive/folders/0BzsdkU4jWx9Ba2x1NTZhdz701

Q5Zjg?resourcekey=0-g2TRih6YKi5P2O1SiBB1LA):702

– normal_001.tif

– normal_010.tif

– normal_028.tif

– normal_037.tif

– normal_055.tif

– normal_074.tif

– normal_111.tif

– normal_141.tif

– normal_160.tif

32

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://drive.google.com/drive/folders/0BzsdkU4jWx9Ba2x1NTZhdzQ5Zjg?resourcekey=0-g2TRih6YKi5P2O1SiBB1LA
https://drive.google.com/drive/folders/0BzsdkU4jWx9Ba2x1NTZhdzQ5Zjg?resourcekey=0-g2TRih6YKi5P2O1SiBB1LA
https://drive.google.com/drive/folders/0BzsdkU4jWx9Ba2x1NTZhdzQ5Zjg?resourcekey=0-g2TRih6YKi5P2O1SiBB1LA
https://drive.google.com/drive/folders/0BzsdkU4jWx9Ba2x1NTZhdzQ5Zjg?resourcekey=0-g2TRih6YKi5P2O1SiBB1LA
https://drive.google.com/drive/folders/0BzsdkU4jWx9Ba2x1NTZhdzQ5Zjg?resourcekey=0-g2TRih6YKi5P2O1SiBB1LA
https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

– tumor_009.tif

– tumor_011.tif

– tumor_036.tif

– tumor_039.tif

– tumor_044.tif

– tumor_046.tif

– tumor_058.tif

– tumor_076.tif

– tumor_085.tif

• If running the tutorial using the Jupyter notebook in the pathml-tutorial repository703

(pathml-tutorial.ipynb), install Jupyter notebook:704

705
conda install -c conda-forge notebook706707

• If running the tutorial using the Jupyter notebook, start the notebook before running the708

code in pathml-tutorial.ipynb (for instructions on running Jupyter notebooks,709

see https://jupyter.org/documentation):710

711
jupyter notebook712713

2 Procedure714

This tutorial uses 18 WSIs and their corresponding annotations from the CAMELYON16 Grand715

Challenge (57). The WSIs show H&E stained lymph node tissue scanned at 40X. 9 of the 18716

WSIs (the ones with tumor in the file name) contain metastatic breast cancer lesions among717

the lymph node tissue. The annotations, made by pathologists (57), demarcate these metastatic718

regions in a class in the .xml files called metastasis. The annotation .xml files also contain719

a class named negative which marks doughnut-hole regions of healthy tissue that appear720

inside metastatic regions. The tutorial below uses PathML to train and evaluate a model to721

classify metastatic from non-metastatic tiles and WSIs (Procedure steps 1–9) as well as to722

train a model and evaluate to segment metastatic from non-metastatic regions (Procedure steps723

10–36).724

Note that for the sake of the tutorial being relatively easy and quick to run as a proof of725

concept, only 18 of the 400 CAMELYON16 WSIs are used, with 6 WSIs in the training set, 6726

33

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://jupyter.org/documentation
https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

in the validation set, and 6 in the test set (3 metastasis-positive slides and 3 metastasis negative727

WSIs were selected for each set). In practice, though, it is recommended that users make use of728

all of the data they have available to them to train more robust models.729

The code below is reproduced in a Jupyter notebook, pathml-tutorial.ipynb, in730

the pathml-tutorial GitHub repository (https://github.com/markowetzlab/731

pathml-tutorial). The complete results of a full run of the code below can be also be732

found in the repository.733

734

Preparation of programming environment and working directories and735

defining patient-level train-val-test split736

1. Import PathML and its dependencies.737

import glob
import os
import pickle
import sys
from pathlib import Path
import random
from tqdm import tqdm

Next, append PathML’s directory path to the system path, then import PathML and essen-

tial libraries for training and evaluation of model performance. Make sure to substitute

the path to your local PathML installation in place of ’/path/to/pathml’.

sys.path.append(’/path/to/pathml’)
from pathml.slide import Slide

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import copy
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
import torchvision
from torch.optim import lr_scheduler

34

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://github.com/markowetzlab/pathml-tutorial
https://github.com/markowetzlab/pathml-tutorial
https://github.com/markowetzlab/pathml-tutorial
https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

from torchvision import datasets, models, transforms
import albumentations as A
from sklearn.metrics import accuracy_score, balanced_accuracy_score,

f1_score, precision_score,
recall_score, roc_auc_score,
roc_curve

2. Prepare directory in which analysis will be performed and specify path to directory con-738

taining WSI data. The analysis directory should contain a pathml_slides subdirec-739

tory for saving of PathML slide objects. The analysis directory should also contain an740

annotation directory where annotation files (either .xml or .json) should be stored741

with the same names as the whole-slide images they belong to (e.g. normal_001.xml742

is the annotation file corresponding to the WSI file normal_001.tif). If follow-743

ing this tutorial, the pathml-tutorial directory cloned from GitHub (https:744

//github.com/markowetzlab/pathml-tutorial) can serve as the anal-745

ysis directory (annotation directory is included, but WSIs need to be moved into746

a wsi_data directory (see section 1.12.2). WSIs should all be stored in a single747

wsi_data directory, which does not need to be a subdirectory of the analysis direc-748

tory (see section 1.12.2).749

analysis_dir_path = ’path/to/pathml-tutorial’
wsi_path = ’path/to/wsi_data’

pathml_slide_dir_path = os.path.join(analysis_dir_path, ’pathml_slides
’)

annotations_dir_path = os.path.join(analysis_dir_path, ’annotations’)
os.makedirs(analysis_dir_path, exist_ok=True)
os.makedirs(pathml_slide_dir_path, exist_ok=True)
os.makedirs(annotations_dir_path, exist_ok=True)

3. (Optional) If training models to perform more than one task, create results subdirecto-750

ries within the analysis directory for outputs from each, e.g. separate classification and751

segmentation directories.752

35

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://github.com/markowetzlab/pathml-tutorial
https://github.com/markowetzlab/pathml-tutorial
https://github.com/markowetzlab/pathml-tutorial
https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

os.makedirs(os.path.join(analysis_dir_path, ’classification_results’),
exist_ok=True)

os.makedirs(os.path.join(analysis_dir_path, ’segmentation_results’),
exist_ok=True)

4. Define patient-level split for training, validation, and test sets. We create separate Python753

lists for the simple patient IDs (e.g. ‘normal 001’) and for the full paths to those whole-754

slide images. Please be aware that we use a fixed split for the purposes of this protocol,755

but users should create a random patient-level split for their own data.756

train_cases = [’normal_001’, ’normal_055’, ’normal_160’, ’tumor_011’,
’tumor_044’, ’tumor_085’]

val_cases = [’normal_010’, ’normal_037’, ’normal_111’, ’tumor_009’,’
tumor_039’, ’tumor_046’]

test_cases = [’normal_028’, ’normal_074’, ’normal_141’, ’tumor_036’, ’
tumor_058’, ’tumor_076’]

train_wsi_paths = [os.path.join(wsi_path, train_case+’.tif’) for
train_case in train_cases]

val_wsi_paths = [os.path.join(wsi_path, val_case+’.tif’) for val_case
in val_cases]

test_wsi_paths = [os.path.join(wsi_path, test_case+’.tif’) for
test_case in test_cases]

Initialise PathML Slide objects, filter out non-tissue regions, and757

add annotations758

5. Use a for loop to iterate through the file paths to each WSI. Inside the loop, get the759

patient case from the WSI path and initialise a PathML Slide with the WSI path,760

setting the level to 0 to work at the highest magnification of the pyramidal image,761

and using Slide.setTileProperties() to define our tile size edge length in762

pixels. Next, call Slide.detectTissue() to infer PathML’s deep tissue detec-763

tor on the Slide and Slide.detectForeground() to apply simple foreground764

filtering methods. We can choose specific parameters for filtering using these meth-765

ods later, after running these functions. If the case is a tumour case rather than a nor-766

mal case, then find the matching annotation file in our annotation directory and use767

36

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

Slide.addAnnotations() to parse these annotations into the Slide object. If768

there are negative spaces in the geometry of the annotations (e.g. doughnut holes), set769

the negativeClass argument of Slide.addAnnotations() to be the name of770

that negative class in the annotation file. Finally, call Slide.save() to preserve our771

current Slide object as a .pml file in our pathml_slides directory for re-loading772

and re-use later.773

tile_size = 500
for wsi_path in train_wsi_paths+val_wsi_paths+test_wsi_paths:

case = Path(wsi_path).stem
pathml_slide = Slide(wsi_path, level=0).setTileProperties(tileSize

=500)
pathml_slide.detectTissue()
pathml_slide.detectForeground()

if ’tumor’ in case:
annotation_path = os.path.join(analysis_dir_path, ’annotations

’, case+’.xml’)
pathml_slide.addAnnotations(annotation_path, negativeClass=’

negative’)

pathml_slide.save(folder=pathml_slide_dir_path)

6. Load a Slide that was just created using Slide() (the initialiser) and including the774

path to a .pml file as argument. Then, use Slide.visualizeThumbnail()775

to portray a small, low-resolution image of the WSI. Then call776

Slide.visualizeForeground() twice, once while setting the argument to777

otsu to show the foreground as filtered using Otsu’s method, and once setting the778

argument to triangle to show the foreground as filtered using the triangle algorithm.779

Note that the argument can also be set to an integer from 0 (black) to 100 (white) to give780

a manual intensity cutoff which will consider all tiles below or equal to that integer to be781

part of the foreground. Finally, call Slide.visualizeTissueDetection() to782

show the background, artefact, and tissue regions detected by the deep tissue detector.783

Compare these visualisations to determine which method or methods of filtering works784

37

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

best for the application. It may be necessary to visualise many slides to get a good sense785

of which filters to use. Here, we visualise all six of our validation slides, saving the786

results to the classification_results directory:787

for case in val_cases:
pathml_slide = Slide(os.path.join(analysis_dir_path, ’

pathml_slides’, case+’.pml’))
pathml_slide.visualizeThumbnail(folder=os.path.join(

analysis_dir_path, ’
classification_results’))

pathml_slide.visualizeForeground(’otsu’, folder=os.path.join(
analysis_dir_path, ’
classification_results’))

pathml_slide.visualizeForeground(’triangle’, folder=os.path.join(
analysis_dir_path, ’
classification_results’))

pathml_slide.visualizeTissueDetection(folder=os.path.join(
analysis_dir_path, ’
classification_results’))

Extracting tiles and masks from Slide objects788

7. Iterate over all training and validation cases, extracting tiles that over-789

lap the annotations added and their corresponding binary masks using790

Slide.extractAnnotationTiles() for Slides that have annota-791

tions added to them, and Slide.extractRandomUnannotatedTiles()792

for Slides that do not have any annotations. For both functions, set793

tissueLevelThreshold and foregroundLevelThreshold to appropri-794

ate thresholds so that only tiles considered part of the tissue region of the slides795

will be extracted, and set numTilesToExtractPerClass to determine the796

maximum number of tiles to extract from each class present in the annotation file.797

If this argument is not set, all suitable tiles from each desired class will be ex-798

tracted. For specifically Slide.extractRandomUnannotatedTiles(), set799

tileAnnotationOverlapThreshold to be a float which will be used as the800

minimum fractional overlap with an annotation required for a tile to be considered part801

38

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

of an annotation class, and therefore extractable. Set classesToExtract to be a list802

of classes in the annotation file to extract from; if it is not defined, all classes in the file803

will be extracted from. In both functions, otherClassNames can be defined as a list804

that will create empty tile directories for classes desired, but not present in the annotation805

file. A seed argument can be set for both functions to ensure reproducibility in the806

tiles extracted. Tiles are extracted into a tiles directory, created in the outputDir807

specified as the first argument of both extraction functions, which has a subdirectory808

structure (visualised in fig. 3) that is amenable for use in the ImageFolder dataset809

creator of PyTorch’s torchvision.datasets.810

Figure 3: The directory structure output by Slide.extractAnnotationTiles() and
Slide.extractRandomUnannotatedTiles().

Binary segmentation masks for each extracted tile can be extracted in811

an exactly parallel directory in outputDir called masks by setting the812

extractSegmentationMasks argument in either tile extraction function to True.813

39

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

Pixel values of 255 appear as white in these masks indicate positivity for the class,814

whereas pixel values of 0 appear as black and indicate negativity for the class.815

Unless the returnTileStats argument (of either tile extraction function)816

is set to False, the function will return a dict containing the 0 to 1 nor-817

malised sum of channel values across all extracted tiles, the sum of the squares818

of channel values for all extracted tiles, and the total number of tiles extracted.819

These values can be used to compute the channel-wise mean and variance across820

all tiles in a dataset, which can be useful when performing data augmentation.821

Collect this dictionary for each call to Slide.extractAnnotationTiles()822

and Slide.extractRandomUnannotatedTiles(), cumulatively summing the823

channel values, squared channel values, and total tile count across all extracted tiles.824

global_channel_sums = np.zeros(3)
global_channel_squared_sums = np.zeros(3)
global_tile_count = 0

for case in train_cases + val_cases:
pathml_slide = Slide(os.path.join(analysis_dir_path, ’

pathml_slides’, case+’.pml’))

if ’tumor’ in case:
channel_data = pathml_slide.extractAnnotationTiles(

analysis_dir_path,
tileAnnotationOverlapThreshold=0.3,
otherClassNames=’non_metastasis’,
numTilesToExtractPerClass=500,
extractSegmentationMasks=True,
tissueLevelThreshold=0.995,
foregroundLevelThreshold=88)

global_channel_sums = np.add(global_channel_sums, channel_data
[’channel_sums’])

global_channel_squared_sums =
np.add(global_channel_squared_sums,
channel_data[’channel_squared_sums’])

global_tile_count = global_tile_count + channel_data[’
num_tiles’]

else:
channel_data = pathml_slide.extractRandomUnannotatedTiles(

40

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

analysis_dir_path,
numTilesToExtract= 500,
unannotatedClassName=’non_metastasis’,
otherClassNames=’metastasis’,
extractSegmentationMasks=True,
tissueLevelThreshold=0.995,
foregroundLevelThreshold=88)

global_channel_sums = np.add(global_channel_sums, channel_data
[’channel_sums’])

global_channel_squared_sums = np.add(
global_channel_squared_sums,
channel_data[’channel_squared_sums’])

global_tile_count = global_tile_count + channel_data[’
num_tiles’]

8. Compute the training and validation-wide channel-wise means by dividing the channel825

sums accumulated above by the total number of pixels accumulated per channel (the total826

number of tiles multiplied by the square of the tile size edge length in pixels). Compute827

the training and validation-wide channel-wise standard deviations by dividing the chan-828

nel sums squared from above by the total number of pixels accumulated per channel, the829

subtracting from each of these channel-wise values the square of the channel means to830

get the channel variances. Take the square root of the channel variances to get the chan-831

nel standard deviations. Save the pickled channel means and standard deviations to the832

classification_results directory.833

total_pixels_per_channel = global_tile_count * tile_size * tile_size
global_channel_means = np.divide(global_channel_sums,

total_pixels_per_channel)
global_channel_squared_means = np.divide(global_channel_squared_sums,

total_pixels_per_channel)
global_channel_variances = np.subtract(global_channel_squared_means,

np.square(global_channel_means))
global_channel_stds = np.sqrt(global_channel_variances * (

total_pixels_per_channel / (
total_pixels_per_channel-1)))

means_and_stds = {’channel_means’: global_channel_means.tolist(), ’
channel_stds’:
global_channel_stds.tolist()}

pickle.dump(means_and_stds, open(os.path.join(analysis_dir_path,
’classification_results’,

41

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

’trainval_channel_means_and_stds.p’), ’wb’))

9. Count how many tiles of each class across all WSIs were extracted to ensure that the834

dataset is roughly class-balanced. If it is not, employ an imbalanced dataset correction835

technique. Here, Python’s glob is used to perform that task.836

metastasis_tiles = glob.glob(os.path.join(analysis_dir_path, ’tiles’,
’*’, ’metastasis’, ’*.jpg’))

non_metastasis_tiles = glob.glob(os.path.join(analysis_dir_path, ’
tiles’, ’*’, ’non_metastasis’, ’

*.jpg’))

Training a classification model837

10. Define the data transforms to define the data augmentation steps for the training and838

validation sets before training a classification model. The channel means and standard839

deviations computed above can be used as a normalisation step in the augmentation data840

transforms. Make sure to resize to the tiles here to the necessary pixel input size of the841

architecture being used. Data augmentation for the validation set should be separate and842

should generally exclude all except the resizing and normalisation steps.843

data_transforms = {
’train’: transforms.Compose([

transforms.Resize(224),
transforms.RandomVerticalFlip(),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0, contrast=0, saturation=1,

hue=.5),
transforms.ToTensor(),
transforms.Normalize(means_and_stds[’channel_means’],

means_and_stds[’
channel_stds’])

]),
’val’: transforms.Compose([

transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize(means_and_stds[’channel_means’],

means_and_stds[’
channel_stds’])

]),
}

42

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

11. Define datasets and dataloaders for input into a classification model for both the train-844

ing and validation sets. If using PyTorch, the tile directory structure outputted by the845

tile extraction functions above can be used to build a PyTorch dataset by inputting the846

path to tile directly to torchvision.datasets.ImageFolder, and then in-847

putting the resulting dataset to torch.utils.data.ConcatDataset along with848

the corresponding data transform. Data loaders for the training and validation set can849

then be created from these datasets in addition to batch size and other runtime informa-850

tion. It is highly recommended that the data loaders be configured such that the data851

in the dataset are shuffled between each epoch, such as by setting shuffle=True in852

torch.utils.data.DataLoader.853

train_dataset = torch.utils.data.ConcatDataset([datasets.ImageFolder(
os.path.join(

analysis_dir_path, ’tiles’, train_case), data_transforms[’
train’]) for train_case
in train_cases])

val_dataset = torch.utils.data.ConcatDataset([datasets.ImageFolder(os.
path.join(

analysis_dir_path, ’tiles’, val_case), data_transforms[’val’])
for val_case in

val_cases])

image_datasets = {’train’: train_dataset, ’val’: val_dataset}
dataset_sizes = {x: len(image_datasets[x]) for x in [’train’, ’val’]}

dataloaders = {}
batch_size =
dataloaders[’train’] = torch.utils.data.DataLoader(

image_datasets[’train’], batch_size=batch_size, num_workers=16,
shuffle=True)

dataloaders[’val’] = torch.utils.data.DataLoader(
image_datasets[’val’], batch_size=batch_size, num_workers=16,

shuffle=True)

12. Visualise a batch of the training data loader to ensure that the data transforms produce

tiles that are augmented in the desired ways. This code comes partially from the PyTorch

documentation (33).

43

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

def visualize_batch(inp, title=None):
inp = inp.numpy().transpose((1, 2, 0))
mean = means_and_stds[’channel_means’]
std = means_and_stds[’channel_stds’]
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.imshow(inp)
if title is not None:

plt.title(title)
plt.pause(0.001)

inputs, classes = next(iter(dataloaders[’train’]))
out = torchvision.utils.make_grid(inputs)
visualize_batch(out)

13. Define the classification model. If using a pretrained classifier, specify which pretrained854

weights are being used. If using a GPU, configure the model to work on the GPU (and855

configure parallel computation if using multiple GPUs). Define the loss function, the856

optimiser (including the learning rate), and the learning rate decay function (if used).857

class_names = [’metastasis’, ’non_metastasis’]
model_ft = models.vgg19_bn(pretrained=True)
num_ftrs = model_ft.classifier[6].in_features
model_ft.classifier[6] = nn.Linear(num_ftrs, len(class_names))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu"
)

if torch.cuda.device_count() > 1:
model_ft = nn.DataParallel(model_ft)

model_ft = model_ft.to(device)

criterion = nn.CrossEntropyLoss()
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9

)
exp_lr_scheduler = lr_scheduler.StepLR(

optimizer_ft, step_size=7, gamma=0.1)

14. Construct a training function that takes as input the model, loss function, optimiser, learn-858

ing rate scheduler, and number of epochs to train for and outputs the same model with859

the weights adjusted from training. Collect and also return the learning statistics accumu-860

lated during training, such as (at a minimum) the training accuracy, validation accuracy,861

44

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

training loss, and validation loss after each epoch (33).862

def train_classification_model(model, criterion, optimizer, scheduler=
False, num_epochs=30):

best_model_state_dict = copy.deepcopy(model.state_dict())
best_accuracy = 0.0
learning_stats = {’train’: [], ’val’: []}

for epoch in range(num_epochs):
for phase in [’train’, ’val’]:

if phase == ’train’:
model.train()

else:
model.eval()

epoch_ground_truth = []
epoch_predictions = []
running_loss = 0.0

for inputs, labels in tqdm(dataloaders[phase]):
inputs = inputs.to(device)
labels = labels.to(device)

optimizer.zero_grad()

with torch.set_grad_enabled(phase == ’train’):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)

loss = criterion(outputs, labels)

if phase == ’train’:
loss.backward()
optimizer.step()

epoch_ground_truth = epoch_ground_truth + labels.data.
tolist()

epoch_predictions = epoch_predictions + preds.tolist()
running_loss += loss.item() * inputs.size(0)

if scheduler:
if phase == ’train’:

scheduler.step()

epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = accuracy_score(epoch_ground_truth,

epoch_predictions)
epoch_weighted_acc = balanced_accuracy_score(

epoch_ground_truth,
epoch_predictions)

45

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

epoch_weighted_rec = recall_score(epoch_ground_truth,
epoch_predictions,
average=’weighted’)

epoch_weighted_prec = precision_score(epoch_ground_truth,
epoch_predictions,
average=’weighted’)

epoch_weighted_f1 = f1_score(epoch_ground_truth,
epoch_predictions,
average=’weighted’)

learning_stats[phase].append(
{’loss’: epoch_loss,
’accuracy’: epoch_acc,
’weighted_accuracy’: epoch_weighted_acc,
’weighted_precision’: epoch_weighted_prec,
’weighted_recall’: epoch_weighted_rec,
’weighted_f1’: epoch_weighted_f1})

if (phase == ’val’) and (epoch_acc > best_accuracy):
best_accuracy = epoch_acc
best_model_state_dict = copy.deepcopy(model.state_dict

())

return best_model_state_dict, learning_stats

15. Run the training function. Save the learning statistics and trained model to the863

classification_results directory. If your GPU runs out of memory, reduce the864

batch size until it can fit an entire batch.865

model_ft, segmentation_learning_stats = train_classification_model(
model_ft, criterion, optimizer_ft
, scheduler=exp_lr_scheduler,
num_epochs=30)

pickle.dump(segmentation_learning_stats, open(os.path.join(
analysis_dir_path, ’
classification_results’,

’classification_learning_stats.p’), ’wb’))
torch.save(model_ft, os.path.join(analysis_dir_path, ’

classification_results’, ’
classification_best_model_ft.pt’)
)

16. Produce plots showing the training and validation accuracy across training epochs, and866

showing the training and validation loss across training epochs.867

46

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

trainLoss = [epoch["loss"] for epoch in segmentation_learning_stats[’
train’]]

valLoss = [epoch["loss"] for epoch in segmentation_learning_stats[’val
’]]

trainAcc = [epoch["weighted_accuracy"] for epoch in
segmentation_learning_stats[’
train’]]

valAcc = [epoch["weighted_accuracy"] for epoch in
segmentation_learning_stats[’val’
]]

numEpochs = len(segmentation_l[’train’])

fig, (ax1, ax2) = plt.subplots(2)
fig.suptitle(’CAMELYON16 metastasis classification’)
ax1.plot(np.arange(numEpochs)+1,trainAcc,’bo-.’,label="Training",alpha

=0.6,markersize=4)
ax1.plot(np.arange(numEpochs)+1,valAcc,’go-’,label="Validation",

markersize=4)
ax1.axhline(y=np.max(valAcc),color="r",alpha=0.4)
ax1.set(ylabel="Weighted accuracy")
ax1.label_outer()
ax2.plot(np.arange(numEpochs)+1,trainLoss,’bo-.’,label="Training",

alpha=0.6,markersize=4)
ax2.plot(np.arange(numEpochs)+1,valLoss,’go-’,label="Validation",

markersize=4)
ax2.set(xlabel="Epoch", ylabel="Loss")
fig.set_size_inches(7,9)
plt.legend()
plt.savefig(os.path.join(analysis_dir_path, ’classification_results’,

’classification_learning_curves.
png’))

plt.show(block=False)

Inferring on the trained classification model and validating model per-868

formance869

17. Load the trained model and iterate over all validation and test WSIs. Load870

each WSI’s Slide object, and then infer the trained model on these WSIs871

by applying PathML’s Slide.inferClassifier() function on it, using the872

trained model as an argument along with the same tissueLevelThreshold and873

foregroundLevelThreshold values used when extracting tiles. This will en-874

sure that Slide.inferClassifier() only infers on tissue tiles in these WSIs875

47

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

rather than wasting time inferring on artefact and background regions. Also include the876

same data transforms used on the validation dataset for the dataTransforms argu-877

ment. After inferring on a Slide, call Slide.save(), using the same path to the878

path_slides directory to save these classification inference results in the same Slide879

objects.880

modelPath = glob.glob(os.path.join(analysis_dir_path, ’
classification_results’, ’
classification_best_model*’))[0]

dataTransforms = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize(means_and_stds[’channel_means’],

means_and_stds[’channel_stds’
])])

trainedModel = models.vgg19_bn(pretrained=False)
num_ftrs = trainedModel.classifier[6].in_features
trainedModel.classifier[6] = nn.Linear(num_ftrs, len(class_names))
trainedModel.load_state_dict(torch.load(modelPath))

for case in val_cases + test_cases:
pathml_slide = Slide(os.path.join(analysis_dir_path, ’

pathml_slides’, case+’.pml’))
pathml_slide.inferClassifier(trainedModel, classNames=class_names,

dataTransforms=
dataTransforms,
tissueLevelThreshold=0.995,
foregroundLevelThreshold=88)

pathml_slide.save(folder=pathml_slide_dir_path)

18. Load all validation set Slide objects and run881

Slide.visualizeClassifierInference() on them, using the name of882

the class of interest as argument, to generate a figure showing the classification inference883

results overlying that WSI in map form to ensure that the model has learned to identify884

that class properly. A folder argument can also be provided with a path to a directory885

to save this classification inference map to an image file. Here, we save the metastasis886

inference maps of all six validation WSIs to the classification_results887

48

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

directory:888

for case in val_cases:
pathml_slide = Slide(os.path.join(analysis_dir_path, ’

pathml_slides’, case+’.pml’))
pathml_slide.visualizeClassifierInference(’metastasis’, folder=os.

path.join(analysis_dir_path,
’classification_results’))

19. Define an interval of inference probability thresholds at or above which a tile will be889

considered a member of the class of interest. Iterate over all validation cases, loading890

the Slide object of each, then call Slide.classifierMetricAtThreshold()891

on the Slide object to return for that WSI the average accuracy of the classifier’s in-892

ference prediction (according to whether the classifier’s probability output is at or above893

the inputted probability threshold) at guessing the ground truth label of that tile for the894

class of interest. The name of the class of interest is used as the first argument, and the895

probability threshold or list of probability thresholds to check is the second argument.896

A tile is considered ground truth positive for the class of interest if its overlap with the897

ground truth annotations is above the tileAnnotationOverlapThreshold argu-898

ment’s value. Setting the assignZeroToTilesWithoutAnnotationOverlap899

ensures that even if a Slide doesn’t have ground truth annotations in it from a900

Slide.addAnnotations() call, all tiles will be assumed to be ground truth neg-901

ative for the class of interest. The metric argument is set to accuracy so that an902

accuracy operation is performed.903

If a list of probability thresholds is inputted, a list of accuracies corresponding to each904

of those thresholds is returned. Element-wise average the accuracy list for each validation905

slide, then determine which probability threshold in this element-wise averaged list yields906

the highest accuracy for predicting the class of interest on the validation set. Note that907

checking more probability thresholds will give a more precise best threshold. As seen908

49

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

below, for this tutorial, we check probability thresholds at higher frequency the closer we909

get to probability 1; this is because we found in testing that for this problem, the best910

probability threshold for classification lied very near to 1, and so tried more thresholds911

closer to this number. This best validation probability threshold can then be applied to912

measure performance on the test set.913

probability_thresholds = np.append(np.arange(0, 1, 0.005),[0.9925, 0.
995, 0.9975, 0.999, 0.99925, 0.
9995, 0.99975, 0.9999, 0.999925,
0.99995, 0.999975, 0.99999, 0.
9999925, 0.999995, 0.9999975, 0.
999999]).tolist()

threshold_accuracies_all_slides = []

for val_case in val_cases:
val_slide_path = os.path.join(analysis_dir_path, ’pathml_slides’,

val_case+’.pml’)
val_slide = Slide(val_slide_path)

threshold_accuracies = val_slide.classifierMetricAtThreshold(
’metastasis’,
probability_thresholds,
tileAnnotationOverlapThreshold=0.3,
metric=’accuracy’,
assignZeroToTilesWithoutAnnotationOverlap=True)

threshold_accuracies_all_slides.append(threshold_accuracies)

threshold_avg_accuracies =
np.mean(np.array(threshold_accuracies_all_slides), axis=0)

index_of_best_classification_threshold =
np.argmax(threshold_avg_accuracies)

best_classification_threshold =
probability_thresholds[index_of_best_classification_threshold]

20. Plot the element-wise average prediction accuracies on the validation set against the prob-914

ability thresholds used to generate them to visualise how changing the probability thresh-915

old changes validation accuracy.916

plt.figure(figsize=(7.5,6))
plt.plot(probability_thresholds, threshold_avg_accuracies)
plt.xlim(-0.05, 1.05)
plt.ylim(0.6, 1.0)
plt.title(’Tile-level accuracy on val vs. tile probability threshold’)

50

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

plt.xlabel(’Probability threshold for determination\nof number of
tiles showing metastasis’)

plt.ylabel(’Tile accuracy for CAMELYON16 metastasis detection with\
nthresholded number of tiles’)

plt.savefig(os.path.join(analysis_dir_path, ’classification_results’,
’classification_validation_tile_accuracy_vs_probability_threshold.png’

))
plt.show(block=False)

21. To compute the test set classification accuracy assuming that the test set has ground917

truth annotations (giving tile-level labels), iterate over the test set cases, loading918

the Slide object for each. Compute the accuracy of the classifier on the test919

set at the best probability threshold found from the validation set above by calling920

Slide.classifierMetricAtThreshold() on each slide, this time using only921

the best probability threshold as an argument, and keeping all other arguments the922

same as used on the validation set. Take the mean of the accuracies output by the923

Slide.classifierMetricAtThreshold() call of each test set Slide to eval-924

uate the classifier’s holistic performance on the test set.925

test_accuracies_df_rows = []

for test_case in test_cases:
test_slide_path = os.path.join(analysis_dir_path, ’pathml_slides’,

test_case+’.pml’)
test_slide = Slide(test_slide_path)
test_accuracy = test_slide.classifierMetricAtThreshold(

’metastasis’,
best_classification_threshold,
tileAnnotationOverlapThreshold=0.3,
metric=’accuracy’,
assignZeroToTilesWithoutAnnotationOverlap=True)

test_accuracies_df_rows.append([test_case, test_accuracy])

test_accuracies_df = pd.DataFrame(test_accuracies_df_rows,
columns=[’Slide_ID’, ’Metastasis accuracy (>’+

str(round(best_classification_threshold, 6))+’)’])
test_accuracies_df.to_csv(os.path.join(analysis_dir_path,

’classification_results’,
’classification_test_accuracies_with_’+

str(round(best_classification_threshold, 6))+’_df.csv’),
index=False)

51

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

22. If there are no ground truth annotations on the test set, and only slide-wide ground truth926

labels, test set performance can be measured by counting the number of tiles the classifier927

found to be positive for the class of interest (using the best probability threshold found928

above to determine tiles the model considers positive) for all test set slides, and then929

comparing these counts to the slide-wide ground truth label for that class in an AUC930

analysis.931

To count the number of tiles assigned a probability for the class of interest at or above932

the best validation probability, iterate over the test set cases, load each case’s Slide933

object, and call Slide.numTilesAboveClassPredictionThreshold() on it,934

using the class of interest as the first argument, and the best validation threshold as the935

second argument. Collect the positive-predicted tile counts for each test set Slide.936

test_tile_counts_df_rows = []

for test_case in test_cases:
test_slide = Slide(os.path.join(analysis_dir_path, ’pathml_slides’

, test_case+’.pml’))
num_metastasis_tiles_above_threshold =

test_slide.numTilesAboveClassPredictionThreshold(’metastasis’,
best_classification_threshold)

if ’tumor’ in test_case:
metastasis_ground_truth = 1

else:
metastasis_ground_truth = 0

test_tile_counts_df_rows.append([test_case,
metastasis_ground_truth,
num_metastasis_tiles_above_threshold])

test_tile_counts_df = pd.DataFrame(test_tile_counts_df_rows,
columns=[’Slide_ID’,
’Metastasis_ground_truth’,
’Metastasis tile count (>’+

str(round(best_classification_threshold, 6))+’)’])
test_tile_counts_df.to_csv(os.path.join(analysis_dir_path,

’classification_results’,
’classification_test_tile_counts_above_’+

str(round(best_classification_threshold,6))+’_df.csv’),
index=False)

52

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

23. Compute the test set AUC, comparing the number of tiles that the classification model937

predicted to be from the class of interest with the slide-level ground truth. Plot the AUC-938

ROC curve.939

testAuc = roc_auc_score(
test_tile_counts_df[’Metastasis_ground_truth’],
test_tile_counts_df[’Metastasis tile count (>’+

str(round(best_classification_threshold, 6))+’)’])
fpr, tpr, thresholds = roc_curve(

test_tile_counts_df[’Metastasis_ground_truth’],
test_tile_counts_df[’Metastasis tile count (>’+

str(round(best_classification_threshold, 6))+’)’])

plt.figure()
plt.title(’ROC with metastasis probability threshold of ’+

str(round(best_classification_threshold, 6)))
plt.plot(fpr, tpr, ’b’, label = ’AUC = %0.2f’ % testAuc)
plt.legend(loc = ’lower right’)
plt.plot([0, 1], [0, 1],’r--’)
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel(’True Positive Rate’)
plt.xlabel(’False Positive Rate’)
plt.savefig(os.path.join(analysis_dir_path,

’classification_results’,
’classification_test_auc_roc.png’))

plt.show(block=False)

Training a segmentation model940

24. To train a segmentation model using using PathML fist append the appropriate segmen-941

tation model library to the path and import the necessary functions from it. This tutorial942

presents segmentation using a U-Net architecture (40), and uses the open source im-943

plementation of U-Net for PyTorch (including chunks of the code below) found at the944

following link: https://github.com/milesial/Pytorch-UNet.945

sys.path.append(’/path/to/pathml-tutorial/Pytorch-UNet’)
from unet import UNet
from eval import eval_net
from utils.dataset import PathmlSegmentationDataset,

visualizeSegmentationAugmentation
from torch.utils.data import DataLoader, random_split
from dice_loss import dice_coeff

53

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://github.com/milesial/Pytorch-UNet
https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

25. When training a segmentation model with PathML, it is first necessary946

to extract tiles and their corresponding binary masks into the directories947

tiles and masks using Slide.extractAnnotationTiles() and/or948

Slide.extractRandomUnannotatedTiles(). Since this was already per-949

formed above, begin by initialising a segmentation model architecture, moving it to the950

GPU, defining a loss function, optimiser, and learning rate scheduler (if desired), as well951

as training and validation data transforms for data augmentation. Use the Albumentations952

library to define the augmentations so that they can be performed in parallel between a953

tile image and its corresponding mask (58). Since PathmlSegmentationDataset,954

which will be used below, internally divides pixel values by 255, it isn’t necessary to955

include ToTensorV2() to do this at the end of the Albumentations augmentation956

composition.957

device = torch.device(’cuda’ if torch.cuda.is_available() else ’cpu’)

net = UNet(n_channels=3, n_classes=1, bilinear=True)
net.to(device=device)

criterion = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(net.parameters(), lr=0.0001)
scheduler = lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9)

train_transform = A.Compose([
A.VerticalFlip(p=0.5),
A.HorizontalFlip(p=0.5),
A.ColorJitter(brightness=0, contrast=0, saturation=0.1, hue=.05),

])
val_transform = None

26. Visualise the augmentation on some example tiles and corresponding masks to con-958

firm that the augmentations show the desired transformations, and that spatial trans-959

formations occur in parallel between the tile image and mask. The function960

visualizeSegmentationAugmentation() performs this. The code below can961

be re-run to show augmented examples of randomly selected tiles from the validation962

54

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

WSI tumor_009. Note that when visualising augmentations, it is important to avoid963

normalising the channel values to be between 0 and 1 so that they remain between 0 and964

255 for the plotting function to show the colour appropriately.965

example_tiles = glob.glob(os.path.join(analysis_dir_path, ’tiles’,
’tumor_009’, ’metastasis’, ’*.jpg’))

example_masks = glob.glob(os.path.join(analysis_dir_path, ’masks’,
’tumor_009’, ’metastasis’, ’*.gif’))

example_tiles.sort()
example_masks.sort()
tile_to_visualize_idx = random.randrange(len(example_tiles))

train_transform_no_normalize = A.Compose([
A.VerticalFlip(p=1),
A.HorizontalFlip(p=1),
A.ColorJitter(brightness=0, contrast=0, saturation=1, hue=0.5),

])

visualizeSegmentationAugmentation(
path_to_image=example_tiles[tile_to_visualize_idx],
path_to_mask=example_masks[tile_to_visualize_idx],
transform=train_transform_no_normalize)

27. Define a function to train a segmentation model which takes as input a segmentation966

model architecture, the paths to our tiles and masks directories, as well as our loss967

function, optimiser, learning rate scheduler (if used), batch size, epoch count, and our968

data transform compositions for both training and validation. The function below con-969

structs datasets using PathmlSegmentationDataset, a PyTorch-compliant dataset970

that works with PathML’s tile and mask output directory structures. The training function971

completes the desired number of epochs of training the model, checking validation Dice972

score performance at each epoch. It is trained from scratch (no transfer learning) and973

returns the learning statistics accumulated during training as well as the trained model.974

def train_segmentation_model(net, dir_img, dir_mask, train_ids,
val_ids, device, criterion, optimizer, scheduler=None, epochs=30,
batch_size=3, mask_suffix=’_mask’, train_transform=None,

val_transform=None):
train_dataset = PathmlSegmentationDataset(imgs_dir=dir_img,

masks_dir=dir_mask,

55

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

ids_to_use=train_ids,
mask_suffix=mask_suffix,
transform=train_transform)

val_dataset = PathmlSegmentationDataset(imgs_dir=dir_img,
masks_dir=dir_mask,
ids_to_use=val_ids,
mask_suffix=mask_suffix,
transform=val_transform)

n_val = len(val_dataset)
n_train = len(train_dataset)
train_loader = DataLoader(train_dataset, batch_size=batch_size,

shuffle=True, num_workers=8,
pin_memory=True)

val_loader = DataLoader(val_dataset, batch_size=batch_size,
shuffle=False, num_workers=8,
pin_memory=True, drop_last=

True)
best_val_dice = 0
segmentation_learning_stats = {’train’: [], ’val’: []}

for epoch in range(epochs):
net.train()

epoch_train_loss = 0
epoch_train_dice = 0
with tqdm(total=n_train, desc=f’Epoch {epoch + 1}/{epochs}’,

unit=’img’) as pbar:
for batch in train_loader:

imgs = batch[’image’]
true_masks = batch[’mask’]

imgs = imgs.to(device=device, dtype=torch.float32)
mask_type = torch.float32 if net.n_classes == 1 else

torch.long
true_masks = true_masks.to(device=device, dtype=

mask_type)

masks_pred = net(imgs)
loss = criterion(masks_pred, true_masks)
epoch_train_loss += loss.item()

pred = torch.sigmoid(masks_pred)
pred = (pred > 0.5).float()
epoch_train_dice += dice_coeff(pred, true_masks).item

()

optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_value_(net.parameters(), 0.1)

56

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

optimizer.step()
pbar.update(imgs.shape[0])

train_dice = epoch_train_dice / len(train_loader)
train_loss = epoch_train_loss / len(train_loader)

val_dice, val_loss = eval_net(net, val_loader, criterion,
device)

segmentation_learning_stats[’train’].append(
{’loss’: train_loss,
’dice_coeff’: train_dice,
’learning_rate’: optimizer.param_groups[0][’lr’]})

segmentation_learning_stats[’val’].append(
{’loss’: val_loss,
’dice_coeff’: val_dice,
’learning_rate’: optimizer.param_groups[0][’lr’]})

if scheduler is not None:
scheduler.step()

if val_dice > best_val_dice:
best_val_dice = val_dice
best_model_state_dict = copy.deepcopy(net.state_dict())

return best_model_state_dict, segmentation_learning_stats

28. Run the segmentation training function using the desired hyperparameters defined above975

as well as the directory locations for the tiles, masks, and segmentation results (tiles,976

masks, and segmentation_results), and save the resulting trained model and977

accumulated learning statistics. As always, if your GPU runs out of memory, reduce the978

batch size until it can fit an entire batch.979

dir_img = os.path.join(analysis_dir_path, ’tiles’)
dir_mask = os.path.join(analysis_dir_path, ’masks’)
dir_results = os.path.join(analysis_dir_path, ’segmentation_results’)

model_ft, segmentation_learning_stats = train_segmentation_model(net=
net, dir_img=dir_img, dir_mask=
dir_mask, train_ids=train_cases,
val_ids=val_cases, criterion=
criterion, optimizer=optimizer,
scheduler=scheduler, epochs=30,
batch_size=6, device=device,
train_transform=train_transform,

57

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

val_transform=val_transform)

pickle.dump(segmentation_learning_stats,
open(os.path.join(dir_results,

’segmentation_learning_stats.p’), ’wb’))
torch.save(model_ft, os.path.join(dir_results,

’segmentation_best_model_ft.pt’))

29. Plot the key learning statics, including at a minimum training and validation Dice co-980

efficients and training and validation losses, from training to evaluate how the model981

performed and check for over- or under-fitting.982

segmentationLearningStats = pickle.load(open(glob.glob(os.path.join(
analysis_dir_path, ’segmentation_results’,
’segmentation_learning_stats*’))[0], "rb"))

trainLoss = [epoch["loss"] for epoch in
segmentationLearningStats[’train’]]

valLoss = [epoch["loss"] for epoch in
segmentationLearningStats[’val’]]

trainDice = [epoch["dice_coeff"] for epoch in
segmentationLearningStats[’train’]]

valDice = [epoch["dice_coeff"] for epoch in
segmentationLearningStats[’val’]]

numEpochs = len(segmentationLearningStats[’train’])

fig, (ax1, ax2) = plt.subplots(2)
fig.suptitle(’CAMELYON16 metastasis segmentation’)
ax1.plot(np.arange(numEpochs)+1,trainDice,’bo-.’,label="Training",

alpha=0.6,markersize=4)
ax1.plot(np.arange(numEpochs)+1,valDice,’go-’,label="Validation",

markersize=4)
ax1.axhline(y=np.max(valDice),color="r",alpha=0.4)
ax1.set(ylabel="Dice coefficient")
ax1.label_outer()
ax2.plot(np.arange(numEpochs)+1,trainLoss,’bo-.’,label="Training",

alpha=0.6,markersize=4)
ax2.plot(np.arange(numEpochs)+1,valLoss,’go-’,label="Validation",

markersize=4)
ax2.set(xlabel="Epoch", ylabel="Loss")
fig.set_size_inches(7,9)
plt.legend()
plt.savefig(os.path.join(analysis_dir_path, ’segmentation_results’,

’segmentation_learning_curves.png’))
plt.show(block=False)

Inferring on the trained segmentation model and validating model983

58

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

performance984

30. To evaluate the model’s test set performance, begin by loading the trained985

model back into a model architecture of the same kind and then iterate986

over all training and validation Slide objects (loading them first). On987

each such Slide, run Slide.inferSegmenter() (the parallel function to988

Slide.inferClassifier()) to infer the trained model on the Slide. This989

will add a numpy matrix of model predictions the dimension of the input tiles990

to each suitable tile in the Slide object’s tile dictionary. The first argu-991

ment to Slide.inferSegmenter() is the trained model which was loaded,992

the classNames argument is a list comprising the classes in the trained model993

to add an inference matrix to the Slide object’s tile dictionary for, the the994

foregroundLevelThreshold and tissueLevelThreshold arguments are995

used in the same way as in Slide.inferClassifier() (to only perform inference996

on tiles that are considered tissue), and the batchSize argument specifies the size of997

the inference batches. Call Slide.save() to preserve these inferences in the Slide998

objects.999

Be aware that adding inference matrices to the tile dictionary can make the Slide1000

objects quite large (often 1–10 gigabytes), so be wary as to where the Slide ob-1001

jects are saved and whether there is memory for them once they’ve been saved af-1002

ter calling Slide.inferSegmenter(). It is highly recommended that unless ex-1003

treme precision in inference predictions is required, users set the dtype argument of1004

Slide.inferClassifier() to ”int” (this is also the default). This will store in-1005

ference predictions in numpy.uint8 format (scaled to be integers in the range 0–255)1006

rather than a much larger float format. Downstream functions in PathML will automati-1007

cally detect the presence of these 0–255 classification predictions (as opposed to 0–1 float1008

59

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

predictions) and treat them appropriately.1009

segmentation_model_path = glob.glob(os.path.join(analysis_dir_path, ’
segmentation_results’, ’
segmentation_best_model*’))[0]

segmentation_class_names = [’metastasis’]
trained_model = UNet(n_channels=3, n_classes=len(

segmentation_class_names))
trained_model.load_state_dict(torch.load(segmentation_model_path,

map_location=device))

for case in val_cases + test_cases:
pathml_slide = Slide(os.path.join(analysis_dir_path, ’

pathml_slides’, case+’.pml’))
pathml_slide.inferSegmenter(trained_model, classNames=

segmentation_class_names,
batchSize=3,
foregroundLevelThreshold=70,
tissueLevelThreshold=0.999)

pathml_slide.save(folder=pathml_slide_dir_path)

31. Visualise the pixel-wise inference map at the inferred-on tiles of each validation Slide1010

using Slide.visualizeSegmenterInference(), the segmentation parallel of1011

Slide.visualizeClassifierInference() that makes a figure showing the in-1012

ference map atop the WSI. Set the first argument of the function to be the name of the1013

class to check the inference map for. Use this to evaluate whether the trained model has1014

learned the right thing and correctly identifies regions of the class of interest.1015

for case in val_cases:
pathml_slide = Slide(os.path.join(analysis_dir_path, ’

pathml_slides’, case+’.pml’))
pathml_slide.visualizeSegmenterInference(’metastasis’, folder=os.

path.join(analysis_dir_path,
’segmentation_results’))

32. As with the classification task, to evaluate test set performance, it is first nec-1016

essary to find a probability threshold to use to binarise the output probabili-1017

ties (the predictions) of the trained model using the validation set. Just as1018

Slide.classifierMetricAtThreshold() was used above to check accu-1019

60

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

racy across many potential probability thresholds to select the best one, use1020

Slide.segmenterMetricAtThreshold() to select the best probability thresh-1021

old from a list to produce the best Dice coefficient, a measure of accuracy1022

for segmentation outputs. Iterate over all validation Slide objects, running1023

Slide.segmenterMetricAtThreshold() on each. The first argument is the1024

class of interest, the second is a list of probability thresholds to try, the set the metric1025

argument is dice_coeff. This will return a list parallel to the probability thresholds1026

list of average Dice coefficients comparing the inference prediction matrices of all tiles1027

added to the Slide by Slide.inferClassifier() against the ground truth ma-1028

trices added from Slide.addAnnotations(), where pixels in the prediction matrix1029

at or above the given probability threshold are considered to have been marked as positive1030

for the given class by the trained model.1031

Be aware that computing the Dice coefficient for thousands of tiles is a time-intensive1032

step. Reducing the number of probability thresholds that are checked will substantially1033

reduce the time required. It takes about one hour on average to check the 41 thresholds1034

below on one Slide. As before, we have elected to check probability thresholds at1035

greater frequency the closer we get to probability 1, as we found that for this problem,1036

the best probability threshold for segmentation lies close to 1, as we would like the most1037

accurate best threshold we can achieve.1038

probability_thresholds = np.append(np.append(np.arange(0.05, 0.90, 0.
05), np.arange(0.86, 0.991, 0.01)
), np.arange(0.991, 1, 0.001)).
tolist()

threshold_dice_scores_all_slides = {}

for val_case in val_cases:
val_slide_path = os.path.join(analysis_dir_path, ’pathml_slides’,

val_case+’.pml’)
val_slide = Slide(val_slide_path)

threshold_dice_scores = val_slide.segmenterMetricAtThreshold(

61

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

’metastasis’,
probability_thresholds,
metric=’dice_coeff’)

threshold_dice_scores_all_slides[val_case] = threshold_dice_scores

pickle.dump(threshold_dice_scores_all_slides[val_case],
open(os.path.join(analysis_dir_path, ’segmentation_results’,

’val_dice_scores_at_thresholds.p’), ’wb’))

33. Take the element-wise mean of the Dice coefficient lists output by1039

Slide.segmenterMetricAtThreshold() across all validation slides, then1040

find the probability threshold which produced the maximum Dice coefficient in this mean1041

list. This is the best validation probability threshold that will be used to check the trained1042

model’s performance on the test set.1043

threshold_avg_dice_scores = np.mean(np.array(list(
threshold_dice_scores_all_slides.values())), axis=0)

index_of_best_segmentation_threshold = np.argmax(
threshold_avg_dice_scores)

best_segmentation_threshold =
probability_thresholds[index_of_best_segmentation_threshold]

34. Plot the element-wise average prediction Dice coefficients on the validation set against1044

the probability thresholds used to generate them to visualise how changing the probability1045

threshold changes validation Dice coefficients.1046

plt.figure(figsize=(7.5,6))
plt.plot(probability_thresholds, threshold_avg_dice_scores)
plt.xlim(-0.05, 1.05)
plt.ylim(0.6, 1.0)
plt.title(’Dice score on val vs. tile probability threshold’)
plt.xlabel(’Probability threshold for determination\nof segmentation

probability cutoff’)
plt.ylabel(’Dice score for CAMELYON16 metastasis detection with

\nthresholded segmentation probability’)
plt.savefig(os.path.join(analysis_dir_path, ’segmentation_results’,

’segmentation_validation_dice_score_vs_probability_threshold.png’))
plt.show(block=False)

35. To compute the test set Dice coefficient, iterate over the test set cases, loading the1047

62

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

Slide object for each. Compute the Dice score of the trained segmentation model1048

on the test set at the best probability threshold found from the validation set above by1049

calling Slide.segmenterMetricAtThreshold() on each slide, this time using1050

only the best probability threshold as an argument, and keeping all other arguments the1051

same as used on the validation set. Take the mean of the Dice scores output by the1052

Slide.classifierMetricAtThreshold() call of each test set Slide to eval-1053

uate the classifier’s holistic performance on the test set.1054

test_dice_scores = []
test_dice_score_df_rows = []

for test_case in test_cases:
test_slide_path = os.path.join(analysis_dir_path, ’pathml_slides’,

test_case+’.pml’)
test_slide = Slide(test_slide_path)
test_dice_score = test_slide.segmenterMetricAtThreshold(

’metastasis’,
best_segmentation_threshold,
metric=’dice_coeff’)

test_dice_scores.append(test_dice_score)
test_dice_score_df_rows.append([test_case, test_dice_score])

test_dice_score_df = pd.DataFrame(test_dice_score_df_rows,
columns=[’Slide_ID’, ’Metastasis Dice score (>’+

str(round(best_segmentation_threshold, 6))+’)’])
test_dice_score_df.to_csv(os.path.join(analysis_dir_path,

’segmentation_results’, ’segmentation_test_dice_score_above_’+
str(round(best_segmentation_threshold, 6))+’_df.csv’),

index=False)

36. Export the full inference map for the class of interest for each test1055

set Slide by iterating over all test set Slide objects and calling1056

Slide.getNonOverlappingSegmentationInferenceArray() on them,1057

using as argument the name of the class to extract the inference arrays for. This will, for1058

each Slide, return a 2D numpy matrix with the pixel dimensions of the WSI used to1059

make the Slide object, where each pixel contains the 0 to 1 probability prediction of the1060

trained model on that pixel if it was inferred on during Slide.inferSegmenter().1061

63

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

If tile overlap is used, then the average prediction for a pixel across all pixel predictions1062

that overlap it will be provided. If a binary rather than a float prediction mask is desired,1063

include probabilityThreshold as an argument and set its value to the probability1064

threshold at or above which a pixel should be considered positive for the given class. If1065

it is preferred that pixels that were not inferred on be given values of zero rather than1066

numpy.nan values, set the argument fillUninferredPixelsWithZeros to1067

True.1068

for case in test_cases:
pathml_slide = Slide(os.path.join(analysis_dir_path,

’pathml_slides’, case+’.pml’))
pathml_slide.getNonOverlappingSegmentationInferenceArray(

’metastasis’, folder=os.path.join(analysis_dir_path,
’segmentation_results’))

3 Troubleshooting1069

There are several mistakes and error messages that can arise when using PathML. Table 21070

presents the most common mistakes users might run into, including the Procedure step it is1071

likely to occur in, the error message output by PathML, the possible reason for the mistake, and1072

the possible solution to it.1073

4 Timing1074

The time required to run a pipeline with PathML can vary incredibly depending on many factors,1075

including the number of WSIs used, the number of annotations in each annotation file, the1076

number of tiles requested, and the computational power available, and the power of the GPU1077

(if using the inference functions). For reference, here are the run times of the more time-1078

consumptive steps of the Procedure using a 4-core Intel Xeon E5-2623 v3 CPU and an Nvidia1079

GeForce RTX 2080 Ti GPU (running on Ubuntu 18.04):1080

64

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

Step Message Possible reason Solution
5 ‘This image is not

compatible. Please
refer to the
documentation for
proper installation of
openslide and libvips’

The WSI input into the
PathML initialiser was not a
supported file format

Convert the WSI to a file
format supported by lipvips.

5 ‘Tissue detection has
already been
performed. Use
overwriteExistingTis-
sueDetection if you
wish to write over it’

Slide.detectTissue() has
already been called on the
Slide object

Set the overwriteExistingTis-
sueDetection argument to
True, or else don’t perform
tissue detection again

5 ‘Annotation with
centroid (X, Y)
produces a Shapely Z
instead of a polygon;
check to see if it
self-intersects.’

The annotation around the
specified centroid pixel
coordinates of the WSI does
not produce a polygon when
geometrically parsed

Check that annotation on the
WSI in a WSI viewer looking
for self-overlapping regions
and correct it to be a polygon

7 ‘Warning: X suitable Y
tiles found but
requested Z tiles to
extract. Extracting all
suitable tiles...’

The
numTilesToExtractPerClass
argument of a tile extraction
function exceeds the number
of suitable tiles of class Y

Reduce the
numTilesToExtractPerClass
argument for class Y, or else
let PathML will extract all
available Y tiles by default

17, 30 ‘Model has X classes
but only Y class names
were provided in the
classes argument’

The number of classes output
by the model inputted to
Slide.inferClassifier() or
Slide.inferSegmenter() does
not equal the number of
classes present in the
classNames argument

Verify that classNames
includes all the classes that
were trained on, and correct
this argument as necessary

17, 30 ‘No predictions found
in slide. Use
inferClassifier() /
inferSegmenter() to
generate them.’

Using a PathML function
reliant on inference results
without having added
inference results to the Slide
object

Run Slide.inferClassifier or
Slide.inferSegmenter() on the
Slide object

Table 2: Common PathML error messages with explanations and possible solutions. X, Y,
and Z represent numbers or words that will vary depending on the exact error made by the user.

65

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

• Procedure steps 1–6: Detecting tissue, detecting foreground, and adding annotations to1081

Slide objects takes 36 minutes for the 18 CAMELYON16 WSIs.1082

• Procedure steps 7–9: Extracting 500 tiles per WSI takes 7 minutes.1083

• Procedure steps 10–16: Training a VGG19 classification model with batch normalisation1084

((59)) for 30 epochs on 3,000 training set tiles and 3,000 set validation tiles (checking1085

validation performance after every epoch) takes 34 minutes.1086

• Procedure steps 17–23: Inferring the trained VGG19 classification model on 6,000 val-1087

idation and test set tiles takes 13 minutes. Visualising the six validation inference maps1088

takes 8 minutes. Finding the best probability threshold using the validation set takes 11089

minute.1090

• Procedure steps 24–29: Training a U-Net segmentation model on the same 3,000 training1091

set tiles and 3,000 validation set tiles (again checking validation performance at every1092

epoch) for 30 epochs takes 3 hours and 6 minutes.1093

• Procedure steps 30–31: Inferring 6,000 validation and test set tiles on the trained U-Net1094

architecture takes 51 minutes. Visualising the inference maps of these same 6 validation1095

WSIs takes 7 minutes.1096

• Procedure steps 32–35: Computing the Dice coefficients of the 6 validation set Slide1097

objects across 41 probability thresholds takes 6 hours and 23 minutes, and then applying1098

the best threshold to get the Dice coefficients of the 6 test set Slide objects takes 211099

minutes.1100

• Procedure step 36: Stitching together and exporting the complete pixel-wise segmenta-1101

tion inference masks for 6 test set Slide objects takes 39 minutes.1102

66

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

5 Anticipated results1103

5.1 Assessing foreground and deep tissue detections1104

If using the pipeline presented in the Procedure, Step 6 shows how to filter1105

out non-tissue tiles from Slide objects with Slide.detectTissue() and/or1106

Slide.detectForeground(). To evaluate which parameters to use when filtering1107

(e.g. what to set the tissueLevelThreshold and foregroundLevelThreshold1108

arguments to), Slide.visualizeTissueDetection() and1109

Slide.visualizeForegroundDetection() are made-for-purpose. Standard1110

practice is to decide on a range of filtering thresholds to test, perform a grid search, calling1111

these visualisation functions at each combination of filtering parameters, comparing to a1112

thumbnail image of the WSI provided by Slide.visualizeThumbnail(). See fig. 4 for1113

examples of the results of various filtering methods. Figure 4B shows the filtering resulting1114

from Otsu’s method. It provides a stringent filter that doesn’t include any non-tissue regions in1115

the foreground areas, but it also excludes lighter-coloured tissue in the centre of the top tissue1116

region. Figure 4C shows the triangle algorithm, which is conversely too permissive, including1117

dark artefact regions around the edges of the slide as foreground. Figure 4D shows the1118

results of PathML’s built in deep tissue detector, which unlike the simple foreground filtering1119

methods includes an artefact class. In the Procedure step 6 example presented in fig. 4 (one1120

of the validation WSIs), the deep tissue detector is by far the most performant, neither under1121

nor overcalling tissue while identifying artefact regions as such. The filtering parameter or1122

combination of parameters that provide the best results upon examination can then be used for1123

all the Slide objects.1124

67

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

Figure 4: Foreground and deep tissue detection results. Blue is foreground/tissue, green is back-
ground, and red is artefact. (A) A low-resolution image of the WSI tumor 046.tif generated with
Slide.visualizeThumbnail(). (B) Foreground filtering with Otsu’s method generated by PathML’s
Slide.visualizeForegroundDetection(’otsu’). (C) Foreground filtering with the triangle method gener-
ated by PathML’s Slide.visualizeForegroundDetection(’triangle’). (D) Tissue detection with PathML’s
built-in deep tissue detector generated by PathML’s Slide.visualizeTissueDetection().

5.2 Assessing extracted tiles, masks, and data augmentation choices1125

Steps 7–8 of the Procedure shows how to use PathML to extract tiles and segmen-1126

tation masks from Slide objects with Slide.extractAnnotatedTiles() and1127

Slide.extractRandomUnannotatedTiles(). The first step of assessment after run-1128

ning these functions is to make sure the channel-wise mean and standard deviation results1129

computed from the data returned by these functions (see Step 8) are in the expected ranges.1130

For reference, the channel means of ImageNet are 0.485, 0.456, 0.406 for the red, green, and1131

blue channels respectively, and ImageNet’s standard deviations are likewise 0.229, 0.224, and1132

0.225 (42). As might be expected, H&E-stained WSIs tend to to have higher red and blue1133

channel values compared to the average of ImageNet, which is a set of macroscopic images1134

including animals, buildings, natural landscapes, and more. In table 3 it is apparent that this is1135

reflected in the CAMELYON16 H&E slides used in the Procedure. The standard deviations,1136

68

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

also as expected, are roughly similar to those of ImageNet. Since these means and standard1137

deviations will be used to normalise the tiles going into the model, if any values break from1138

intuitive expectation, check the tiles visually to ensure that a representative sampling of tissue1139

tiles has been achieved.1140

Channel Mean Standard deviation
Red 0.711 0.219
Green 0.537 0.256
Blue 0.674 0.195

Table 3: Channel means and standard deviations across tile dataset.

Procedure steps 10–12 cover defining data augmentations for classification. To assess1141

whether a set of augmentations are satisfactory, it is necessary to visualise examples of tiles that1142

have gone through the augmentation to ensure that they are as expected. As CAMELYON161143

slides were scanned at different institutions (57), there is a range of stain hue and brightness1144

that needs to be augmented for. Figure 5 shows a batch of tiles that have undergone the colour1145

jittering and random horizontal and vertical flip augmentations of Step 10. It is apparent that1146

strong colour jitter, particularly hue and contrast, have been used, and the tiles otherwise look1147

as expected.1148

Procedure steps 25–26 define augmentation parameters for segmentation. When reviewing1149

segmentation augmentation, it is essentially to visualise the segmentation mask along with the1150

tile to ensure that the spatial transformations and cropping were applied to both the tile and1151

the mask uniformly, and that the colour transformations were applied only to the tile image.1152

Figure 6 shows that the Procedure step 12 example was augmented correctly.1153

Whether augmenting for a classification or segmentation task, if the transformations once1154

visualised appear too light, too extreme, or unexpected, it is essential that the user adjust the1155

augmentation parameters until the result is correct.1156

69

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

Figure 5: One batch of tiles with random data augmentations. Augmentations include random hori-
zontal flip, random vertical flip, and random colour jitter including saturation and hue jittering (with jitter
values of 1 and 0.5 respectively). Augmentations are performed with PyTorch’s torchvision library (9).

5.3 Assessing training statistics1157

Procedure steps 14–16 demonstrate training a classification model from the tiles extracted1158

by PathML, and Procedure steps 27–29 show the same steps for a segmentation model. To1159

assess the efficacy of training, it is critical to plot some training statistics to confirm that both1160

training and validation loss generally decreased across epochs and that training and validation1161

performance (accuracy for classification, Dice coefficient for segmentation) increased as epochs1162

progressed. Figure 7 shows that for the 6 training and 6 validation WSIs used in the Procedure,1163

both of these trends hold true for both the training and validation sets.1164

70

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

Figure 6: Visualising the effects of augmentation on a tile and matching segmentation mask. As
desired, the spatial transformations (in this example horizontal and vertical flip) are preserved between
the image and the mask, whereas the colour transformations (random saturation and hue jitter with values
1 and 0.5 respectively) are performed only on the image and not on the mask. Tandem image and mask
augmentations like these can be performed with PyTorch’s Albumentations library (58).

If training performance increases while validation performance stagnates or decreases (or1165

likewise if training loss decreases while validation loss remains flat or grows), this is an indicator1166

that the model has overfit to the training set (table 1). To rectify this, a number of techniques1167

71

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

can be employed, including increasing the size of the training dataset, using more aggressive1168

data augmentation, trying a shallower architecture, using early stopping (if the model begins1169

overfitting after a certain number of epochs) or other regularisation techniques (12). On the1170

other hand, if even training performance remains flat or decreases across epochs (or training loss1171

remains flat or increases), this indicates model underfitting. Underfitting could have a number of1172

causes, but some common troubleshooting techniques include trying different hyperparameters,1173

especially a wide range of learning rates, as well as reducing data augmentation, and increasing1174

batch size to the largest permissible on the user’s GPU.1175

Figure 7: Training and validation learning statistics. (A) Training and validation accuracy and loss
curves from a 30 epoch classification training run. (B) Training and validation Dice coefficient and loss
curves from a 30 epoch segmentation training run.

72

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

5.4 Assessing inference results1176

Procedure steps 17 and 30 show the use of PathML’s Slide.inferClassifier()1177

and Slide.inferSegmenter() functions for inferring the trained classification and seg-1178

mentation models on the validation and test sets. An important step after inference is vi-1179

sually confirming, even if the performance statistic is adequate, what the model learned.1180

Slide.inferClassifier() and Slide.inferSegmenter() plot the inference re-1181

sults of all tiles in the same spatial orientation as they occur on the WSI to form inference1182

maps. Figure 8 shows the inference maps of both the classification and segmentation models of1183

the Procedure for the metastasis class of the three metastasis-positive validation WSIs. To as-1184

sess them, evaluate whether the high metastasis probability regions align with the ground truth1185

metastasis regions. Also check the metastasis-negative slides to ensure that few to no tiles have1186

high metastasis probability.1187

If any regions are wrongly called a certain class, it is recommended that the user zoom in on1188

these regions in a WSI viewer such as QuPath or ASAP to determine if there is a pattern to the1189

miscalls (i.e. a certain tissue appearance or artefact is consistently wrongly called) (22, 23).1190

Users can then annotate and introduce examples like these wrongly called regions into the1191

training set and retrain to teach the model the correct labels for these regions.1192

5.5 Assessing the best probability threshold to apply to the test set1193

After inference, it is often important to select an operating threshold from the valida-1194

tion set to apply to the test set. Plotting and selecting this threshold is performed1195

in Procedure steps 19–20 for the classification model and Procedure steps 32–341196

for the segmentation model using Slide.classifierMetricAtThreshold() and1197

Slide.segmenterMetricAtThreshold(), respectively. These functions return the1198

performance of the model on a desired metric across a range of probability thresholds. Fig-1199

73

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

Figure 8: Visualising the inference of trained models on validation set. (A) A plot of the inference
of the trained classification model on three validation slides, showing the metastasis class results. Plots
were generated with Slide.visualizeClassifierInference(). (B) A plot of the inference of the trained seg-
mentation model on three validation slides, showing the metastasis class results. Plots were generated
with Slide.visualizeClassifierInference().

ure 9 shows plots of these performance metrics, accuracy for the classification model and the1200

Dice coefficient for the segmentation model, across the range of tested inference probability1201

thresholds on the validation set. Assessing plots of this nature can be tricky, as there is no1202

standard pattern by which performance should behave as the probability threshold is altered. A1203

74

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

smooth curve is expected. As seen in fig. 9, for both classification and segmentation of metas-1204

tases in the CAMELYON16 subset used in the Procedure, very high probability thresholds1205

yield the best performance on the validation set.1206

Figure 9: Selecting the probability threshold with the highest validation set performance. (A) Av-
erage tile-level accuracy of trained classification model on validation set across many inference prob-
ability thresholds to binarise tile-level predictions. (B) Average tile-level Dice coefficient of trained
classification model on validation set across many inference probability thresholds to binarise pixel-level
predictions.

5.6 Assessing performance on the test set1207

Once a best probability threshold has been determined, that best threshold can be ap-1208

plied to the test set to determine the model’s overall performance, as see in Proce-1209

dure steps 21–23 (classification) and Procedure step 35 (segmentation). In classifica-1210

tion tasks, there aren’t always tile-level labels in the test set; sometimes only slide-level1211

labels are available. In these situations, an AUC can be computed comparing the num-1212

ber of positive tiles according to the best threshold in each test set slide (computable with1213

Slide.numTilesAboveClassPredictionThreshold() as seen in Procedure step1214

22) against the slide-level ground truth labels. For classification tasks with tile-level ground1215

truth labels on the test set, Slide.classifierMetricAtThreshold() can be applied1216

75

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

to give an average tile-level accuracy of the test set (Procedure step 21). Table 4 shows the1217

average accuracy of the best-thresholded model on the six slides in the CAMELYON16 test1218

set used in the Procedure along with the metastasis-positive tile count of each. The average1219

accuracy across the test set is 0.97, which is very good, and the AUC comparing the positive1220

tile counts to the slide level ground truths is 0.89 (see fig. 10 for the AUC-ROC curve).1221

Test set slide Avg. metastasis accuracy Num. metastasis tiles
normal 028 0.998 3
normal 074 0.983 97
normal 141 0.999 3
tumor 036 0.977 51
tumor 058 0.940 589
tumor 076 0.951 8863

Table 4: Test set classification accuracy on the metastasis class. Tiles with metastasis proba-
bility greater than 0.98 are considered positive. The number of tiles that cross that threshold are
also shown. Results generated with Slide.classifierMetricatThreshold().

Note that for the purposes of the procedure being computationally inexpensive, only six1222

slides were used for the test set, which makes this AUC have little statistical power. Also,1223

keep in mind that the number of tiles that cross the metastasis threshold depends heavily on the1224

amount of tissue present in the slide; for example, normal_074, a metastasis-negative slide.1225

still has 52 tiles that crossed that are considered metastatic at our operating threshold. This is1226

because it is a massive slide with a lot of tissue in it, so the number of false positive tiles will1227

be expected to be greater. Conversely, tumor_036 only shows 51 metastasis tiles due to the1228

dearth of tissue in this WSI, making a smaller number of metastasis tiles more significant. Users1229

may want to normalise positive tile counts by the total number of suitable tissue tiles (the length1230

of the list Slide.suitableTileAddresses() can be used to find this number) in a slide1231

for this reason.1232

Table 5 shows the Dice coefficient results of applying the best seg-1233

76

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

Figure 10: AUC-ROC curve comparing the number of metastasis-positive tiles in each slide with
slide-level ground truth labels. The curve is very simplistic because for the sake of the Procedure
tutorial, only 6 test set slides were used, and the metastasis tile count of the 3 metastasis-positive slides
all exceed the metastasis tile counts of the 3 metastasis negative slides. In practice, test sets used for
AUC analyses should be larger to give a more robust result.

mentation probability found from the validation set to the test set using1234

Slide.segmenterMetricAtThreshold(). None of the test set slides have an1235

average Dice coefficient below 0.82, and the mean Dice coefficient across all test set slides is1236

0.89.1237

Assessing what constitutes adequate test set performance depends heavily on the context of1238

the dataset and the metric used to measure performance. For example, for a very difficult train-1239

ing task, a test set accuracy of 0.68 might be considered acceptable. On a more straightforward1240

task, that performance might be woefully inadequate. In general, though, Dice coefficient is a1241

more stringent metric than accuracy, so lower values are acceptable.1242

77

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

Test set slide Avg. metastasis Dice coefficient
normal 028 0.986
normal 074 0.922
normal 141 0.823
tumor 036 0.902
tumor 058 0.866
tumor 076 0.859

Table 5: Test set segmentation Dice coefficients on the metastasis class. Pixels with
metastasis probability greater than 0.91 are considered positive. Results generated with
Slide.segmenterMetricatThreshold().

6 Code availability1243

The source code of PathML is freely available at a public repository: https://github.c1244

om/markowetzlab/pathml. The source code of the tutorial presented in the Procedure1245

section is also freely available at the following public repository: https://github.com/m1246

arkowetzlab/pathml-tutorial. That repository also contains the code used to train1247

PathML’s deep tissue detector in its deep_tissue_detector subdirectory.1248

7 Data availability1249

The WSIs used in the tutorial presented in the Procedure section, along with the annotation1250

files demarcating regions of metastasis in each WSI, are publicly available at the following link:1251

https://drive.google.com/drive/folders/0BzsdkU4jWx9Ba2x1NTZhdz1252

Q5Zjg?resourcekey=0-g2TRih6YKi5P2O1SiBB1LA. Note that the annotations1253

directory in the pathml-tutorial repository contains corrected versions of some of the1254

annotation files present in the CAMELYON16 Google Drive link above (some of the original1255

annotation files contained small self-overlapping regions), so the .xml files in annotations1256

are recommended in lieu of the originals. A copy of the results from a full Procedure run can1257

be found at the pathml-tutorial repository.1258

78

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://github.com/markowetzlab/pathml
https://github.com/markowetzlab/pathml
https://github.com/markowetzlab/pathml
https://github.com/markowetzlab/pathml-tutorial
https://github.com/markowetzlab/pathml-tutorial
https://github.com/markowetzlab/pathml-tutorial
https://drive.google.com/drive/folders/0BzsdkU4jWx9Ba2x1NTZhdzQ5Zjg?resourcekey=0-g2TRih6YKi5P2O1SiBB1LA
https://drive.google.com/drive/folders/0BzsdkU4jWx9Ba2x1NTZhdzQ5Zjg?resourcekey=0-g2TRih6YKi5P2O1SiBB1LA
https://drive.google.com/drive/folders/0BzsdkU4jWx9Ba2x1NTZhdzQ5Zjg?resourcekey=0-g2TRih6YKi5P2O1SiBB1LA
https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

The WSIs used to train PathML’s deep tissue detector are governed by data usage poli-1259

cies specified by the data controller (University of Cambridge, Cancer Research UK). We are1260

committed to complying with Cancer Research UK’s Data Sharing and Preservation Policy.1261

Whole-slide images used in this study will be available for non-commercial research purposes1262

upon approval by a Data Access Committee according to institutional requirements. Appli-1263

cations for data access should be directed to florian.markowetz@cruk.cam.ac1264

.uk. The annotation .xml files corresponding to these WSIs are publicly available in the1265

deep_tissue_detector subdirectory of pathml-tutorial.1266

8 Acknowledgments1267

We would like to thank Tristan Whitmarsh for his assistance with choosing suitable U-Net1268

hyperparameters for the Procedure. We would also like to thank Sarah Killcoyne for her early1269

testing of PathML, and Paula Martin-Gonzalez for validating the Procedure.1270

9 Author contributions1271

A.B. implemented the current version of PathML and wrote the Procedure section of the1272

manuscript as well as an early draft of the Introduction. M.G. developed the original version of1273

PathML. W.O. wrote the manuscript, created figures, and contributed ideas to the features and1274

code of PathML. All work was performed under the supervision of F.M. The final manuscript1275

was read and approved by all authors.1276

10 Declaration of interests1277

M.G. is an employee and shareholder of Cyted Ltd. F.M. is the founder and director of Tailor1278

Bio.1279

79

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

mailto:florian.markowetz@cruk.cam.ac.uk
mailto:florian.markowetz@cruk.cam.ac.uk
mailto:florian.markowetz@cruk.cam.ac.uk
https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

References1280

1. Dimitriou, N., Arandjelović, O. & Caie, P. D. Deep learning for whole slide image analysis: An1281

overview. Frontiers in medicine 6, 264 (2019).1282

2. Kather, J. N., Heij, L. R., Grabsch, H. I., Luedde, T. et al. Pan-cancer image-based detection of1283

clinically actionable genetic alterations. 833756v1.1284

3. Lu, M. Y., Chen, T. Y., Mahmood, F. et al. Ai-based pathology predicts origins for cancers of1285

unknown primary. Nature 594, 106–110 (2021).1286

4. Fu, Y., Jung, A. W., Gerstung, M. et al. Pan-cancer computational histopathology reveals mutations,1287

tumor composition and prognosis. Nature cancer 1, 800–810 (2020).1288

5. Montgomery, E. Is there a way for pathologists to decrease interobserver variability in the diagnosis1289

of dysplasia? Archives of pathology & laboratory medicine 129, 174–176 (2005).1290

6. Raab, S. S. & Grzybicki, D. M. Anatomic pathology workload and error (2006).1291

7. Janowczyk, A. & Madabhushi, A. Deep learning for digital pathology image analysis: A compre-1292

hensive tutorial with selected use cases. J Pathol Inform. 7 (2016).1293

8. Tellez, D. et al. Quantifying the effects of data augmentation and stain color normalization in1294

convolutional neural networks for computational pathology. Medical image analysis 58, 1015441295

(2019).1296

9. Paszke, A., Gross, S., Chintala, S. et al. Pytorch: An imperative style, high-performance deep1297

learning library. In NeurIPS Proceedings (2019).1298

10. Abadi, M. et al. Tensorflow: A system for large-scale machine learning. In 12th USENIX Symposium1299

on Operating Systems Design and Implementation (OSDI 16), 265–283 (2016). URL https:1300

//www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf.1301

11. Gehrung, M. et al. Triage-driven diagnosis of barrett’s esophagus for early detection of esophageal1302

adenocarcinoma using deep learning. Nature medicine 27, 833–841 (2021).1303

12. Goodfellow, I., Bengio, Y., Courville, A. & Bengio, Y. Deep learning, vol. 1 (MIT press Cambridge,1304

2016).1305

13. Ruder, S. An overview of gradient descent optimization algorithms. abs/1412.6980.1306

14. Sun, S., Cao, Z., Zhu, H. & Zhao, J. A survey of optimization methods from a machine learning1307

perspective. 1906.06821v2.1308

15. Sudre, C. H., Li, W., Vercauteren, T., Ourselin, S. & Cardoso, M. J. Generalised dice overlap as a1309

deep learning loss function for highly unbalanced segmentations. 1707.03237v3.1310

16. Katzman, J. L., Shaham, U., Kluger, Y. et al. Deepsurv: personalized treatment recommender1311

system using a cox proportional hazards deep neural network. BMC Medical Research Methodology1312

18 (2018).1313

80

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

833756v1
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
abs/1412.6980
1906.06821v2
1707.03237v3
https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

17. Goode, A., Gilbert, B., Harkes, J., Jukic, D. & Satyanarayanan, M. Openslide: A vendor-neutral1314

software foundation for digital pathology. J Pathol Inform. 4 (2013).1315

18. Linkert, M., Rueden, C. T. & Allan, C. Metadata matters: access to image data in the real world.1316

The Journal of cell biology 189, 777–782 (2010).1317

19. Martinez, K. & Cupitt, J. Vips – a highly tuned image processing software architecture. In Proceed-1318

ings of IEEE International Conference on Image Processing, 574–577 (2005).1319

20. Otsu, N. A threshold selection method from gray-level histograms. IEEE transactions on systems,1320

man, and cybernetics 9, 62–66 (1979).1321

21. Zack, G., Rogers, W. & Latt, S. Automatic measurement of sister chromatid exchange frequency. J1322

Histochem Cytochem. 25, 741–753 (1977).1323

22. Bankhead, P., Loughrey, M. B. & Fernández, J. A. Qupath: Open source software for digital pathol-1324

ogy image analysis. Sci Rep. 7, 16878 (2017).1325

23. Computation Pathology Group, part of the Diagnostic Image Analysis Group, at the Radboud Uni-1326

versity Medical Center. Asap. URL https://github.com/computationalpathologyg1327

roup/ASAP.1328

24. Butler, H. et al. The geojson format. URL https://datatracker.ietf.org/doc/htm1329

l/rfc7946.1330

25. Zhou, Z.-H. A brief introduction to weakly supervised learning. National science review 5, 44–531331

(2018).1332

26. Amores, J. Multiple instance classification: Review, taxonomy and comparative study. Artificial1333

intelligence 201, 81–105 (2013).1334

27. Dietterich, T., Lathrop, R. & Lozano-Pérez, T. Solving the multiple-instance problem with axis-1335

parallel rectangles. Artificial intelligence 89, 31–71 (1997).1336

28. Campanella, G. et al. Clinical-grade computational pathology using weakly supervised deep learn-1337

ing on whole slide images. Nature medicine 25, 1301–1309 (2019).1338

29. Courtiol, P. et al. Deep learning-based classification of mesothelioma improves prediction of patient1339

outcome. Nature medicine 25, 1519–1525 (2019).1340

30. Bug, D., Feuerhake, F. & Merhof, D. Foreground extraction for histopathological whole slide imag-1341

ingn. In Bildverarbeitung für die Medizin 2015, 419–424 (Informatik aktuell, 2015).1342

31. Shorten, C. & Khoshgoftaar, T. M. A survey on image data augmentation for deep learning. Journal1343

of big data 6 (2019).1344

32. Yang, Y. & Xu, Z. Rethinking the value of labels for improving class-imbalanced learning. abs/1345

2006.07529.1346

33. Contributors, T. Pytorch documentation. URL https://pytorch.org/docs.1347

81

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://github.com/computationalpathologygroup/ASAP
https://github.com/computationalpathologygroup/ASAP
https://github.com/computationalpathologygroup/ASAP
https://datatracker.ietf.org/doc/html/rfc7946
https://datatracker.ietf.org/doc/html/rfc7946
https://datatracker.ietf.org/doc/html/rfc7946
abs/2006.07529
abs/2006.07529
abs/2006.07529
https://pytorch.org/docs
https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

34. Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A. & Vandergheynst, P. Geometric deep learning:1348

going beyond euclidean data. abs/1611.08097.1349

35. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings1350

of the IEEE conference on computer vision and pattern recognition, 770–778 (2016).1351

36. Szegedy, C. et al. Going deeper with convolutions. abs/1409.4842.1352

37. Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition.1353

arXiv preprint arXiv:1409.1556 (2014).1354

38. Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely connected convolutional1355

networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,1356

4700–4708 (2017).1357

39. Iandola, F. N. et al. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb1358

model size. arXiv preprint arXiv:1602.07360 (2016).1359

40. Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image seg-1360

mentation. In MICCAI, 234–241 (2015).1361

41. Courtiol, P., Tramel, E. W., Sanselme, M. & Wainrib, G. Classification and disease localization in1362

histopathology using only global labels: a weakly supervised approach. 1802.02212.1363

42. Deng, J. et al. Imagenet: A large-scale hierarchical image database. In Proceedings of the IEEE1364

Conference on Computer Vision and Pattern Recognition, 1063–6919 (2009).1365

43. Pan, S. J. & Yang, Q. A survey on transfer learning. IEEE Transactions on Knowledge and Data1366

Engineering 22, 1345–1359 (2009).1367

44. Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). http://www.de1368

eplearningbook.org.1369

45. Montavon, G., Samek, W. & Müller, K.-R. Methods for interpreting and understanding deep neural1370

networks. Digital signal processing 73, 1–15 (2018).1371

46. Guidotti, R. et al. A survey of methods for explaining black box models. ACM Computing Surveys1372

51 (2018).1373

47. Gua, J. & Wang, Z. Recent advances in convolutional neural networks. Pattern recognition 77,1374

354–377 (2018).1375

48. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. & Torralba, A. Learning deep features for discrim-1376

inative localization. In IEEE Conference on Computer Vision and Pattern Recognition, 1063–69191377

(2016).1378

49. Selvaraju, R. R. et al. Grad-cam: Visual explanations from deep networks via gradient-based local-1379

ization. In Proceedings of the IEEE International Conference on Computer Vision, 618–626 (2017).1380

82

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

abs/1611.08097
abs/1409.4842
1802.02212
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

50. Duchi, J., Hazan, E. & Singer, Y. Interpretable classification from skin cancer histology slides1381

using deep learning: A retrospective multicenter study. Journal of machine learning research 12,1382

2121–2159 (2011).1383

51. Graziani, M., Andrearczyk, V. & Müller, H. Visual interpretability for patch-based classification of1384

breast cancer histopathology images. In 1st Conference on Medical Imaging with Deep Learning1385

(2018).1386

52. Ching, T., Himmelstein, D. S., Greene, C. S. et al. Opportunities and obstacles for deep learning in1387

biology and medicine. Journal of the Royal Society 15 (2018).1388

53. Sahiner, B., Pezeshk, A., Giger, M. L. et al. Deep learning in medical imaging and radiation therapy.1389

Medical physics e1–e36 (2018).1390

54. Janowczyk, A., Zuo, R., Gilmore, H., Feldman, M. & Madabhushi, A. Automatic measurement of1391

sister chromatid exchange frequency. JCO Clin Cancer Inform. 3, 1–7 (2019).1392

55. Gutman, D. A. et al. The digital slide archive: A software platform for management, integration and1393

analysis of histology for cancer research. Cancer research 77, e75–e78 (2018).1394

56. Marcolini, A., Arbitrio, E. & Bussola, N. Histolab documentation. URL https://histolab1395

.readthedocs.io/en/latest/index.html.1396

57. Litjens, G., Bandi, P., Bejnordi, B. & Van der Laak, J. 1399 h&e-stained sentinel lymph node1397

sections of breast cancer patients: the camelyon dataset. GigaScience 7 (2018).1398

58. Buslaev, A., Parinov, A., Khvedchenya, E., Iglovikov, V. I. & Kalinin, A. A. Albumentations: fast1399

and flexible image augmentations. ArXiv e-prints (2018). 1809.06839.1400

59. Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by reducing1401

internal covariate shift. abs/1502.03167.1402

83

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.07.21260138doi: medRxiv preprint

https://histolab.readthedocs.io/en/latest/index.html
https://histolab.readthedocs.io/en/latest/index.html
https://histolab.readthedocs.io/en/latest/index.html
1809.06839
abs/1502.03167
https://doi.org/10.1101/2021.07.07.21260138
http://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Deep learning
	Whole-slide Image formats
	Tiling
	Deep tissue detector
	Annotation
	Data augmentation
	Neural network architectures
	Transfer learning
	Training, inference and validation
	Data partitioning
	Training
	Inference
	Validating the model
	Interpretability methods

	Related methods
	Limitations
	Materials
	Equipment
	Equipment setup

	Procedure
	Troubleshooting
	Timing
	Anticipated results
	Assessing foreground and deep tissue detections
	Assessing extracted tiles, masks, and data augmentation choices
	Assessing training statistics
	Assessing inference results
	Assessing the best probability threshold to apply to the test set
	Assessing performance on the test set

	Code availability
	Data availability
	Acknowledgments
	Author contributions
	Declaration of interests

