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ABSTRACT  

Background: Considerable clinical heterogeneity in Idiopathic Pulmonary Fibrosis (IPF) 
suggests the existence of multiple disease endotypes. Identifying these endotypes could allow 
for a biomarker-driven personalised medicine approach in IPF. To improve our understanding 
of the pathogenesis of IPF by identifying clinically distinct groups of patients with IPF that 
could represent distinct disease endotypes.  

Methods: We co-normalised, pooled and clustered three publicly available blood 
transcriptomic datasets (total 220 IPF cases). We compared clinical traits across clusters and 
used gene enrichment analysis to identify biological pathways and processes that were over-
represented among the genes that were differentially expressed across clusters. A gene-
based classifier was developed and validated using three additional independent datasets 
(total 194 IPF cases).  

Findings: We identified three clusters of IPF patients with statistically significant differences 
in lung function (P=0·009) and mortality (P=0·009) between groups. Gene enrichment analysis 
implicated dysregulation of mitochondrial homeostasis, apoptosis, cell cycle and innate and 
adaptive immunity in the pathogenesis underlying these groups. We developed and validated 
a 13-gene cluster classifier that predicted mortality in IPF (high-risk clusters vs low-risk cluster: 
hazard ratio= 4·25, 95% confidence interval= [2·14, 8·46], P=3·7×10-5).  

Interpretation: We have identified blood gene expression signatures capable of discerning 
groups of IPF patients with significant differences in survival. These clusters could be 
representative of distinct pathophysiological states, which would support the theory of 
multiple endotypes of IPF. Although more work must be done to confirm the existence of 
these endotypes, our classifier could be a useful tool in patient stratification and outcome 
prediction in IPF.  
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Putting research into context 

Evidence before this study 

We searched PubMed Central in February 2020 with the search terms “idiopathic pulmonary 

fibrosis”, “gene expression” and “cluster analysis” with no restrictions on publication date or 

language. Previous transcriptomic cluster analyses have found that differences in gene 

expression can be used to predict disease status, severity and outcome in IPF. A previous 

transcriptomic prognostic biomarker has been developed that can predict outcome in IPF 

using blood expression data from 52 genes.  

Added value of this study  

By utilising new methods of data co-normalisation and machine learning, we were able to 

combine multiple publicly available datasets and perform one of the largest transcriptomic 

studies in IPF to-date with a total of 416 IPF cases across the discovery and validation stages. 

We identified three clusters of patients, one of which appeared to contain, on average, the 

healthiest subjects with favourable lung function and survival over time. These clusters were 

defined using expression from groups of genes that were significantly enriched for many 

different biological pathways and processes, including metabolic changes, apoptosis, cell 

cycle and immune response, and so could be representative of distinct pathophysiological 

states. Additionally, we developed a 13-gene expression-based classifier to assign individuals 

with IPF to one of the clusters and validated this classifier using three additional independent 

cohort of IPF patients (totalling 194 IPF cases). As the clusters were associated with survival, 

our classifier could potentially be used to predict outcome in IPF.  

Implications of all the available evidence  

Our findings support the hypothesis that the disease consists of multiple endotypes. The 

clusters identified in this study could provide some valuable insight into the underlying 

biological processes that may be driving the considerable clinical heterogeneity in IPF. With 

further development, our gene expression-based classifier could be a useful tool for patient 

stratification and outcome prediction in IPF.  
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Introduction 

Idiopathic pulmonary fibrosis (IPF) is a complex, ultimately fatal disease, characterised by 
progressive scarring of the lungs, with a median survival of 3-5 years post-diagnosis.1,2 
Currently, there is no cure for IPF and the two drugs approved for treatment (nintedanib and 
pirfenidone) only slow disease progression, do not work in all patients, and are often not well 
tolerated.3,4 The clinical course of IPF is highly variable with slow progression in some patients, 
rapid progression in others, whilst many experience a slowly progressive course interspersed 
with periods of rapid lung function deterioration.1 It is plausible that these clinical phenotypes 
could reflect different disease endotypes. 

Disease endotypes are subtypes of a disease as defined by a particular pathophysiological 
mechanism. It has been speculated that distinct endotypes of IPF exist5,6, as in asthma and 
lung cancer,7,8 though these are not yet well understood. Identification of endotypes would 
greatly increase our understanding of the behaviour and heterogeneity of the disease, and 
may allow for the development of biomarkers and more precise, tailored approaches to 
treatment.  

Transcriptomic data can be used to define disease endotypes, as similar transcriptomic 
profiles in affected individuals may reflect common underlying biological mechanisms. 
Previous transcriptomic analyses of cancer patients have been particularly successful in 
defining clinically significant patient subgroups, which have led to improvements in 
treatment.9,10 Previous studies in IPF have used clustering of transcriptomic data to identify 
subtypes of patients, with smaller studies (n<200 IPF cases) generally identifying two 
subgroups of IPF patients and one larger study identifying three clusters of patients.  

In this study, we aimed to identify clinically distinct groups of IPF patients through the 
application of unsupervised clustering to multiple publicly available transcriptomic datasets. 
We hypothesised that these groups could represent individuals with different endotypes of 
IPF. Rather than undertake single dataset analyses, we co-normalised and pooled multiple 
datasets together to increase the sample size and enhance statistical power. Additionally, we 
used classification to develop a method to accurately assign additional individuals with IPF to 
one of these groups. This classifier displayed the ability to predict survival in IPF and so we 
then compared the performance of our classifier in independent validation datasets to a 
previous method of outcome prediction in IPF.  

Methods 
Collection of publicly available data 
The design of our study is shown in Figure 1. First, we reviewed the IPF datasets available on 
the Gene Expression Omnibus (GEO) and systematically selected several suitable datasets of 
gene expression data measured from whole blood (see online supplement for details).11 The 
datasets were then assigned to either the discovery stage or the validation stage (online 
supplement). Cohorts used in the discovery stage must have included healthy controls to 
enable the data co-normalisation. The methods used to pre-process the transcriptomic data 
before the co-normalisation are described in the online supplement.  
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Discovery stage 
As the discovery datasets originated from different studies and the transcriptomic data was 
collected using varying platforms, there would have been considerable technical (non-
biological) differences in gene expression between them. As such, the discovery datasets 
required adjustment before they could be combined and clustered. We co-normalised the 
discovery datasets using the COmbat CO-Normalization Using conTrols (COCONUT) method12, 
using R v4.0.0 and the ‘COCONUT’ package v.1.0.2 (online supplement). All healthy control 
subjects were then removed from further analysis. 

We used the Combined Mapping of Multiple clUsteriNg ALgorithms (COMMUNAL) package 
v1.1.0 to identify the optimal number of clusters within the pooled, co-normalised data, using 
R v.3.4.0.13 COMMUNAL integrates data from multiple clustering algorithms across a range of 
genes and evaluates the validity of each number of clusters using multiple validity measures. 
Details on the configuration of COMMUNAL used in this study and the process used to 
determine the optimal cluster assignment can be found in the online supplement. Once an 
optimal cluster assignment was chosen, principal components analysis and heatmaps were 
used to visualise the separation of the clusters. Unclustered samples were excluded from 
further analysis. 

Clinical and demographic characteristics of clustered subjects were compared using chi-
square tests for count data, analysis of variance for non-skewed continuous data, Kruskal-
Wallis tests for skewed continuous data and survival analysis methods for time-to-event data 
(online supplement). Gene enrichment analysis was performed in R v4.0.0 with the in-house 
‘metabaser’ package (database v20.3, package v4.2.3) to highlight biological mechanisms that 
were significantly enriched for the subjects in each cluster (online supplement).  

We developed a gene expression-based classifier to assign new individuals with IPF to one of 
the clusters using only the most informative differentially expressed genes. This classifier was 
designed following the approach described by Sweeney et al. in their study of bacterial sepsis 
(online supplement).14  

Validation stage 
The classifier was used to assign all IPF subjects in each validation dataset to a discovery 
cluster. Phenotypic traits were compared across clusters, as in the discovery stage (online 
supplement). 

We compared the classifier’s performance at predicting survival in IPF to a previous 
transcriptomic prognostic biomarker for IPF by Herazo-Maya et al.15 Each of the validation 
subjects with survival data available were assigned into a ‘high-risk’ or ‘low-risk’ group (in 
terms of mortality or requiring a lung transplant) using the method described by Herazo-Maya 
et al., the Scoring Algorithm for Molecular Subphenotypes (SAMS). For this we used as many 
of the genes in their signature as were present in the validation datasets. Similarly, each 
subject was assigned into one of our discovery clusters, which were each classed as low/high-
risk based on the discovery stage findings. Survival analysis methods were used to determine 
which method performed best at predicting survival (online supplement). 
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Results 
Collection of publicly available data 
Six independent whole blood gene expression datasets were selected for inclusion in the 
analysis (Figure E1). Summary statistics for all subjects are shown in Table 1.  

Discovery stage 
All three discovery stage datasets were microarray-based (Table E1). There were expression 
levels measured for 9,371 common genes across the three datasets, which consisted of a total 
of 220 IPF subjects and 95 healthy control subjects. 

Prior to COCONUT co-normalisation, the data from the three cohorts were entirely separated 
in high-dimensional space due to technical differences between the studies (Figure 2A). 
Whereas after COCONUT (Figure 2B), the data was overlapping in high-dimensional space, 
indicating that the technical differences between datasets had been reduced and that the co-
normalised data was suitable for clustering.  

COMMUNAL was run on the co-normalised data and the resulting optimality map is shown in 
Figure E2. The clustering assignment with 3 clusters using 2,500 genes was chosen as the 
optimal assignment (online supplement), with 64 subjects assigned to Cluster 1, 95 assigned 
to Cluster 2, 37 assigned to Cluster 3 and 24 (10·4%) that were unclustered (Figure 2C and 
Figure E3).  

Table 2 shows the clinical and demographic traits of the subjects in each cluster by study, as 
well as for all studies combined. With all studies combined, statistically significant differences 
in average predicted Diffusing capacity of the Lung for carbon monoxide (DLCO) were observed 
across clusters (P=0·009). Subjects in Cluster 1 had a similar median predicted DLCO to those 
in Cluster 3, whilst subjects in Cluster 2 had the greatest median predicted DLCO, indicating 
that these individuals had relatively preserved lung function. Additionally, there was a 
significant difference in average score from the Gender, Age and Physiology (GAP) index for 
IPF mortality (P=0·006),16 with those in Cluster 1 having the greatest GAP score and those in 
Cluster 2 having the lowest average GAP score. There was a statistically significant difference 
in mortality between Clusters 2 and 3, with death observed for 25% of subjects in Cluster 2 
and 67% of subjects in Cluster 3 (P=0·009). Furthermore, those in Cluster 3 had consistently 
poorer survival over time than those in Cluster 2 (Figure E4). A Cox proportional-hazards (PH) 
model estimated that the hazard ratio (HR) between Clusters 2 and 3 was 3.59 (95% CI: [1·40, 
9·19], P=0·008), and so at any follow-up time, subjects in Cluster 3 were estimated to be 3·59 
times as likely to die as subjects in Cluster 2. 

Gene enrichment analysis revealed that Cluster 1 was significantly enriched for biological 
mechanisms relating to metabolic changes (Table E2 and Figure E5). Cluster 2 was significantly 
enriched for biological processes and pathways relating to gene regulation, DNA repair, cell 
cycle and apoptosis (Table E3 and Figure E6), whilst Cluster 3 was significantly enriched for 
terms relating to the immune response (Table E4 and Figure E7). In addition, the genes 
assigned to Clusters 2 and 3 were each found to be statistically over-connected (in terms of 
direct gene regulation) to a significant number of genes that have been previously implicated 
in the development of IPF (online supplement).  

We used the pooled, co-normalised gene expression data for all 196 subjects who were 
successfully clustered in the discovery analysis to train a gene expression-based cluster 
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classifier (online supplement). The classifier used expression data from 13 genes (Table E5) 
and was able to accurately reassign 99·0% of discovery subjects (Table E7).  

Validation stage 
There were 194 IPF subjects across the three validation cohorts. Expression levels for all 13 
genes used in the classifier were available in all three validation cohorts. We used the classifier 
to assign each individual to a cluster and compared phenotypic traits across clusters (Table 
3). As in the discovery stage, there were statistically significant differences in mortality 
between clusters (P=0·001) and those in Cluster 2 had the best survival over time (Figure 3). 
Additionally, individuals in Cluster 2 had the highest average DLCO, though the difference in 
DLCO between validation clusters was not statistically significant (P=0·069). Cox PH models 
(Table E8) estimated that at any follow-up time, an individual in Cluster 1 was 3.80 times more 
likely to die than an individual in Cluster 2 (95% CI = [1·78, 8·12], P=0·001), whilst an individual 
in Cluster 3 was 5·05 times more likely to die than an individual in Cluster 2 (95% CI = [2·24, 
11·35], P=9·1×10-5). However, the difference in survival over time between Clusters 1 and 3 
was not statistically significant (HR= 1·47 (95% CI [0·67, 3·22], P=0·341).  

Finally, we compared the performance of our classifier at predicting survival in IPF to SAMS, 
a method used by Herazo-Maya et al. to predict outcome in IPF using a 52-gene signature.15 
There were no common genes between the classifier and the 52-gene signature, though many 
were highly correlated in the validation subjects (Figure E8). The subjects in the GSE27957 
and GSE28042 validation cohorts (GSE132607 did not report mortality) were each classed as 
‘high-risk’ or ‘low-risk’ using both gene expression-based methods. As Clusters 1 and 3 were 
not significantly distinct in terms of survival, both clusters were considered equally ‘high risk’ 
for the assignments based on the 13-gene classifier. 51/52 (98·1%) genes in Herazo-Maya et 
al.’s gene signature were present in the GSE27957 dataset and 50/52 (96·2%) were available 
in the GSE28042 dataset. Overall, there was 68·3% agreement between the two methods 
(Table E9).  

Our classifier performed well at predicting survival (Figure 4A), with the subjects in the ‘high-
risk’ clusters having far poorer survival over time than those in the ‘low-risk’ cluster. A 
univariate Cox PH model estimated that at any follow-up time, an individual in a high-risk 
cluster was 4·25 times more likely to die than an individual in the low-risk cluster (95% CI = 
[2·14, 8·46], P=3·7×10-5). This model had a C-index (the equivalent of the area under the curve 
[AUC] for a receiver operating characteristic [ROC] curve) of 0·664 (95% CI= [0·590, 0·737]). 
SAMS (Figure 4B) performed less well, with a Cox PH model estimating that at any time, those 
in the high-risk group were 1.98 times as likely to die than those in the low-risk group (95% CI 
= [1·07, 3·68], P = 0·030) and a C-index of 0·609 (95% CI = [0·531, 0·686]). 

The risk predictions made using the classifier remained statistically significant (P=0·007) after 
adjusting for age, sex, ancestry, FVC and DLCO (Table E10), with a hazard ratio of 2·70 between 
the high-risk and low-risk clusters (95% CI= [1·32, 5·53]). This model had a C-index of 0·773 
(95% CI = [0·697, 0·848]), which was greater than that of the Cox model containing only age, 
sex, ancestry, FVC and DLCO (C-index = 0·747, 95% CI = [0·670, 0·825]), suggesting an 
improvement in predictive ability. A likelihood ratio test between the two models gave a P-
value of 0·005, suggesting that the improvement in predictive ability when including the 
classifier’s risk predictions was statistically significant. The multivariate Cox model containing 
SAMS’ risk predictions had a C-index of 0·760 (95% CI = [0·684, 0·837]), which suggested an 
improvement over the Cox model containing only age, sex, ancestry, FVC and DLCO, though 
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the likelihood ratio test p-value between these two models was not statistically significant 
(P=0·105).  

Discussion 
By applying new statistical methods for data co-normalisation and machine learning to 
multiple publicly available datasets, we identified three clusters of IPF patients with 
statistically significant differences in lung function and survival. As the clustering in this study 
was undertaken independently of clinical data, yet significant differences in clinical traits were 
observed between clusters, this suggests that they may be representative of distinct and 
clinically relevant endotypes of IPF. 

In this study we used datasets in which the gene expression had been measured from whole 
blood samples. However, as IPF is a lung disease, characterised by damage to the alveolar 
epithelium, patterns of gene expression identified in blood may not reflect the underlying 
pathology of the disease and may instead reflect downstream effects or the presence of 
confounders, such as secondary infections or treatment effects. Nonetheless, blood is more 
accessible than a lung-specific tissue/cell type and the expression of a gene in blood is often 
a significant predictor of the expression of that gene in lung.17 Furthermore, the blood 
expression datasets available on GEO provided a larger sample size and more comprehensive 
accompanying clinical data than lung-specific tissue types, which allowed us to identify 
statistically significant clinical differences between clusters. In addition, this allowed us to 
develop a blood-based classifier, which has more clinical utility than one that requires 
measurements from lung, as this would require more invasive sample collection.  

The genes that were most differently expressed in subjects in Cluster 1 were significantly 
enriched for biological mechanisms related to metabolic changes. Recent findings appear to 
suggest that metabolic dysregulation could be a contributing factor to fibrosis, though its role 
is not yet fully understood.18,19 The genes in Cluster 1 were also significantly enriched for 
pathways related to TGF-β signalling, which is a central mediator of fibrosis.20–22  

Among the biological pathways that were significantly enriched for Cluster 2 were pathways 
related to apoptosis and cell cycle. It has been previously reported that apoptosis is increased 
in alveolar epithelial cells of IPF patients but decreased in myofibroblasts,23 with this 
imbalance contributing to IPF pathogenesis.24 Furthermore, the use of therapies that can 
selectively manipulate apoptosis have been proposed.25 Additionally, genetic variants within 
cell cycle genes have been shown to be associated with IPF development and progression.26 
The results for this cluster could further support the idea that apoptosis and cell cycle each 
play an important role in the pathology of IPF.  

Cluster 3 was enriched for terms related to the immune system response. The role of the 
immune system in IPF has been controversial in the past; failed immunomodulatory therapies 
in IPF, some of which have led to worse outcomes, have led to speculation that certain 
immune responses are protective while others are harmful.27,28 An improved understanding 
of immune-driven endotypes could inform novel treatment approaches. 

The 13-gene expression-based cluster classifier was successfully validated as it was able to 
assign the IPF subjects from the validation datasets to clusters with statistically significant 
differences in survival between groups that were consistent with the discovery clusters. As 
the classifier had the ability to assign subjects who are at a lower risk of death into Cluster 2 
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and the subjects who are at a greater risk of death into the other two clusters, it could 
potentially be used to predict survival in IPF.  

The performance of the classifier in predicting survival was compared with SAMS, a similar 
approach to outcome prediction in IPF.15 Despite using data from one quarter of the number 
of genes used for SAMS, the differences in survival over time observed between the risk 
groups in the two validation datasets had greater statistical significance and effect size when 
predictions were made using the classifier. Additionally, including the classifier’s predictions 
in a survival model that adjusted for important covariate factors led to a statistically 
significant increase in predictive ability.  

One of the main strengths of this study was that the utilization of a new statistical approach 
to co-normalisation (COCONUT) allowed for three datasets to be combined,12 resulting in one 
of the largest transcriptomic studies in IPF to date with a total of 414 IPF cases across the 
discovery and validation stages. Another strength of our study was that the application of 
COMMUNAL, which considered two different clustering algorithms and tested five validity 
measures over a range of genes, meant that our clustering was more reliable and more likely 
to be reproducible than the standard approach, which would have been to apply one 
clustering algorithm and test one validity measure. 

There were several limitations to this study. Firstly, as we relied on the use of publicly 
available data, some clinical variables were relatively underpowered due to missingness 
within the data or having not been reported in all studies. In addition, we lacked detailed data 
for clinically significant traits such as patient reported outcomes, lung function decline over 
time and did not possess information regarding the background therapy of the IPF subjects. 
However, for the three cohorts with survival data available, we were able to glean from the 
original papers that the IPF patients were either treatment naïve populations (GSE93606) or 
that there were only a small proportion that were receiving immunosuppressive therapy at 
the time of the blood collection (GSE27957 and GSE28042). In addition, these populations 
were not given anti-fibrotics and so treatment effects are unlikely to have been driving the 
large differences in survival that were observed between clusters.    

A further weakness of our study is that each participating cohort of IPF subjects was subject 
to survival bias, as only subjects who survived long enough to enrol into each study could have 
contributed their transcriptomic data to it. This could have restricted the level of 
heterogeneity of IPF that we were able to capture in the study and limited the generalisability 
of our findings.  

Additionally, COCONUT makes the assumption that the healthy controls across the different 
studies came from the same statistical distribution and so all differences between healthy 
controls across studies must have been due to non-biological variation. This means that any 
large differences in confounding factors between the groups of healthy controls would have 
restricted the efficacy of the co-normalisation.  

If the clusters identified in this study do truly represent endotypes of IPF, it may be worth 
speculating about the nature of these endotypes. As IPF is a complex disease, with many 
known common genetic and environmental exposures, it is unlikely that it would behave 
under a traditional discrete endotype model and instead more likely that it would behave 
under a more complex model, such as the palette model described by McCarthy.29 Our gene 
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enrichment analysis results could implicate metabolic changes and the immune system 
response as being among the component pathways for IPF.  

To conclude, these results could support the hypothesis of multiple endotypes of IPF as there 
appear to be at least two clinically distinct groups of IPF patients that can be identified 
through cluster analysis of transcriptomic data. As these clusters were defined using 
expression from groups of genes that were significantly enriched for many different biological 
pathways and processes, they could be representative of distinct pathophysiological states. 
Additionally, a classifier with the ability to assign additional individuals with IPF to one of the 
clusters was developed. With further development, this classifier could be a useful tool in 
outcome prediction in IPF as well as helping us gain a better understanding of the underlying 
biological processes that may be driving the observed differences in survival. 
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Figure legends 
Figure 1: A flowchart showing the design of our study. 

Figure 2: Plots of the first two principal components of the gene expression data for the IPF 
samples prior to co-normalisation and stratified by original study (A), post co-normalisation 
and stratified by original study (B) and post co-normalisation stratified by cluster (C). The x-
axis represents the first principal component of the data and the y-axis represents the second 
principal component of the data.  

Figure 3:  A Kaplan-Meier plot showing survival over time for the clustered validation subjects. 
The p-value shown on the plot is from a log-rank test testing the three curves for equality. 
Median survival in each cluster is shown by dotted lines, where possible. 

Figure 4: Survival over time for the IPF subjects in GSE27957 and GSE28042, stratified by risk 
group according to our 13 gene classifier (A) and Herazo-Maya et al.’s method SAMS (B). The 
P-value on each plot is from a log-rank test testing the two curves for equality. A dotted line 
on the plot indicates the median survival time for the risk group if this could be calculated. 
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Tables 
 

TABLE 1: Summary information on the publicly available datasets that were included in this study, as well as summary statistics for all individuals 
whose data were included in the analysis. FVC = forced vital capacity, DLCO = diffusing capacity of lung for carbon monoxide, SD = standard deviation, 
MUC5B genotype = genotype for the MUC5B promoter polymorphism rs35705950.  

 Discovery stage Validation stage 

GEO accession number GSE38958 GSE33566 GSE93606 GSE132607 GSE27957 GSE28042 

Reference Huang et al.30 Yang et al.31 Molyneaux et al.32 * †33 †33 

Country USA USA UK USA USA USA 

Disease status IPF Control IPF Control IPF Control IPF IPF IPF 

Sample size 70 45 93 30 57 20 74 45 75 

Age (years, SD) 68·2 (7·2) 69·3 (9·3) 67·2 (11·4) 62·4 (14·3) 67·4 (8·0) 66·0 (10·6) 66·6 (7·6) 67·1 (8·2) 68·9 (8·1) 

Sex (% male) 82·6% 60·0% 65·6% 46·7% 66·7% 60·0% 70·3% 88·9% 69·3% 

Ancestry (% European) 82·8% 71·1% Unknown Unknown Unknown Unknown 94·6% 82·2% 97·3% 

FVC % predicted (SD) 62·4 (15·0) Unknown 62·0 (28·8) Unknown 72·2 (20·3) Unknown 69·7 (18·4) 60·6 (14·3) 65·4 (16·7) 

DLCO % predicted (SD) 43·3 (18·7) Unknown 52·1 (27·9) Unknown 39·2 (14·1) Unknown 45·6 (15·4) 43·4 (17·7) 48·9 (18·6) 

Mortality (%) Unknown Unknown Unknown Unknown 40·4% Unknown Unknown 37·8% 32·0% 

MUC5B genotype (% GG) 

MUC5B genotype (% GT) 

MUC5B genotype (% TT) 

Unknown 

Unknown 

Unknown 

Unknown 

Unknown 

Unknown 

28·0% 

66·0% 

6·0% 

53·8% 

42·3% 

3·8% 

40·0% 

50·0% 

10·0% 

Unknown 

Unknown 

Unknown 

18·8% 

78·1% 

3·1% 

Unknown 

Unknown 

Unknown 

Unknown 

Unknown 

Unknown 

Immunosuppressive 
therapy (%) 

Unknown Unknown Unknown Unknown 0·0% Unknown Unknown 4·4% 14·7% 

*: As of October 2021, the dataset with GEO accession number GSE132607 had not been associated with any published study.  

†: The datasets with GEO accession numbers GSE27957 and GSE28042 originated from the same study33, where the data in GSE27957 was used in discovery 
and the data in GSE28042 was used as independent validation data.  
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TABLE 2: Comparison of clinical and demographic traits of clustered subjects by study and for all studies combined. Data are presented as count (percentage), 
mean (standard deviation, SD) or median (interquartile range, IQR). NA = data not available, FVC=Forced vital capacity, DLCO = Diffusing capacity for carbon 
monoxide, FEV1 = Forced expiratory volume in one second, CPI = composite physiologic index, MUC5B genotype = genotype for the MUC5B promoter 
polymorphism rs35705950.  - indicates that the calculation was not applicable as there were zero subjects in that cluster. P-value for count data is from a chi-
square test, test comparing means is analysis of variance and test comparing medians is the Kruskal-Wallis log rank test. Significant P-values (P < 0·05) are 
highlighted in bold.  

 GSE38958 (n=65) GSE33566 (n=83) GSE93606 (n=48) All studies combined (n=196) 
 

Cluster  
1 

Cluster 
2 

Cluster 
3 

Cluster  
1 

Cluster 
2 

Cluster  
3 

Cluster  
1 

Cluster 
2 

Cluster 
3 

Cluster  
1 

Cluster 
2 

Cluster 
3 

P-
value 

Total n 
used 

n subjects in cluster 22 39 4 42 32 9 0 24 24 64 95 37   

Age (years)  
(mean, SD) 

70·0 
(6·3) 

68·3 
(7·9) 

64·0 
(2·7) 

66·7 
(9·8) 

67·0 
(14·1) 

67·0 
(12·1) 

- 
64·8 
(5·9) 

70·3 
(8·8) 

67·8 
(8·9) 

66·9 
(10·2) 

68·8 
(9·4) 

0·592 188 

Male  
(%) 

20 
(91·0%) 

30 
(77·0%) 

4  
(100%) 

32 
(76·2%) 

21 
(65·6%) 

3 
(33·3%) 

- 
15 

(62·5%) 
16 

(66·7%) 
52 

(81·3%) 
66 

(69·5%) 
23 

(62·2%) 
0·091 196 

European ancestry 
(%) 

17 
(81·0%) 

29 
(82·9%) 

3 
(75·0%) 

NA NA NA - NA NA 
17 

(81·0%) 
29 

(82·9%) 
3 

(75·0%) 
0·883 60 

Ever smoker  
(%) 

NA NA NA NA NA NA - 
15 

(62·5%) 
18 

(78·3%) 
NA 

15 
(62·5%) 

18 
(78·3%) 

0·389 47 

Death observed 
during study (%) 

NA NA NA NA NA NA - 
6 

(25·0%) 
16 

(66·7%) 
NA 

6 
(25·0%) 

16 
(66.7%) 

0·009 48 

FVC % predicted 
(median, IQR) 

59·5 
(19·5) 

65·0 
(24·0) 

51·5 
(7·8) 

77·0 
(36·0) 

66·0 
(46·0) 

73·0 
(17·5) 

- 
71·5 

(27·7) 
60·8 

(24·1) 
63.0 

(35·0) 
70·5 

(30·1) 
60·1 

(23·4) 
0·342 154 

DLCO % predicted 
(median, IQR) 

34·5 
(17·5) 

49·0 
(21·0) 

28·5 
(21·0) 

65·0 
(37·0) 

66·0 
(40·0) 

30·0 
(30·0) 

- 
38·1 

(17·1) 
36·6 

(15·9) 
35·0  

(30·0) 
45·0 

(29·2) 
34·4 

(17·3) 
0·009 133 

FEV1 % predicted 
(median, IQR) 

NA NA NA NA NA NA - 
74·9 

(23·1) 
65·4 

(22·7) 
NA 

74·9 
(23·1) 

65·4 
(22·7) 

0·216 48 

GAP index 
(mean, SD) 

5·3  
(1·3) 

3·9 
(1·3) 

4·5 
(1·3) 

4·3 
(1·5) 

4·1 
(1·6) 

4·3 
(3·1) 

- 
3·7 

(1·8) 
4·4 

(1·6) 
4·9 

(1·4) 
3·9 

(1·5) 
4·4 

(1·7) 
0·006 132 

MUC5B genotype:    
GG (%) 

NA NA NA 
5 

(29·4%) 
6 

(28·6%) 
3 

(60·0%) 
- 

5 
(26·3%) 

11 
(50·0%) 

5 
(29·4%) 

11 
(27·5%) 

14 
(51·9%) 

0·230 84 

MUC5B genotype:  
GT (%) 

NA NA NA 
10 

(58·8%) 
14 

(66·7%) 
2 

(40·0%) 
- 

12 
(63·2%) 

8 
(36·4%) 

10 
(58·8%) 

26 
(65·0%) 

10 
(37·0%) 

  

MUC5B genotype:   
TT (%) 

NA NA NA 
2 

(11·8%) 
1 

(4·8%) 
0 

(0%) 
- 

2 
(10·5%) 

3 
(13·6%) 

2 
(11·8%) 

3 
(7·5%) 

3 
(11·1%) 
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TABLE 3: Comparison of phenotypic traits across clusters when all validation subjects were clustered using the cluster 
classifier. Data are presented as count (percentage), mean (standard deviation, SD) or median (interquartile range, 
IQR). FVC=Forced vital capacity, DLCO = Diffusing capacity for carbon monoxide, CPI = composite physiologic index, 
FEV1 = Forced expiratory volume in one second, MUC5B genotype = genotype for the MUC5B promoter 
polymorphism rs35705950. Significant P-values (P < 0·05) are highlighted in bold. 

 Cluster 1 Cluster 2 Cluster 3 P-value 
Total n 

used 
No. of 

datasets 

n subjects in cluster 52 101 41    

Age (mean, SD) 67·1 (8·1) 68·5 (7·6) 66·2 (8·6) 0·239 194 3 

Male (%) 38 (73·1%) 72 (71·3%) 34 (82·9%) 0·347 194 3 

European Ancestry (%) 51 (98·1%) 91 (90·1%) 38 (92·7%) 0·196 194 3 

DLCO % predicted (median, IQR) 42·1 (26·4) 48·2 (21·1) 43·4 (20·3) 0·069 194 3 

FVC % predicted (median, IQR) 64·3 (23·6) 65·0 (24·3) 63·1 (15·3) 0·467 193 3 

GAP index (mean, SD) 4·1 (1·6) 4·0 (1·5) 4·3 (1·5) 0·753 193 3 

Death observed during study (%) 16 (48·5%) 13 (19·7%) 9 (57·1%) 0·001 120 2 

FEV1 (median, IQR) 74·8 (21·7) 75·2 (22·2) 75·4 (17·7) 0·913 75 1 

Ever smoker (%) 11 (57·9%) 21 (60·0%) 17 (85·0%) 0·114 74 1 

MUC5B genotype: GG (%) 2 (11·8%) 6 (19·4%) 4 (25·0%) 0·780 64 1 

MUC5B genotype: GT (%) 14 (82·4%) 24 (77·4%) 12 (75·0%)    

MUC5B genotype: TT (%) 1 (5·9%) 1 (3·2%) 0 (0%)    
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FIGURE 3

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.07.16.21260633doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.16.21260633
http://creativecommons.org/licenses/by-nd/4.0/


21 
 

 

 
FIGURE 4 
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TABLE 5.1: Updated clinical and demographic traits that were reported in at least one of the lung tissue data collections, and their availability across 

collections.B 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.07.16.21260633doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.16.21260633
http://creativecommons.org/licenses/by-nd/4.0/

