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Abstract 

 

Introduction 

We applied machine learning (ML) to routine bloods, then to advanced haematology data 

from a full blood count (rawFBC) plus biochemistry, to build predictive models for heart 

failure, which were then used at population scale. 

 

Methods 

Routine blood results from 8,031 patients with heart failure, with equal number of controls, 

were used in ML training and testing datasets (Split 80:20). NT-proBNP was used for 

diagnostic comparison. rawFBC metadata was used in a dataset of 698 patients, 314 of 

whom had heart failure, to train and test ML models (Split 70:30) from rawFBC, rawFBC plus 

biochemistry and routine bloods. The rawFBC model was used to predict heart failure in a 

validation dataset of 69,492 FBCs (2.3% heart failure prevalence).  
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Results 

Heart failure was predicted from rawFBC and biochemistry versus rawFBC AUROC 0.93 

versus 0.91, 95% CI -0.023 to 0.048, P = 0.5, and predicted from routine bloods and NT-

proBNP, AUROC 0.87 versus 0.81, 95% CI 0.004 to 0.097, P = 0.03. In the validation cohort 

heart failure was predicted from rawFBC with AUROC 0.83, 95% CI 0.83 to 0.84, P < 0.001, 

sensitivity 75%, specificity 76%, PPV 7%, NPV 99.2% (Figure 2). Elevated NT-proBNP (≥ 34 

pmol/L) was predicted from rawFBC with AUROC 0.97, 95% CI 0.93 to 0.99, P < 0.0001. 

Common predictive features included markers of erythropoiesis (red cell distribution width, 

haemoglobin, haematocrit). 

 

Conclusion 

Heart failure can be predicted from routine bloods with accuracy equivalent to NT-proBNP. 

Predictive features included markers of erythropoiesis, with therapeutic monitoring 

implications. 
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Introduction 

 

The term machine learning describes a range of pattern recognition tools which hold 

considerable promise in the field of health care diagnostics, prognostics and therapeutics. 

Machine learning has been applied to a number of imaging and diagnostic modalities, 

including retinal photography (1), electrocardiography (2, 3), and echocardiography (4) to 

enable cardiovascular disease prediction. Deep learning, a form of machine learning, 

directed at echocardiography cine images has been shown to be highly accurate at 

identifying cardiac amyloidosis (4). Integrating both ECG and echocardiography artificial 

intelligence models provides an even more accurate prediction of the presence of cardiac 

disease (5, 6). The greatest opportunity for the use of machine learning in healthcare is in its 

application to low cost, readily available data which has imperceptible patterns hidden within 

it, which answer unmet clinical needs in healthcare. 

 

In heart failure several machine learning studies have been performed, using data extracted 

from electronic healthcare records (7-9). Heart failure prognosis has been predicted with a 

high degree of accuracy using machine learning applied to medical claims data (10). Whilst 

intriguing, this method is dependent on adequate labelling of ICD10 case data, 

completeness of clinical records and clinician behaviour, which may not be translatable to 

other clinical systems or other countries (11). Whilst the potential for this type of bias is 

considerable with black-box uninterpretable methods such as deep learning, there are 

several machine learning methods that provide transparency and explainability but with 

equivalent levels of accuracy.  

 

Although laboratory testing is one of the most ubiquitous, high volume and low cost forms of 

diagnostic information there is only a recently emerging literature on the use of machine 
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learning applied to lab data (12). One of the most highly evolved tools available, based on 

machine learning applied to longitudinal full blood count data is the ColonFlag™ Test, 

designed to flag the presence of colorectal cancer (13). This predictive test has gone from a 

research discovery to a clinically implemented electronic decision support tool (14). Many 

studies have demonstrated the value of laboratory data to make not only an accurate 

prediction of the presence of heart failure but also its prognosis (9, 10, 15).  

 

Unsupervised machine learning, a method applied to unlabelled data to cluster similar 

patient phenotypes, has been used to identify subtypes of both heart failure to preserved 

ejection fraction (HFpEF) and heart failure with reduced ejection fraction (HFrEF) (16, 17). 

Unsupervised machine learning holds the promise of personalising patient care, through the 

use of targeted therapeutics (18, 19). This work has demonstrated the necessity of not only 

including a wide breadth of multimodal data, but also standardised inputs, as again this field 

is suffering from a reproducibility crisis (20). As occurred with genome wide association 

studies the field of big data in medicine is crying out for a global pooled consortia to ensure 

machine learning in health care is reproducible and translatable. 

 

We and others have similarly shown the ability for machine learning applied to haematology 

data to predict the presence of heart failure and biological age (21, 22). The study described 

here had two parts. Firstly, we set out to integrate haematology and biochemistry data to 

show the incremental value of adding other sources of laboratory information in the 

discrimination of patients with heart failure. We then added further clinical metadata, such as 

conventional ECG parameters and echocardiography measurements, into a more complete 

holistic picture of patient phenotype. This global metadata was then used to validate 

previously described HFpEF phenotypes. In the second part we used more granular 

advanced haematology data to show an ability to identify heart failure at presentation to 
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hospital and how this could be applied across an entire health care system. Lastly, we 

demonstrate that explainability of machine learning models, a priori, points to potential uses 

of this method, not only in diagnosis and prognosis, but also therapeutic interventions and 

monitoring. 

 

Methods 

 

Hypothesis 

That congestive heart failure (either heart failure with reduced ejection fraction (HFrEF), and 

heart failure with preserved ejection fraction (HFpEF)) can be predicted from either routine 

blood investigations e.g. full blood count (FBC) and biochemistry or raw haematology full 

blood count (rawFBC) data extracted from a haematology analyser/flow cytometer. 

 

Data collection 

This study occurred in two parts. The first part involved the form of a retrospective 

observational study using data collected as part of routine clinical care from 2008 until 2018 

(Extracting Global Clinical Metadata from Large Patient DatabaSEs (ECLIPSE)). ECLIPSE 

included extensive patient metadata inclusive of demographics, electrocardiography 

conventional parameters, laboratory data, inpatient e-prescribing, coronary catheterisation 

disease coding, CT angiography report extracts, echocardiography measurement data and 

structured reporting, ICD10 coding, past and future admission and mortality coding. 

Laboratory data was obtained at a time proximate to the first echocardiogram being 

performed on a patient with a presumed cardiac diagnosis. This included patients who were 

both inpatients and in outpatient ambulatory care. Patients with heart failure were identified 
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by any ICD10 coding for heart failure. A matched number of randomly selected patients 

without heart failure were taken from the ECLIPSE database. 

 

The second part was also a retrospective observational study, (Pattern Recognition Of 

Global Responses and Monitoring (PROGRAM), though instead this study used advanced 

haematology raw data as well as biochemistry data. Haematology raw data came from full 

blood counts (rawFBC) collected between July 1st 2019 and June 8th 2020, some of which 

occurred during the COVID-19 pandemic. Machine learning (ML) predictions for COVID-19, 

other infectious diseases and heart failure have been presented previously (22). Apart from 

COVID-19 these predictive models were developed using the first rawFBC performed during 

an admission as input data and the primary ICD10 diagnosis as the objective. In this paper 

we present new ML models for heart failure with the addition of biochemistry data. 

Comparisons were then possible between each dataset, using each of the predictive 

models. In addition, we also provide further validation of the same predictive haematology 

ML model based on an independent dataset of all-comers, undergoing serial FBCs 

throughout a hospitalisation (Figure 1).  

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.26.21261115doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.26.21261115
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

Figure 1. Machine learning application to ECLIPSE and PROGRAM

 

 

Ethics approval was obtained locally from the Research and Knowledge Centre (RM13732 

for the ECLIPSE study for standard haematology and biochemistry data), and from the 

regional HDEC ethics committee (20/CEN/162 for the PROGRAM study for haematology 

raw data). Informed consent was waived, as the research was observational and used 

secondary data.  

 

Advanced haematology data 

Whole blood collected in EDTA tubes were analysed using Sysmex XN-1000 and XN-3000 

haematology analysers. The XN-3000 is made up of two XN-1000 modules and produces 

the same haematology parameters. Advanced haematology data was exported from the 

Information Process Unit (IPU) connected to both a Sysmex XN-1000 at Waitakere hospital 

and XN-3000 at North shore hospital. This included data from both inpatients and 
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outpatients within Waitemata District Health Board’s (WDHB) catchment. Data was 

downloaded from the IPU in a comma separated value (CSV) data format, containing both 

basic and advanced haematology parameters.  

 

The Sysmex XN instrument uses fluorescence flow cytometry, impedance, hydrodynamic 

focussing, SLS for haemoglobin and is capable of processing up to 100 samples/hour using 

88 µL sample volume. Up to 38 clinical parameters and 50 research parameters, or 

derivatives thereof are produced with up to 23 scattergrams and 4 histograms. The 

instrument stores up to 100,000 records in a buffer. A glossary of haematology parameter 

acronyms and explanations are available in a previously published supplemental (22). 

 

Biochemistry data 

Standard biochemical laboratory data from a Siemens Vista 1500 biochemistry analyser, 

software version is 3.9_11.6-3t/1450, and sent to the laboratory information system (LIS) 

Éclair and both entered into a national database (Testsafe) and hospital SQL data 

warehouse. Biochemistry data was extracted from a SQL database using a Python script 

and matched to either conventional FBC data or advanced haematology data by its closest 

time point. Biochemistry data at the closest possible time point was matched to either the 

standard FBC or advanced rawFBC data however as this data was collected as part of 

clinical care there was significant degree of sparseness/missingness compared to the FBC 

data. Machine learning models were developed inclusive and exclusive of missing numerics, 

and with additional clinical data to demonstrate the utility of adding orthogonal multimodal 

data. NT-proBNP (N-Terminal pro B-type Natriuretic Peptide) was measured using a 

Siemens Dimension Vista assay and linked by closest time point to data in ECLIPSE. In 

PROGRAM, NT-proBNP could be linked to a patient encounter but not by blood test date. A 

ML model, using advanced haematology data, was trained on an abnormal NT-proBNP (≥ 
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34 pmol/L) to provide corroboration of the features used to predict the coded ICD10 heart 

failure endpoint. 

 

The ECLIPSE heart failure model was also validated in the PROGRAM test dataset for 

comparison. The PROGRAM model was validated in an independent dataset inclusive of 

rawFBC values taken throughout multiple hospitalisations. 

 

Outcomes 

ICD10 primary diagnoses, age, ethnicity and sex were obtained from specific hospital 

encounter numbers using a SQL query along with mortality data. Congestive heart failure 

was defined as an ICD10 code within a patient’s entire list of diagnoses. A list of specific 

ICD10 codes of interest included I509, I500, I130, I110, I132, I42, I25. This also included 

readmission outcome data. Heart failure with reduced ejection fraction (HFrEF) was defined 

as an ejection fraction by Simpson biplane < 50% and heart failure with preserved ejection 

fraction (HFpEF) ≥ 50%. Heart failure machine learning and biological age probability scores 

(22), were generated for patients in the PROGRAM validation group where there were ≥ two 

serial blood tests within the same admission encounter. Scores from these two time points 

(last and first within an admission and discharge) were compared for changes related to 

disease progression and therapeutic response. 
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Statistics and machine learning 

Univariate analysis was performed using the student t-test for continuous parametric 

variables and receiver-operating characteristic curve (ROC) analysis was used to assess 

performance of diagnostic biomarkers by c-statistic. Z scores were used for proportional 

values of missingness. All tests were two-tailed and P<0.05 deemed statistically significant, 

except where Bonferroni correction for multiplicity was applied. Medcalc software version 

16.8.4 was used to analyse the data. BigML https://bigml.com/ was used for applying 

machine learning models, using decision trees, and ensembles, logistic regression and deep 

neural networks with transparency 

(https://static.bigml.com/pdf/BigML_Classification_and_Regression.pdf?ver=c306567#page=

250). Model development involved splitting data 80:20 into training and test sets. OptiML, an 

automated BigML optimization process for model selection and parametrization was used to 

find the best supervised model for sex classification and predicting age using regression. 

OptiML uses Bayesian parameter optimization and Mote Carlo cross-validation 

(https://static.bigml.com/pdf/BigML_OptiML.pdf?ver=c306567). An interactive network was 

generated to compare the rawFBC metadata using a Javascript D3 Force layout and a 

Pearson correlation matrix. K-nearest neighbour clustering was used for unsupervised 

machine learning. Uniform Manifold Approximation and Projection (UMAP) was used to 

visualise clusters in the advanced haematology and biochemistry data from PROGRAM. 

 

Data availability 

The materials, data, code, and associated protocols are available to readers with application 

to the corresponding author and Waitemata Privacy, Security and Governance (PSGG) 

group with a limited data sharing agreement. BigML models will be shared without 

limitations. 
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Results 

 

Machine learning applied to routine laboratory data 

ECLIPSE includes data from 75,619 patients who had undergone an echocardiogram. 

Baseline patient characteristics are in Table 1 and clinical results in Table 2. In patients 

without heart failure (n = 67,588) the mean (SD) interval between the echocardiogram and 

the most recent haemoglobin was – 60 (+/-342) days, and between the haemoglobin and 

creatinine was – 2 (+/-313) days. In patients with heart failure (n = 8,031) the mean (SD) 

interval between the echocardiogram and the most recent haemoglobin was – 7 (+/- 77) 

days, and between the haemoglobin and creatinine was + 1 (+/- 72 days). There were 8,031 

controls.  
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Table 1. ECLIPSE baseline patient characteristics for heart failure and control groups. Total 

number of patients with each variable displayed, as well as proportion to total number of 

patients (%). Age displayed as mean (SD). 

  Heart failure n = 8031 Controls n = 67,588 P Value 

Gender Male (%) 4,368 (54) 21,667 (32) < 0.0001 

Age mean (SD) 76 (13) 60 (19) < 0.0001 

Hypertension (%) 5,363 (67) 11,996 (18) < 0.0001 

Type II diabetes (%) 2,450 (31) 5,240 (8) < 0.0001 

Family history of CAD (%) 93 (1) 550 (1) 0.75 

Chronic renal failure (%) 2,617 (33) 2,420 (4) < 0.0001 

Dyslipidaemia (%) 1,807 (23) 4,214 (6) < 0.0001 

ACE inhibitor (%) 5,568 (69) 12,600 (19) < 0.0001 

Beta blocker (%) 6,142 (76) 14,805 (22) < 0.0001 

Calcium channel blocker (%) 4,755 (59) 10,000 (15) < 0.0001 

Statin (%) 5,469 (68) 16,323 (24) < 0.0001 

RCA disease > 50% (%) 1,280 (16) 3,930 (6) < 0.0001 

LAD disease > 50% (%) 1,528 (19) 4,824 (7) < 0.0001 

Cx disease > 50% (%) 1,201 (15) 3,475 (5) < 0.0001 

Coronary artery bypass surgery (%) 82 (1) 118 (0.1) < 0.0001 

Prior atrial fibrillation (%) 3,974 (49) 5,359 (8) < 0.0001 

Future atrial fibrillation (%) 521 (6) 855 (1) < 0.0001 

Prior myocardial infarction (%) 2,637 (33) 6,164 (9) < 0.0001 

Future myocardial infarction (%) 339 (4) 340 (1) < 0.0001 

Mortality (%) 4,024 (50) 4,601 (7) < 0.0001 
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Table 2. ECLIPSE patient clinical results for both heart failure and control groups. Mean 

(SD) displayed for each variable and corresponding student t-test P Values.  

  Heart failure n = 8031 Controls n = 67,588 P Value 

Albumin (g/L) 33.9 (5.9) 37.8 (5) < 0.0001 

ALP (U/L) 105.9 (72) 83.9 (66) < 0.0001 

ALT (U/L) 38 (138) 30.7 (73) < 0.0001 

AST (U/L) 42.3 (150) 30.8 (116) < 0.0001 

Bilirubin (umol/L) 13.3 (13) 10.6 (12) < 0.0001 

Calcium albumin adjusted (mmol/L) 2.3 (0.1) 2.3 (0.1) < 0.0001 

Cholesterol: HDL ratio 3.6 (1) 3.8 (1.2) < 0.0001 

Cholesterol (mmol/L) 4.1 (1.2) 4.6 (1) < 0.0001 

Creatinine (umol/L) 125.3 (100) 99.4 (104) < 0.0001 

CRP (mg/L) 41.1 (53) 42.9 (59) 0.04 

eGFR (ml/min/1.73m2) 53.1 (20) 64.8 (19) < 0.0001 

Ferritin (ug/L) 230 (523) 205.2 (438) < 0.0001 

Folate (nmol/L) 21.6 (10) 22.1 (10) 0.001 

GGT (U/L) 76.5 (105) 52.8 (92) < 0.0001 

Glucose (mmol/L) 7.2 (3) 6.5 (3) < 0.0001 

Haematocrit (L/L) 0.4 (0.1) 0.4 (0.1) < 0.0001 

Haemoglobin (g/L) 125.6 (20) 134.7 (18) < 0.0001 

HbA1c (mmol/mol) 45.6 (13) 42.9 (12) < 0.0001 

Iron (umol/L) 10.9 (8.3) 14 (7) < 0.0001 

LDL (mmol/L) 2.1 (8.3) 2.5 (1) < 0.0001 

Magnesium (mmol/L) 0.8 (0.1) 0.8 (0.1 0.0002 

NT-proBNP (pmol/L) 891.7 (1067) 266.7 (600) < 0.0001 

Platelets (x10E9) 240.9 (97) 255.7 (87) < 0.0001 

Potassium (mmol/L) 4.1 (0.5) 4.3 (0.5) < 0.0001 

Red cell distribution width (%) 15.1 (2) 14 (2) < 0.0001 

Sodium (mmol/L) 138 (4) 139.4 (3) < 0.0001 

T4 (pmol/L) 15.7 (3) 14.4 (3) < 0.0001 

Triglycerides (mmol/L) 1.5 (1) 1.7 (1) < 0.0001 

Troponin I (ng/L) 973 (4,442) 944.7 (4,513) 0.6 

TSH (mU/L) 2.6 (3) 2.1 (3) < 0.0001 

Urea (mg/dL) 10.4 (8) 7.3 (5) < 0.0001 

WBC (x10E9) 8.4 (4) 7.8 (5) < 0.0001 

PR interval (ms) 114.4 (93) 149.2 (66) < 0.0001 

LV ejection fraction (%) 40 (14) 53.6 (11) < 0.0001 

ECG heart rate (bpm) 81.5 (23) 77.6 (22) < 0.0001 

P wave axis (degrees) 132.7 (297) 61.2 (141) < 0.0001 

QRS duration (ms) 113.2 (29) 100.3 (21) < 0.0001 

QT interval (ms) 402.7 (54) 397.5 (48) < 0.0001 

QTc interval (ms) 446.2 (46) 436.5 (40) < 0.0001 

T wave axis (degrees) 69.4 (74) 51.3 (55) < 0.0001 
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Only 3,644 (23%) patients of the total 16,062 had an ejection fraction measured by Simpson 

biplane (EF bp), 2,058 (26%) within the heart failure group. Of those with heart failure and a 

measured Simpsons ejection fraction the EF bp was < 50% in 1,550 (75%), and < 40% in 

1,072 (52%). Despite having no ICD10 code for heart failure within the control group n = 535 

(7%) had an EF bp < 50%. These patients were retained within the control group with the 

presumption that there had been no hospital admission with congestive heart failure.  

 

ECLIPSE included NT-proBNP results for 4,485 patients, 3,913 (56%) of the heart failure 

group and 572 (7%) of the group without heart failure. Similarly high sensitivity troponin I 

values were available for 13,081 patients, 7,768 (96%) with heart failure and 5,313 (66%) 

without heart failure. 

 

12,849 individual patient laboratory results were available for training and 3,213 for testing 

ML models. A deep learning model applied to just age + conventional bloods including 

missing numerics had the highest accuracy predicting heart failure (Table 3), with highest 

ranked features being haematocrit (32%), age (24%), red cell distribution width (RDW) 

(18%), T4 thyroxine (4%) and troponin I (4%). However incremental gains were 

demonstrated with the addition of further demographics (ethnicity), orthogonal information 

(conventional ECG parameters: PR interval, QRS duration and T wave axis) and longer 

training time. Model performance reduced substantially with the exclusion of missing 

numerics, suggesting a possible role of bias. Three (14%) of the 22 laboratory variables had 

statistically greater proportions of missingness in the control group (red cell distribution 

width, cholesterol HDL ratio and HbA1c) compared to those with heart failure. Various 

machine learning methods e.g. decision tree ensemble, deep learning and logistic 

regression provided the most accurate model, based on phi score and this was not limited to 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.26.21261115doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.26.21261115
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

just deep learning. Even in the absence of key variables, e.g. RDW, reasonable predictions 

were still possible. 

 

Table 3. Accuracy of ECLIPSE machine learning models 

Machine learning models AUC SE a 95% CI b 
(1) Conventional bloods + ethnicity + ECG + long train time 0.929 0.00436 0.919 to 0.938 
(2) Conventional bloods + ethnicity + ECG + short train time 0.925 0.00451 0.915 to 0.934 
(3) Conventional bloods, including missing numerics 0.921 0.00466 0.911 to 0.930 
(4) Conventional bloods + ethnicity, excluding missing numerics 0.870 0.00612 0.858 to 0.882 
(5) Conventional bloods, excluding missing numerics 0.851 0.00662 0.838 to 0.863 
 a DeLong et al., 1988 
 b Binomial exact 
 

Figure 2. Receiver operator curves comparing ECLIPSE models 

 

Conventional blood ML model accuracy was compared with NT-proBNP with comparable 

results, though the ML model including missing numerics exceeded NT-proBNP’s accuracy 
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in identifying heart failure, AUROC 0.87 versus 0.81, 95% CI 0.004 to 0.0974 P = 0.03 

(Figure 3). 

Figure 3. Receiver operator curves comparing ECLIPSE models with NT-proBNP 

 

 

678 (21%) of patients in the test set had EF bp measured, 294 with HfpEF and 383 with 

HfrEF. Applying both the conventional bloods ML models, including and excluding missing 

numerics, demonstrated similar accuracy for identifying both HfrEF AUROC 0.88 to 0.79 

(95% CI 0.05 to 0.13, P < 0.0001) and HfpEF AUROC 0.91 to 0.83 (95% CI 0.04 to 0.11, P = 

0.0001). Including NT-proBNP in the HfpEF ML model increased the AUROC to 0.93, with 

sensitivity 86% and specificity 85%, 95% CI 0.89 to 0.95, P < 0.0001. Using the entire 

ECLIPSE dataset, both past and future HfpEF (n = 416) compared to controls (n = 6,800 

controls; EF bp ≥ 50%, no heart failure) was predicted with AUROC 0.997, 95% CI 0.992 to 

0.999, P < 0.0001. Highest ranked features were two chamber stroke volume (SV) (17%), 
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HbA1c (5%), left ventricular end diastolic dimension indexed to height (4%), Teicholz SV 

(4%), potassium (4%). Other predictive models with similar accuracy included ejection 

fraction, QTc, and other variables. Echocardiography variables dominated the highest 

ranked features for HfpEF prediction in most models.  

 

k-nearest neighbour unsupervised machine learning was applied to conventional bloods, 

ECG and echocardiography parameters in 400 patients with HfpEF. Three phenoclusters 

(Figure 4 and Table 4) were identified with variable longitudinal mortality outcomes, 

replicating work by Shah et al and others (16, 17). 

 

Figure 4. Kaplan Meier plot of HfpEF clusters 
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Table 4. Cluster phenotype patterns 

Cluster 1 Larger heart Higher SV Obese, less HTN, dyslipid, younger, lowest NT-proBNP 

Cluster 2 Smaller heart Lower SV Long PR interval 

Cluster 3 Diastolic dysfunction Largest LA Older, renal failure, Low rate T2DM, longest p wave 
 

Machine learning applied to advanced haematology and biochemistry data 

314 heart failure patients and 384 controls were used for training and testing machine 

learning models using age + advanced haematology (rawFBC) and conventional 

biochemistry data. Incremental gains were demonstrated with both the use of advanced 

haematology data and biochemistry data Table 4, compared to the ECLIPSE model (95% CI 

0.03 to 0.15, P = 0.002) Figure 5. Although there appeared to be some gain adding 

biochemistry data to advanced haematology this comparison was not statistically significant, 

possibly due to underpowering. Highest ranked features in the ML model including advanced 

haematology data were age (18%), RDW-SD(fL) (10%), RDW-CV(%) (7%), MacroR(%) (5%) 

and NEUT#(10^9/L) (4%) demonstrating similar features to ECLIPSE, e.g. RDW, and 

pathophysiological features of heart failure consistent with prior literature. Highest ranked 

features in the combined advanced haematology and biochemistry model included creatinine 

(9%) but highest ranked features were still dominated by haematology variables. 
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Table 4. Accuracy of PROGRAM machine learning models 

Variable AUC SE a 95% CI b 
(1) Advanced haematology + biochemistry 0.925 0.0234 0.868 to 0.963 
(2) Advanced haematology 0.913 0.0233 0.853 to 0.954 
(3) Conventional bloods, including missing numerics 0.832 0.0366 0.759 to 0.889 
 a DeLong et al., 1988 
 b Binomial exact 
 

Figure 5. Receiver operator curves for PROGRAM and validation of ECLIPSE n = 140 

 

In the PROGRAM validation set there were 69,492 FBCs, 2.3% of which had an ICD10 

primary diagnosis of heart failure. Heart failure was predicted with a sensitivity 75%, 

specificity 76% (Figure 5), positive predictive value 7%, negative predictive value 99.2% 

(AUROC 0.83, 95% CI 0.83 to 0.84, P < 0.001) in validation (Figure 6). 
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Figure 6. Validation of PROGRAM, machine learning heart failure model 

 

1,028 rawFBC results had an associated NT-proBNP ≥ 34 pmol/L during the same hospital 

encounter 452 (44%). A decision tree ensemble predicted an NT-proBNP ≥ 34 pmol/L with 

AUROC 0.97 (95% CI 0.93 to 0.99, P < 0.0001). Red blood cell agglutination (9%), 

haemoglobin (g/L) (8%), haematocrit (7%), RDW-CV(%) (6%), haemoglobin defect (4%) 

were the highest ranked features consistent with models predicting ICD10 codes for heart 

failure. 

 

Network analysis 

Visualisations of the advanced haematology and biochemistry data from PROGRAM is 

available as an interactive network here https://projects.interacta.io/theranostics-covid/. 
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UMAP clustering of combined rawFBC and biochemistry data showed distinct separation of 

patients with heart failure with controls (Figure 7). 

 

Figure 7. UMAP clustering of PROGRAM data 

 

Global and Individual patient responses to treatment 

We calculated a heart failure disease probability score and biological age score for each 

blood result to compare an admission and discharge result. Although there was considerable 

individual heterogeneity in haematology heart failure patterns over time, the mean global 

difference between these two time points was not statistically significant (Figure 8a and 8b). 

The individual response to dapagliflozin in a single patient was demonstrated using only two 

haematology parameters (Figure 9). 
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Figure 8a and 8b. Machine learning scores for biological age and heart failure over time for 

individual patients, during single hospitalisation 

 

Machine learning biological age scores (22) over time, during single hospitalisation. 
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Machine learning probability of heart failure diagnosis over time, during single hospitalisation 
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Figure 9. Individual response to dapagliflozin, started at timepoint 2. 

  

 

Discussion 

 

In these studies (ECLIPSE and PROGAM) we have demonstrated it is possible to use 

machine learning to predict the presence of heart failure from both conventional bloods and 

advanced haematology data. We used an automated Cloud-based machine learning, 

software as a service platform, which required no coding experience. The machine learning 

methods varied between decision tree ensemble, logistic regression and deep learning 

however, no particular method exceeded others in predictive accuracy. What was apparent 

is that by increasing compute time and the addition of orthogonal data (e.g. ethnicity and 

ECG data) incrementally improved model predictions, though with diminishing returns. 

Although the machine learning models were transparent and explainable, with ranked 

identifiable features, these did not aid in making causal inferences with each predictive 

model. For instance, although ethnicity provided incremental value in predictions it cannot be 

assumed that specific at risk ethnicities carry a higher risk due to genetic variants (such as 

titin truncations, which increase the risk of heart failure) or if socioeconomic confounding is 

having an influence (23). Another concern with including non-biologically causal predictive 

features is the risk of dataset shift and bias (24). 
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A note of caution must be made in placing excessive confidence in ECLIPSE predictions 

combining haematology and biochemistry, for the reason that whilst some bloods are 

ordered almost universally, such as an FBC, others e.g. iron studies are only ordered on the 

basis of a preconceived diagnostic notion or concurrent condition. Therefore, the presence 

or absence of data in itself represents a source of self-fulfilling bias (25, 26). Furthermore, 

health care data collected in a real-world setting is plagued with not only missing data but 

also time variance, meaning training data may not always be collected prior to the 

confirmation of a diagnosis. These encoded hidden biases in the data could easily have 

skewed test results into demonstrating predictions of much higher accuracy, as possibly 

demonstrated with the removal of missing numerics from the predictive model. The control 

group from which the ECLIPSE data was randomly selected had a far higher frequency of 

missing data, possibly due to being ambulatory patients rather than inpatients. However 

even after accounting for this bias, by excluding missing numerics, the model still performed 

well on an independent inpatient dataset within PROGRAM and when compared with NT-

proBNP within a subset of the ECLIPSE patients.  

 

In PROGRAM, machine learning models discriminated heart failure from both rawFBC and 

rawFBC plus biochemistry with similar accuracy to the ECLIPSE models. The results were 

underpowered to demonstrate improved accuracy with the addition of biochemistry data, 

however the results from just the rawFBC are interesting for a number of reasons. Firstly, the 

ability to discriminate heart failure with an approximate AUROC 0.83 has now been validated 

internally twice (22) and independently (21). Secondly, since the data exported from the 

Sysmex analyser is complete, for each sample, missing values and bias is minimised. 

Thirdly, Sysmex haematology analysers are in widespread use, in over 85% of clinical 

laboratories, and produce highly consistent results independent of geographic location etc. 

Others have indicated that machine learning predictions, based on haematology data, could 

be used for adjudicating endpoints for more encompassing machine learning applications, or 
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by institutions or payers to monitor population level data (21). We would concur with that, 

with the addition that such technology could be useful at both an individual level in predicting 

risk (27), particularly in resource constrained settings but also a population scale for the 

surveillance and monitoring of not only noncommunicable cardiovascular disease but also 

infectious diseases and pandemics (22). 

 

Two factors increase the confidence in the validity and clinical utility of both the results from 

PROGRAM and ECLIPSE. Firstly, the data in PROGRAM was collected from a single 

snapshot in time at the first point of contact in an admission, unlike ECLIPSE. Further work 

will be required to demonstrate incremental diagnostic gains from the use of machine 

learning predictions applied to haematology data, however since heart failure, particularly 

HFpEF, is often undifferentiated at presentation the likelihood of this adding value either in 

the emergency department or primary care is high. Secondly, when interrogating the highest 

ranked features of the predictive models in both ECLIPSE and PROGRAM some 

commonalities are clearly seen. Markers of erythropoiesis, such as red cell distribution width 

(RDW), haemoglobin concentration and haematocrit, clearly dominate the statistical models, 

explaining why haematology data on its own is capable of making fairly accurate predictions.  

 

Whilst anaemia in heart failure has been well documented, its causes are multifactorial in 

part due to co-existent renal disease, iron storage and transport and failure of erythropoietin 

production (28). Similarly altered haematocrit, commonly seen in heart failure and presumed 

due to haemodilution, has been identified as both a predictor (29) and risk factor in heart 

failure (30). Paradoxically in a population setting a higher haematocrit is associated with an 

increased risk of heart failure (29). This may be related to causal ABO genetic variants, 

themselves associated with lipid traits identified through genome wide association studies 

(GWAS) of haematological quantitative traits (31-33). Therapeutic targeting of erythropoiesis 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.26.21261115doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.26.21261115
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

in heart failure has had mixed results, though not for iron replacement therapy (28, 34). 

Recently SGLT2 inhibitors have been shown to have significant benefits in both HFrEF and 

HFpEF (35), with effects predicted by erythropoietic responses and their ability to alleviate 

cellular stress (36, 37). These effects seem to operate at the level of aging related pathways 

such as SIRT1 and AMPK (38, 39) possibly indicating a role beyond heart failure and 

diabetes. Abnormal red cell distribution width (RDW), a marker of loss of control of 

homeostasis otherwise known as anisocytosis, was identified here as a key feature in heart 

failure prediction models. RDW has been well described as a predictor of heart failure 

outcomes (40) and a GWAS has similarly demonstrated its ability to predict a range of 

negative health outcomes is similarly influenced by fundamental pathways of aging (41). We 

and others have previously demonstrated RDW’s role in the prediction of biological age 

using ML applied to blood results (22, 42). Although we were not able to show serial 

changes in either the prediction scores for heart failure or biological age at a population 

level, this does not rule out the possibility of these being useful at an individual level 

particularly in monitoring therapeutic responses to heart failure therapies, such as SGLT2 

inhibitors (Figures 8 and 9). We have previously shown an ability to monitor LV systolic 

dysfunction over time, using personalised trajectories, using ML applied to ECG (2), and 

integrated this with multiomics, to provide a more holistic overview of HFrEF (3). 

 

With the expanded global metadata also available in ECLIPSE we have shown added value 

of incorporating heterogenous clinical data into machine learning models to predict certain 

diagnoses, such as HFpEF with higher accuracy. Although ML applied to conventional 

bloods predicted both HFrEF and HFpEF with reasonable accuracy, blanket application of 

such a tool at population scale would result in a larger number of false positives, more so 

than true positives due to the low prevalence of heart failure (2.3%) in hospital blood results, 

shown in our validation set of 69,492 FBCs. Targeting this technology in a sequential 

manner, possibly starting with a standard clinical history but then adding in more costly 
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investigations such as NT-proBNP, electrocardiography and echocardiography could result 

in better use of resources, as recently shown by a Mayo group investigating the use of deep 

learning applied to ECG (43, 44). A predictive model for HFpEF in ECLIPSE was dominated 

by echocardiography variables, notably stroke volume and others indicating that 

echocardiography is an essential component to the identification of HFpEF. Global clinical 

metadata was also useful in validating prior work done in subtyping HFpEF into various 

phenogroups, using unsupervised machine learning (16, 17). Unsupervised machine 

learning holds significant promise in extracting latent space from high dimensional clinical 

data to reclassify the taxonomy of disease. This may have particular utility in circumstances 

where clinician driven diagnostic coding does not capture the full nuance or longitudinal 

spectrum of a complex condition, such as HFpEF. With the removal of key features from 

machine learning models, reasonable predictions were still possible using global clinical 

metadata suggesting a self-healing, almost holographic quality of broad clinical data. 

 

Conclusion 

We have demonstrated in this study an ability to discriminate heart failure, both HFpEF and 

HFrEF using machine learning applied to both routine bloods as well as advanced 

haematology data, extracted from a commonly used flow cytometer. The predictions 

obtained from the haematology flow cytometer have been validated independently and due 

to their underlying predictive features might have value in predicting and monitoring 

responses to heart failure therapies in near real-time. The use of machine learning applied to 

abundant, low-cost laboratory data may have particular value in low to middle income 

countries where access to high level, expensive diagnostic testing is limited. 
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Limitations 

As with most machine learning studies the results from this project may not be transferable 

into other settings, due to differences in regional practices, disease presentation and 

prevalence etc. However transferable machine learning models are preferably generated 

from data which comes from a similar source, is complete and is resilient to clinician biases. 

Haematology and to a lesser degree biochemistry data fulfils that requirement. Over-fitting is 

always a possibility when using data from a single source and preferably we would have 

applied our ML models to external data to validate. The use of matched cases and controls 

over-estimates the accuracy of predictive models when using AUROC (45), however we also 

validated our models in a real world dataset to demonstrate what implementation might look 

like. Clinical utility cannot be assumed until predictive models of heart failure are able to 

identify missed cases of heart failure or alert to the diagnosis of heart failure earlier, whereby 

patient outcomes can be improved. Although algorithms applied to existing clinical data may 

be low-cost to implement the downstream human and societal cost implications of false 

positives and negatives needs to be studied during an implementation program. 
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