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Abstract 
 
UK Biobank has released the large-scale whole-exome sequencing (WES) data, but the best practices 
remain unclear for rare variant tests, and an existing approach, SAIGE-GENE, can have inflated type I error 
rates with high computation costs. Here, we propose SAIGE-GENE+ with greatly improved type I error 
control and computational efficiency compared to SAIGE-GENE. In the analysis of UKBB WES data of 30 
quantitative and 141 binary traits, SAIGE-GENE+ identified 551 gene-phenotype associations. In addition, 
we showed that incorporating multiple MAF cutoffs and functional annotations can help identify novel 
gene-phenotype associations.  
 

Main 
 
UK Biobank (UKBB) recently released the whole-exome sequencing (WES) data of most of their  
participants1, allowing for studying rare variant associations for complex traits and diseases. However, the 
best practices remain unclear for set-based rare variant tests in large-scale biobanks. A common practice 

is to test for associations with all rare (minor allele frequency, MAF ≤ 1%,) loss-of-function (LoF) and 

missense variants, but this approach can lose power if association signals are enriched in very rare variants 
or certain functional annotation classes. To improve power, researchers can restrict the test for rarer 

variants such as variants with MAF ≤ 0.1% or MAF ≤ 0.01%. Another approach is incorporating functional 
annotations. Since multiple variant sets with different MAF cutoffs and functional annotations exist, tests 
should be done multiple times for each gene or region and results should be aggregated using the 

minimum p-value or the Cauchy combination2,3.  
 
Currently, SAIGE-GENE4 is the only method developed to conduct the non-burden type set-based rare 
variant tests, such as SKAT5 and SKAT-O6, for binary phenotypes with unbalanced case-control ratios in 
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biobank-scale data. For example, in our evaluation, the most recent set-based test, STAAR2, cannot control 
for type I error rates in the presence of case-control imbalance (Supplementary Figure 1). Burden tests 
can be done with single variant test methods and implemented in software packages including REGENIE27, 
but the Burden test can suffer from a lower power compared to the SKAT-O test that is more robust to 
proportion of causal variants and direction of causal effects6, which we also observed in simulation studies 
(Methods, Supplementary Note A, Supplementary Figure 2). SAIGE-GENE has been recently used for 
exome-wide association analysis for 3,700 phenotypes of 281,850 individuals in the UKBB WES data8. In 
the evaluation of the method using the UKBB WES data with 160K white British samples, we have found 
that all the tests (Burden, SKAT and SKAT-O) in SAIGE-GENE performed well when testing all rare variants 
with MAF  1% (Figure 1A), but inflation was observed in SKAT and SKAT-O tests in SAIGE-GENE when 

restricting to variants with MAF ≤ 0.1% or MAF≤ 0.01% and the case-control rates were more unbalanced 
than 1:30 (Figure 1A, Supplementary Figure 3). To examine whether the inflation is due to inflated type I 
error rates or polygenicity of the phenotypes, we carried out type I error simulation studies with various 
case-control ratios (Supplementary Note B and Methods), and observed the same inflation 
(Supplementary Figure 4). This suggests that SKAT and SKAT-O in SAIGE-GENE can suffer from inflated 
type I error rates. 
 
In addition, the computation cost is not low enough to test for the multiple variant sets. For example, to 

test the largest gene (TTN) with 16,227 variants in the UKBB WES data with 3 different MAF cutoffs 

(MAF≤1%, ≤0.1%, ≤0.01%) and 3 different annotations (LoF only, LoF+missense, and 
LoF+missense+synonymous), SAIGE-GENE required 164 CPU hours and 65 Gigabytes (Gb) of memory 
(Supplementary Table 1).  
 
To address these issues, we propose SAIGE-GENE+. Although SAIGE-GENE uses various approaches, 
including saddlepoint approximation and exact resampling, to adjust for unbalanced case-control ratios,  
these approaches cannot fully address the imbalance and sparsity in the data (Figure 1A, Supplementary 
Figure 4A). In order to reduce the sparsity, prior to the set-based association tests, SAIGE-GENE+ collapses 

ultra-rare variants with MAC ≤ 10 in the “absence and presence” way that has been commonly adapted 
in the association analysis of ultra-rare variants9,10 by assuming those variants have the same effect 
direction on the testing phenotype (Methods).  We observed that the inflation of SKAT and SKAT-O has 
been substantially reduced in SAIGE-GENE+ and all tests have well controlled type I errors in both 
simulated (Supplementary Figure 4B) and the UKBB WES data (Figure 1B) for four exemplary phenotypes 
with case-control ratios 1:32 to 1:267. The genomic control inflation factors also became closer to one 
(Supplementary Figure 3). 
 
Collapsing ultra-rare variants in SAIGE-GENE+ decreases the number of variants in each gene or region 
(Supplementary Figure 5), leading to reduced computation time and memory usage (Figure 2A, 
Supplementary Table 1, Supplementary Figure 6). To further reduce computational cost, SAIGE-GENE+ 
reads in genotypes or dosages for all genetic markers only once, followed by conducting multiple 
association tests corresponding to different MAF cutoffs and annotations.  The computation time of 
SAIGE-GENE+ for conducting all Burden, SKAT, and SKAT-O was 1,407 times decreased (9,851 mins vs. 7 
mins) and the memory usage dropped from 65Gb to 2.1Gb compared to SAIGE-GENE when testing the 
largest gene TTN (16,227 LoF+missense+synonymous variants) for its association with the basal metabolic 
rate (Supplementary Table 1). To test 18,372 genes with 150,000 samples using SKAT-O tests with three 
MAF cutoff 1%, 0.1%, and 0.01% and three different variant annotations: LoF only, LoF+missense, and 
LoF+missense+synonymous, SAIGE-GENE+ costs 78.6 CPU hours (18.8 CPU hours for fitting the null mixed 
model using a full GRM as Step 1 and 59.8 CPU hours for association tests as Step 2) and maximum 4.8Gb 
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memory (4.8Gb  for Step 1 and 2 Gb for Step 2) (Supplementary Tables 2 and 3, Supplementary Figure 
7). In addition, when a sparse GRM instead of a full GRM is used in Step 1 in SAIGE-GENE+, the time cost 
and memory usage dramatically dropped for fitting the null mixed model (< 1 min and 0.61Gb) 
(Supplementary Table 2, Supplementary Note C). We also compared the computation time of SAIGE-
GENE+ and REGENIE2 (Supplementary Table 2 and 3, Supplementary Note D, Supplementary Figure 7). 
 
By collapsing ultra-rare variants, SAIGE-GENE+ can have more significant p-values for several well-known 
gene-phenotype associations than SAIGE-GENE, even though the latter has inflated type I errors. We 
applied SAIGE-GENE and SAIGE-GENE+ to 37 self-reported binary phenotypes in the UKBB WES data using 
three different maximum MAF cutoffs: 1%, 0.1%, and 0.01% to 18,372 gene including all missense and LoF 
variants. We have observed 27 SKAT-O tests with more significant p-values in SAIGE-GENE+ than in SAIGE-

GENE (Supplementary Table 4). For example, BRCA2 for breast cancer with MAF ≤ 0.1% had a p-
value 7.62x10-8 in SAIGE-GENE+ and 1.65x10-3  in SAIGE-GENE. Similarly, we observed the gene GCK for 
diabetes with maximum MAF ≤ 0.1% had a more significant p-value (1.22x10-13)  in SAIGE-GENE+ 
than in SAIGE-GENE (p-value = 4.06x10-6). More detailed discussion can be found in Supplementary Note 
E.  
 
We evaluated the powers of SAIGE-GENE+ and SAIGE-GENE through extensive simulation studies based 
on the real genotypes of 10 genes in the UKBB WES data (Supplementary Table 5, Supplementary Note 
A, Methods) for simulated binary traits. Three scenarios with different settings of proportions of causal 
variants across the multiple functional annotations and different settings of absolute effect sizes for causal 
variants were used. For each scenario, two settings of effect directions were used: 1. All causal variants 
increased disease risk; 2. 100% of LoF, 80% of missense, and 50% of synonymous causal variants increased 
disease risk and the other causal variants decreased disease risk (Supplementary Table 6). The prevalence 
of the binary phenotypes was set to be 10%, under which both SAIGE-GENE and SAIGE-GENE+ have well 
controlled type I error rates for Burden, SKAT, and SKAT-O tests. We observed that in all scenarios, SAIGE-
GENE+ had higher or similar empirical power than SAIGE-GENE (Supplementary Figure 8) with the 
increased median Chi-square statistics (Supplementary Table 7). Our results also demonstrated as 
previously reported that the SKAT-O test can have higher power than the Burden test with more 
significant p-values and higher median Chi-square statistics (Supplementary Figure 2, Supplementary 
Table 7), while the Burden test p-values from SAIGE-GENE+ are highly concordant to p-values from 
REGENIE2 (Pearson’s correlation R2 =  0.99 for -log10(p-value)) (Supplementary Figure 9).   In addition, the 
simulation results suggested incorporating multiple functional annotations (LoF, LoF+Missense, 
LoF+Missense+Synonymous) and maximum MAF cutoffs (0.01%, 0.1%, and 1%) can have an increased 
power compared to only using a single maximum MAF cutoffs (1%) on one set of function annotation 
(LoF+Missense+Synonymous) (Supplementary Figure 10, Supplementary Table 7).  
 
We applied SAIGE-GENE+ to analyze 18,372 genes in the UKBB 160K white British sample data using three 
different MAF cutoffs: 1%, 0.1%, and 0.01% and three different variant annotations: LoF only, 
LoF+missense, and LoF+missense +synonymous for 30 quantitative and 141 binary traits. The nine SKAT-
O test p-values were then combined using Cauchy combination or the minimum p-value approach  
(Methods). 465 gene-phenotype associations were significant at the exome-wide significance threshold 

(p-value ≤ 2.5x10-6) for 27 quantitative traits (Supplementary Table 8) and 86 gene-phenotype 
associations for 51 binary traits (Supplementary Table 9). Since the expected number of p-values < 2.5x10-

6 under no association across all the phenotypes is 7.85, the false discovery rate is 0.014.  Known genes 
BRCA1, BRCA2, CHEK2, PALB2, and SAMHD1 were significant for breast cancer, CNTNAP3B, CDKN2A and 
MITF for melanoma, IL33 for asthma, GCK for type 2 diabetes, and LDLR for high cholesterol and ischemic 
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heart disease. For quantitative traits, MC4R and GIPR were significant for body mass index, CETP, LIPG, 
and LPL for the HDL cholesterol, LDLR and PCSK9 for LDL, and MEPE for heel bone mineral density. We 
also identified potentially novel gene-phenotype associations. For binary traits, a pancreatic cancer 
susceptibility gene NOC2L11 was significant for hypovolemia (p-value = 9.68x10-7), CYP21A2, known for the 
21-hydroxylase deficient congenital adrenal hyperplasia (CAH)12, for allergy/adverse effect of penicillin (p-
value = 3.63x10-7). Also for quantitative traits, CHEK2, known to be associated with breast cancer and sex 
hormone-binding globulin measurement13  , was significant for age at menopause (p-value = 4.51x10-17), 
IGLL5, which encodes an immunoglobulin lambda-like polypeptide, for the lymphocyte count (p-value = 
1.50x10-12), and NANOG, which mediates germline development14 and is highly expressed in embryonic 

carcinoma15, for age at first live birth (p-value = 2.01 x10-6).   
 
Using lower MAF cutoffs may help identify novel associations in which the association signals are highly 
enriched in the rarer variant. For example, the association between PDCD1LG2, which encodes 
Programmed Cell Death 1 Ligand, and chronic lymphoid leukemia became significant when tests were 

restricted to variants with MAF ≤0.01% and 0.1% (p-value = 7.5x10-7) compared to testing all variants with 

MAF ≤ 1% (p-value = 5.4x10-4) (Supplementary Table 10). The underlying reason for this observation 
could be that the associations are largely enriched in the rarer variants in the gene, e.g. the most 
significant variant is the low frequency variant rs7854303 (9:5557672, MAF=3.4x10-4) (see the Phe Web 
browser). Using a higher MAC cutoff 1% will include many non-causal variants, which decreases the power 
of the set-based association tests. In addition, including lower MAF cutoff sets helped to replicate known 
associations including MLH1 for colorectal cancer and CDKN2A for melanoma (Supplementary Table 10).  
Due to the multiple comparison burden, including lower MAF cutoff sets can make marginally significant 
associations non-significant. For 141 binary phenotypes, 17 out of 92  (18.4%) associations were further 
identified with lower MAF cutoff sets, while 9 (9.8%) associations became non-significant (Supplementary 
Figure 11A, Supplementary Table 10). For 30 quantitative traits, 28 out of 465 (6%) associations were 
further identified, while 53 (11.4%) associations became non-significant (Supplementary Figure 11A, 
Supplementary Table 11), suggesting that restricting association tests to rarer variants has a gain for 
binary phenotypes. In functional annotation categories, 184 associations were identified when the tests 
were conducted on LoF variants only, including LoF+missense sets identified 299 additional associations, 
and when LoF+missense+synonymous sets were also included, 91 more associations were identified 
(Supplementary Figure 11B). These results are consistent with the observation in the simulation studies 
that empirical power increased when incorporating multiple functional annotation combinations and 
maximum MAF cutoffs (Supplementary Figure 10). We also investigated among the 551 significant gene-
phenotype associations, which variant set had the smallest p-value (Figure 2B). Interestingly, among sets 
with MAF ≤ 0.01%, LoF variant sets generally had the smallest p-values, while when the MAF cutoff ≤ 1%, 
LoF+missense+synonymous sets generally had the smallest p-values.  
 
In summary, our results demonstrated that by incorporating multiple MAF cutoffs and functional 
annotations the exome-wide rare-variant association tests can help identify novel gene-phenotype 
associations and our SAIGE-GENE+ can facilitate this. Moreover, SAIGE-GENE+ has an option to allow users 
to fit the null generalized linear mixed model with a sparse genetic relationship matrix (GRM) to further 
reduce the computation burden (Supplementary Note C and Supplementary Figure 12 to 14).  
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Methods 
 
Collapsing ultra-rare variants 
 

Ultra-rare variants with MAC ≤ 10 were collapsed to a single marker (Supplementary Figure 15). More 
specifically, if no per-marker weights are provided by the user,  all ultra-rare variants will be collapsed to 
a new variant in the “absence and presence” way9. The dosage for each sample was assigned as the 
maximum dosage value among all ultra-rare variants carried by the sample, if any. Then the weights of 
the collapsed variant and non ultra-rare variants (MAC > 10) are calculated based on their MAF from beta 
distribution 𝐵𝑒𝑡𝑎(𝑀𝐴𝐹, 𝑎1, 𝑎2). By default, same as the setting of the SKAT-O test,   𝑎1 = 1 and  𝑎1 = 25 
are used.  If the per-marker weights are provided by the user, the ultra-rare variants will be collapsed  to 
a new variant whose dosages are the maximum values  among  the weighted dosages.  
 
Aggregating multiple tests 
 
For each gene or region, p-values of multiple testing sets corresponding to multiple maximum MAF cutoffs 
and functional annotations were aggregated using the Cauchy combination2,3. Note that the Cauchy 
combination does not work when any p-value is 1. Thus, we used the minimum p-value with the 
Bonferroni correction to combine multiple tests when at least one test had p-value = 1.  
 
Type I error evaluation 
 
To evaluate the type I error control of SAIGE-GENE and SAIGE-GENE+, we simulated binary phenotypes 
under the null hypothesis of no genetic effects based on the observed genotypes by WES of the 166,955 
samples with white British ancestry in the UK Biobank (Supplementary Note B). We conducted gene-
based tests for 7,932 genes on the even  chromosomes with missense and LoF variants using three 
different maximum MAF cutoffs: 1%, 0.1%, and 0.01%. In total, 158,640 gene-based tests were conducted 
for each maximum MAF cutoff for SAIGE-GENE and SAIGE-GENE+, respectively, and the Q-Q plots were 
shown in Supplementary Figure 4.  Our simulation results suggest that SAIGE-GENE+ has well controlled 
type I errors with case-control ratios  < 1:100 when testing variants with maximum minor allele frequency 
(MAF) = 0.01% (Supplementary Figure 4B).  
 
We also evaluated the type I error control of SAIGE-GENE, SAIGE-GENE+ and STAAR (Figure 1, 
Supplementary Figure 1) in real data. We applied the methods to four exemplary self-reported binary 
phenotypes with various case control ratios in the UKBB WES data to 18,372 genes including all LoF and 
missense variants using three different maximum MAF cutoffs: 1%, 0.1%, and 0.01%. For STAAR, we used 
the relative coefficient cutoff 0.05 for the sparse GRM to fit the null models.  
 
Power evaluation 
 
To evaluate the power of SAIGE-GENE+ and SAIGE-GENE, we simulated binary phenotypes based on the  
genotypes of ten genes in the WES data of 166,955 samples with white British ancestry in the UK Biobank 
(Supplementary Table 5). The selected genes showed significant gene-phenotype associations 
(Supplementary Table 4) and had wide ranges of the number of rare variants from 2901 (APOB) to 107 
(GPSM3). The prevalence of the phenotype was set to be 10%, under which, both SAIGE-GENE and SAIGE-
GENE+ have well controlled type I error rates for Burden, SKAT, and SKAT-O tests (Supplementary Figure 
3). Three scenarios with different settings of proportions of causal variants and magnitudes of  effect sizes 
for causal variants were used:1) low proportion of causal variants and low effect sizes, 2) low proportion 
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of causal variants and high effect sizes, and 3) high proportion of causal variants and high effect sizes  
(Supplementary Table 6).  More details about the simulation settings are described in Supplementary 
Note A. Our simulation results suggest that SAIGE-GENE+ has higher or similar empirical power than 
SAIGE-GENE (Supplementary Figure 8 and Supplementary Table 7).  
 
UK Biobank WES data analysis 
 
We applied SAIGE-GENE+ to analyze 18,372 genes in the UKBB WES data of 166,955 white British samples 
for 30 quantitative traits and 141 binary traits.  Three different maximum MAF cutoffs: 1%, 0.1%, and 
0.01% and three different variant annotations: LoF only, LoF + missense, and LoF + missense +synonymous 
were applied followed by aggregating the multiple SKAT-O tests using the Cauchy combination2,3 for each 
gene. Variants were annotated using ANNOVAR16. The LoF variants include those annotated as frameshift 
deletion, frameshift insertion, non-frameshift deletion, non-frameshift insertion, splicing, stop gain, and 
stop loss. Sex, age when attended assessment center, and first four PCs that were estimated using all 

samples with White British ancestry were adjusted in all tests. 250,656 pruned markers with MAF ≥ 1%, 
which were pruned from the directly genotyped markers using the following parameters, were used to 
construct GRM: window size of 500 base pairs (bp), step-size of 50 bp, and pairwise r2 < 0.2. We used the 
relative coefficient cutoff 0.05 for the sparse GRM for the variance ratio estimation after fitting the null 
models. The model was fitted with leave-one-chromosome-out (LOCO) to avoid proximal contamination.  
 
Computation cost evaluation 
Benchmarking was performed on randomly sub-sampled UK Biobank WES data (up to 150,000 samples) 
with White British participants for glaucoma (1,741 cases and 162,408 controls). We report the medians 
of five runs for run times and memory with samples randomly selected from the full sample set using five 
different sampling seeds. SAIGE-GENE and SAIGE-GENE+ use a two-step approach. Step1 estimates the 
model parameters (i.e. variance component and fixed effect coefficients) in the null model and Step2 
conducts set-based association tests. SAIGE-GENE+ runs Step 1 with all covariates as offset, which leads 
to a decrease of the computation time (Supplementary Table 12). We then compared computation time 
and memory usages of Step2 (Figure 2A, Supplementary Table 1, Supplementary Figure 6).  Note that 
model parameters need to be estimated only once for each phenotype and can be used genome-wide 
regardless of MAF cutoffs and functional annotations. The computation cost of Step1 in SAIGE-GENE+ was 
given in Supplementary Figure 7A and Supplementary Table 2. SAIGE-GENE+ has an option to use a sparse 
genetic relationship matrix (GRM), which further reduces computation cost in Step1 (Supplementary 
Note C).   
 
 

Code and data availability 
 

SAIGE-GENE+ is implemented as an open-source R package available at 
https://github.com/saigegit/SAIGE. SAIGE-GENE is available at 
https://github.com/weizhouUMICH/SAIGE/master. REGENIE (version 2.2.4) was downloaded from 
https://github.com/rgcgithub/regenie.  STAAR (version 0.9.5) was downloaded from 
https://github.com/xihaoli/STAAR The PheWeb17 like visual server for  30 quantitative and 141 binary 
phenotypes of UK Biobank WES data analysis results are currently available at https://ukb-
200kexome.leelabsg.org 
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Figure 1. Quantile-quantile (Q-Q) plots for Burden, SKAT3 and SKAT-O4 for four exemplary binary 
phenotypes in the UKBB WES data using A. SAIGE-GENE and B. SAIGE-GENE+.  
The tests were performed for 18,372 genes with missense and loss-of-function (LoF) variants with three 
different maximum MAF cutoffs: 1%, 0.1%, and 0.01%. Names of genes reaching the exome-wide 
significant threshold (p-value < 2.5x10-6) in SAIGE-GENE+ are annotated in the plots.  
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Figure 2. Performance of SAIGE-GENE+ in UK Biobank WES data 
 
A. Computation time and memory of the gene-based tests (Step2, See Method) in SAIGE-GENE and 
SAIGE-GENE+ for four example genes with different numbers of variants.  The SKAT-O tests were 
conducted with three maximum MAF cutoffs: 1%, 0.1%, and 0.01% and three variant annotations: LoF 
only, LoF + missense, and LoF + missense +synonymous and combined using the Cauchy combination. The 
plots are in the log10-log10 scale. The details of the numbers and genes are presented in the 
Supplementary Table 1. 
B. Most significant variant sets across the three different MAF cutoffs: 1%, 0.1%, and  0.01% and three 
functional annotations: LoF (L) only, LoF + missense (M+L), and LoF + missense +synonymous (S+M+L).  
Distribution of variant sets with the smallest p-values, among 551 significant gene-phenotype associations 
identified by SAIGE-GENE+ in the analyses of 30 quantitative traits and 141 binary traits in the UKBB WES 
data. 
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