Abstract
Novel Corona Virus (COVID-19) is still spreading throughout the world despite various degrees of movement restrictions and the availability of multiple safe and effective vaccines. Modelling in predicting the spread of an epidemic is important for health planning and policies. This study aimed to apply a dynamic Susceptible-Exposed-Infected-Recovered-Deaths (SEIRD) model and simulated it under a range of epidemic conditions using python programme language. The predictions were based on different scenarios from without any preventive measures to several different preventive measures under R0 of 4. The model shows that more weight to personal protection can halt the spread of transmission followed by the closure of public places and interprovincial movement restriction. Results after simulating various scenarios indicate that disregarding personal protective measures can have devastating effects on the local population. Strict adherence, maintaining and monitoring of self-preventive measures are vital towards minimizing the death toll from COVID-19.
Competing Interest Statement
The authors have declared no competing interest.
Clinical Trial
Not applicable
Funding Statement
We did not receive any funding from funding agencies for this study.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The research design and methodology used only anonymized data sets. This entails that no ethical approval is required.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
1. Author list and affiliations updated 2. Introduction 3. Discussion 4. References
Data Availability
Publicly available data was taken from the dash board of HPB, Ministry of Health