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Abstract 

 

Alterations of the gut microbiota, often referred to as gut dysbiosis, have been associated with 

several chronic diseases and longevity in pre-clinical models as well as in observational studies. 

Whether these relationships underlie causal associations in humans remains to be established. We 

aimed to determine whether gut dysbiosis influences the risk of chronic diseases and longevity 

using a comprehensive 2-Sample Mendelian randomization (2SMR) approach. We included as 

exposures inflammatory bowel disease (IBD) as a human model of gut dysbiosis, 11 gut-associated 

metabolites and pathways and 48 microbial taxa. Study outcomes included eight chronic diseases 

previously linked with gut dysbiosis using observational studies (Alzheimer’s disease, depression, 

type 2 diabetes, non-alcoholic fatty liver disease, coronary artery disease (CAD), stroke, 

osteoporosis and chronic kidney disease) as well as parental longevity and life expectancy. Neither 

IBD, nor gut-associated metabolites were causally associated with chronic disease or lifespan. 

After multiple testing correction for 582 tests, no microbial taxa-chronic disease associations 

remained significant. After robustness analyses and multivariate MR to correct for body mass 

index and alcohol intake on all 42 nominally significant causal relationships, four associations 

remained. Altogether, results of this multidimensional Mendelian randomization study suggest that 

gut dysbiosis has little impact on chronic diseases and human longevity and that previous 

documented associations may not underly causal relationships. Studies with larger sample sizes 

and more optimal taxonomic discrimination may ultimately be required to determine whether the 

human gut microbiota plays a causal role in the etiology of chronic diseases and longevity.  
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Introduction 

 

The human gut microbiota is the microbial symbiotic organ residing in the gut. It is involved in 

key metabolic and immunological processes including host immunity, food digestion, intestinal 

endocrine function and intestinal permeability (Lynch and Pedersen 2016). Several observational 

studies revealed that alterations of the gut microbiota, often referred to as gut dysbiosis, are 

associated with a wide range of diseases and metabolic conditions (Hooks and O’Malley 2017). In 

individuals with gut dysbiosis, dysfunction of the gut mucosal barrier (“leaky gut”) may lead to an 

increased bacterial translocation through the mucosal cell line and into the blood, thereby affecting 

the homeostasis of other organs and promoting disease development and progression (Anhê et al. 

2020; Konturek et al. 2018). 

 

Inflammatory bowel disease (IBD), comprising ulcerative colitis and Crohn’s disease, is the most 

frequently reported disease unequivocally associated with gut microbiota changes and gut 

inflammation (Schippa and Conte 2014). It involves chronic inflammation of the digestive tract 

due to aberrant immune response, possibly mediated by dysbiosis. Many studies have reported that 

the composition of microbiota in IBD is altered compared to healthy subjects (Andoh et al. 2007; 

Fujimoto et al. 2013; Nishino et al. 2018; Takahashi et al. 2016). Gut dysbiosis could contribute 

to inflammation and immune responses leading to IBD and this inflammatory environment could 

in turn promote dysbiosis (Sartor and Wu 2017). Results of several prospective observational 

studies suggested that patients with IBD may be at increased risk of multiple chronic diseases such 

as cardiovascular disease (Cainzos-Achirica et al. 2020), respiratory disease, arthritis, liver 

conditions, kidney failure (Xu 2018), osteoporosis and depression (Bernstein et al. 2019), 

consistent with the view that dysbiosis exerts systemic negative effects promoting human diseases. 

 

The systemic effects of gut dysbiosis are partly mediated through by-products of the microbiome. 

These microbial metabolites can reach the peripheral circulation via the portal vein (den Besten et 

al. 2013), or diffuse readily and be taken up by the gut mucosa (Flint 2016), where they can reach 

organs and act as substrates or signaling molecules. This bidirectional crosstalk between the gut 

microbiota and different organs occurs via the gut-liver axis (Albillos, Gottardi, and Rescigno 

2020), the gut-brain axis (Carabotti et al. 2015), the gut-bone axis (Villa, Ward, and Comelli 2017), 
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the gut-kidney axis (Evenepoel, Poesen, and Meijers 2017), the gut-lung axis (Marsland, 

Trompette, and Gollwitzer 2015) and the gut-heart axis (Bartolomaeus, McParland, and Wilck 

2020). Specific classes of microbiota-derived metabolites, notably short-chain fatty acids (De 

Vadder et al. 2014), branched-chain amino acids (Arany and Neinast 2018), trimethylamine N-

oxide (Shan et al. 2017) and indole (Beaumont et al. 2018) have been strongly implicated in the 

pathogenesis of metabolic disorders (Agus, Clément, and Sokol 2020), lifespan (Wilmanski et al. 

2021), neurological and cardiovascular diseases (Martinez, Leone, and Chang 2017). 

 

Over the past few years, the gut microbiota emerged as a therapeutic target of great interest to 

prevent and/or treat chronic diseases and improve human lifespan and healthspan. An 

overwhelming amount of supportive evidence from pre-clinical models contributed to the widely-

accepted view that a large number of diseases and pathological processes could be influenced by 

the microbiome, from early metabolic perturbations to full-blown diseases and premature 

mortality. Fecal transplantation studies in rodents have provided promising results for the 

treatment of obesity (Pérez-Matute et al. 2020), type 2 diabetes (T2D) (H. Wang et al. 2020), 

depression and chronic stress (Langgartner et al. 2018), liver injury (Y. Liu et al. 2021), 

myocarditis (Hu et al. 2019) and aging (Chen et al. 2020). Human microbiota-associated (HMA) 

studies, consisting of the transplantation of feces from human patients into germ-free mice while 

control mice receive feces from healthy humans, further supported these associations. 

 

A systematic review conducted in 2019 on the HMA method to study the impact of the microbiota 

on chronic diseases reported that 95% of such studies (36/38) concluded that fecal transplantation 

from a sick human donor resulted in at least one worsened symptom compared to healthy controls 

(Walter et al. 2020). This finding was deemed “implausible” by the authors of this systematic 

review (Walter et al. 2020). According to Walter et al., in the vast majority of cases, these studies 

lacked adequate replication and they had statistical and methodological flaws that artificially 

inflated the odds of obtaining positive findings (Walter et al. 2020). Together with the “file-drawer 

effect” (whereby positive studies are more likely to be published compared to negative studies), 

these caveats may distort the odds of translating findings from pre-clinical models into microbiota-

targeting therapies to prevent or treat human diseases. Observational studies in humans with 

various diseases have identified relevant differences in intestinal microbiota composition 
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(Shreiner, Kao, and Young 2015). However, they are subject to biases such as reverse causality 

and confounding (through unmeasured confounders) and cannot, by design, assess causality. 

Obesity, pharmacotherapy, diet, alcohol intake and many other factors appear to be important 

confounders in the microbiota-health relationships (Vujkovic-Cvijin et al. 2020). Given these 

limitations, Walter et al. suggested that novel and innovative methods such as Mendelian 

randomization (MR) should be used to investigate the causal role of the gut microbiota in human 

disease etiology.  

 

MR is an epidemiological approach that is not subject to many of the biases of observational 

studies such as reverse causality or confounding. It has the potential to evaluate multiple 

microbiota-health relationships all at once in a hypothesis-free manner. Briefly, MR uses genetic 

variants strongly associated with an exposure (features of human gut dysbiosis) to infer causality 

with an outcome (chronic diseases and human longevity). Twin studies have shown that 

heritability of the abundance of different bacterial taxa is on average 20%, although some variation 

exists between taxa (Goodrich et al. 2014; 2016). This is consistent with the view that genes play 

a non-negligible role in determining gut microbiota composition, making MR a valuable tool to 

assess the potential causal role of gut dysbiosis in human diseases.  

 

Here, we used a 2-sample MR (2SMR) study design to investigate the potential causal link between 

three levels of gut dysbiosis-related exposures and eight chronic diseases-related outcomes 

(coronary artery disease [CAD], T2D, ischemic stroke [IS], nonalcoholic fatty liver disease 

[NAFLD], chronic kidney disease [CKD], osteoporosis, Alzheimer disease [AD] and depression) 

and human lifespan (as defined by parental lifespan and living beyond the 90th percentile). In our 

“multidimensional” MR design, we first used IBD as a human model of gut dysbiosis (Schippa 

and Conte 2014) to determine its association with chronic diseases and human lifespan using 

multiple MR methods. Second, we investigated the potential causal association of fecal and blood 

metabolites associated with gut dysbiosis and disease. Third, we leveraged summary statistics from 

two large genome-wide association studies (GWAS) of gut microbial signature to investigate the 

association between genetically predicted gut microbes and taxa abundance with chronic diseases 

and human longevity.  
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Results 

 

The conceptual framework of this MR analysis as well as the datasets used to derive the study 

exposures and outcomes are presented in Figure 1 and Table 1. Briefly, the objective of this 

multidimensional MR analysis was to test the hypothesis that the gut microbiome causally impacts 

chronic diseases and longevity and to provide estimates for each exposure/outcome association. 

We performed 2SMR on exposures associated with gut dysbiosis and relevant outcomes of human 

diseases and longevity. We used publicly available genome-wide association study (GWAS) 

summary statistics to extract 10 disease-related outcomes and human longevity (see Methods) and 

60 traits related to the microbiome including IBD as a model of human gut inflammation and 

dysbiosis, fecal and plasma metabolites associated with the gut microbiota as well as microbial 

abundance of taxa partly under genetic control. Analyses were restricted to participants from 

European ancestry except for the study by Kurilshikov et al. 2021. The sample from study exposure 

and outcome did not overlap. We selected only exposures that had at least three independent (r2 

<0.01) genetic instruments at minimum p-value <1e-5 (the threshold differed between exposures 

depending of the availability of genetic instruments) with mean F statistics >15, resulting in 60 

microbiota-related exposures available for MR. 

 

Effect of inflammatory bowel diseases on chronic diseases and longevity 

Gut dysbiosis is a hallmark of IBD (Kostic, Xavier, and Gevers 2014) and the presence of IBD 

influences the microbial signature (Ni et al. 2017). Using an IBD GWAS of 38,155 cases and 

48,485 controls (J. Z. Liu et al. 2015a), we first calculated genetic correlation (RG) with IBD and 

the 10 outcomes under investigation (Figure 2a). IBD had a weak to modest genetic correlation 

with all of the outcomes with the majority not significantly different from zero. IBD had a weak 

positive RG with depression and a weak negative RG with parental lifespan and CKD. We then 

selected all independent (r2≤0.001) genome-wide significant single nucleotide polymorphisms 

(SNPs) (p-value<5e-8) as genetic instruments and performed an Inverse Variance Weighted 

(IVW)-MR linking IBD with all 10 outcomes. IBD had weak effect on all 10 outcomes under 

investigation. The only association that reached nominal statistical significance was the one linking 

IBD to NAFLD (Figure 2b). Each log odds ratio (OR) of IBD increased the risk of NAFLD by 4% 

(OR=1.04 (1.00-1.08), p=0.02). Robust MR methods were consistent with the absence of causal 
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association for all associations (Supplementary Table 1). Single SNP MR analyses were consistent 

with a high degree of heterogeneity among the Wald ratios of individual genetic instruments with 

the majority of IBD SNPs not being associated with diseases (Supplementary Figure 1A-J). 

Altogether these analyses do not support a causal role of IBD in the etiology of chronic diseases 

and longevity.  

 

Effect of gut microbiome-related metabolites on chronic diseases and longevity 

We next sought to determine whether blood metabolites associated with the gut microbiota and 

fecal microbial metabolites or their functional pathways could influence chronic diseases and 

longevity. We selected genetic instruments for fecal propionate, a gut metabolite linked with T2D 

in a recent MR study, from a GWAS of 898 participants (Sanna et al., 2019). We also included 9 

plasma metabolites: indole-3-propionate, trimethylamine N-oxide and some of its precursors, 

carnitine, betaine and choline (Rhee et al. 2013), branched chain amino acids (leucine, isoleucine 

and valine) as well as the short chain fatty acid acetate (Kettunen et al. 2016). We finally included 

the microbial pathway involved in 4-aminobutanoate (GABA) degradation (PWY-5022 pathway) 

acting as a proxy for butyrate production by the gut (Sanna et al., 2019). We selected independent 

(r2≤0.01) SNPs (for all studies: p-value<1e-5; except Kettunen et al.: p-value<1e-6) as genetic 

instruments. We performed IVW-MR for each of the health outcomes under study (Figure 3). A 

total of 104 exposure-outcomes associations were tested. Nine passed a nominal p-value 

significance threshold of 0.05 (including the propionate-T2D association) but none of the gut 

microbiota metabolites were associated with chronic diseases and longevity after multiple testing 

correction. Figure 3 also reports the association of LDL cholesterol, used as positive control with 

the outcomes of interest. As expected, LDL cholesterol was strongly associated with 

cardiovascular diseases (OR = 0.43 95% CI 0.36-0.50, P=5.22e-32) and longevity (Beta = -0.11 

95% CI -0.15 -0.075, P= 3.94e-09) 

 

Effect of gut microbial abundance on chronic diseases and longevity 

We finally explored the impact of different taxa abundance on health-related outcomes. We first 

identified 4 recent GWAS on gut microbe abundance with available summary statistics 

(Kurilshikov et al. 2021; Lopera-Maya et al. 2020; Qin et al. 2020; Rühlemann et al. 2021). We 

then filtered all microbiota quantitative trait loci (mbQTLs) with p-value<1.0e-6 for all taxa 
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abundance present in their analysis and kept only exposures with at least three shared mbQTLs 

with mean F statistics> 15. These criteria were chosen to minimize weak instrument bias and allow 

the use of sensitivity analysis to assess the validity of the MR assumptions. The study of Lopera-

Maya et al., and Qin et al., were removed as none of the exposures satisfied our criterion (≥3 

independent mbQTL at a p-value < 1e-6, with mean F-statistics > 15). In total, we included 

available genetic information on 48 microbial taxa abundance from the two recent GWAS studies 

of Kurilshikov et al., and Rühlemann et al. We then performed IVW-MR on the Wald ratio 

estimates for each of the 10 health outcomes (Figure 4). Out of 468 exposure-outcome tests, 32 

passed a significance threshold of 0.05 and no associations were observed after Benjamini-

Hochberg correction for multiple testing. 

 

Power calculations 

All primary MR results can be retrieved in supplementary table 2. Overall, for all 582 associations 

tested (including IBD, microbiome associated metabolites and taxa abundance) the lowest 

Benjamini-Hochberg false discovery rate is 0.37 for the association between isoleucine and 

NALFD. Conservatively, there is no robust causal evidence for any of the 582 associations under 

study after considering multiple testing. Taking a more lenient approach, there are 42 associations 

nominally significant at p <0.05, that may be worth exploring.  

 

In general, pleiotropy is more likely to bias estimates away from the null (Burgess et al. 2020). 

Therefore, a null result is generally more robust to the horizontal pleiotropy. However, concerns 

may arise when reporting such null findings as whether they represent a true absence of causality 

or are attributed to lack of power and need further exploration. To this end, we performed power 

analyses assessing the robustness of null findings (p>0.05) (Brion et al., 2013). We observed that 

our analytical framework provided enough power to detect at least moderate effect. For all 582 

associations under study, we have on average 80% (±29%) power to detect a true causal effect (at 

beta = 0.1) (Supplementary Figure 2), meaning that an increase of 1 standard deviation unit in the 

exposure would change the risk of being a disease case by ~10%. We chose this beta as a 

conservative estimate to what is generally observed in observational microbiome research 

(Kazemian et al. 2020; Zhuang et al. 2020). 
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Exploration of promising findings and tests for pleiotropy 

One of the key assumptions underlying MR is that genetic instruments affecting gut dysbiosis do 

not affect diseases or longevity by other mechanisms than the one associated with gut dysbiosis 

(Davies, Holmes, and Davey Smith 2018). This phenomenon is known as horizontal pleiotropy 

(Lawlor et al. 2019). We performed tests for pleiotropy on all potentially causal relations (primary 

analysis p-value <0.05) to ensure the robustness of the causal estimates. We performed robust MR 

analysis to estimate the robustness of our primary causal estimate to pleiotropy. We used six 

different methods that make different assumptions about the nature of the underlying pleiotropy: 

MR-Egger, the MR-Robust Adjusted Profile Score (MR-RAPS), the weighted median, the 

weighted mode, the MR-PRESSO and the contamination mixture approaches. Consistency across 

the estimates of the methods provides support to causality. Out of the 42 associations tested, eight 

associations had half (3/6) or more sensitivity analyses consistent with a true causal effect unlikely 

to be confounded by pleiotropy (p-value <0.05) (Supplementary Table 3). We therefore retained 

these associations for further sensitivity analysis. The association linking genetically predicted 

plasma isoleucine levels to NAFLD was particularly strong, where each standard deviation of 

genetically predicted isoleucine levels was positively associated with NAFLD (OR = 1.75 95%CI 

[1.18, 2.59]). The effect was consistent across most robust MR methods except MR-Egger, while 

the weighted mode and MR-PRESSO methods were marginally significant (Supplementary Figure 

3). 

 

Exploration of BMI and alcohol intake as potential confounding factors 

Obesity and alcohol intake frequency were recently identified as major confounding factors in the 

microbiome-disease associations (Vujkovic-Cvijin et al. 2020). We performed multivariable MR 

on the eight promising associations to determine if the genetic instruments were influenced by 

obesity and alcohol intake frequency. This analysis provided evidence that 4 out of 8 

aforementioned reported associations might, to a certain extent, be confounded by BMI or alcohol 

consumption (Supplementary Figure 4). For example, the relation between NAFLD and isoleucine 

plasma level showed evidence of being confounded in large part by alcohol intake frequency and 

BMI. Overall, four associations were supported at nominal p-value. First, a 1-standard deviation 

(SD) increase in Actinobacteria Phylum abundance may decrease the risk of CAD OR=0.89 [0.81-

0.98]) (Supplementary Figure 5), while a 1-SD increase in the Actinobacteria class may increase 
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the risk of CAD (OR=1.15 [1.06, 1.26]) (Supplementary Figure 6). Second, a 1-SD increase in the 

abundance of the genus Bacteroides decreased the risk of type 2 diabetes (OR=0.93 [0.86-1.00]) 

(Supplementary Figure 7). Thirdly, a 1-SD increase in the genus Phascolarctobacterium increased 

lifespan (as proxied by parental lifespan) by 0.02 [0.00, 0.03] years (Supplementary Figure 8). 

 

 

Discussion 

 

In order to determine whether previously reported studies using pre-clinical models or 

observational study designs in humans were consistent with causal associations, we assessed the 

roles of a wide range of microbial factors and eight chronic diseases and human longevity using 

MR. We found no association between IBD (a model of gut inflammation and dysbiosis), 

microbiota-associated fecal or blood metabolites and microbial abundance on these diseases and 

lifespan after accounting for multiple testing. Some associations, such as the relationship between 

Actinobacteria at Phylum or Class level and CAD and the relationship between the Bacteroides 

genus and T2D were nominally significant before and after sensitivity analyses and after 

accounting for confounders and may require further validation. Altogether, results of this study 

suggest that previously reported associations between the human gut microbiome and human 

disease might have been due to biases such as reverse causality or confounding and that the impact 

of gut dysbiosis on chronic diseases and human longevity may not be as prominent as previously 

suggested.  

 

Comparisons with other studies 

Our results generally contrast with those from previous observational studies. First, IBD was 

reported in observational studies to be a risk factor of several chronic diseases including respiratory 

disease, arthritis, liver conditions, kidney failure, osteoporosis and depression (Bernstein et al. 

2019; Xu 2018). Notably, meta-analyses of cohort studies suggest that IBD is an independent risk 

factor for CAD. A 2017 meta-analysis found a multivariate-adjusted independent association 

between IBD and CAD incident (pooled relative risk [RR]: 1.24; 95% confidence interval [CI]: 

1.14 to 1.36) (W. Feng et al. 2017). The same was true for a subsequent larger meta-analysis (RR 

: 1.17; 95% CI[1.07, 1.27]) (Sun and Tian 2018) suggesting IBD as a potential causal factor. 
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However, this claim is not supported by our MR analysis highlighting the potential bias induced 

by unmeasured confounders or participant selection bias, where participants diagnosed with IBD 

are more likely to be diagnosed with another disease, since they conceivably undergo clinical 

checkups more often.  

 

Second, microbial metabolites have been associated with health and disease such as neurological 

disease, NAFLD, cardiovascular disease, survival and type 2 diabetes (Agus, Clément, and Sokol 

2020; Martinez, Leone, and Chang 2017; Wilmanski et al. 2021). Notably, over 15 microbial 

metabolites have been identified as predictors of CAD (Q. Feng et al. 2016). Three metabolites of 

the dietary lipid phosphatidylcholine--choline, trimethylamine N-oxide (TMAO) and betaine--

were shown to predict risk for coronary vascular disease in an independent large clinical cohort 

(Z. Wang et al. 2011). Moreover, increasing through dietary supplementation the level of TMAO 

accelerated atherosclerosis in mice (Koeth et al. 2013). By contrast, our MR analysis does not 

support causality between TMAO and CVD, as previously suggested in another MR investigation 

(Jia et al. 2019). Dietary factors could arguably act as confounding factors, since meat intake 

increases TMAO levels (Koeth et al. 2013). 

 

Third, several differences in the microbial composition of diseased and healthy individuals have 

been identified, but causality remains to be elucidated. RCT of fecal microbiome transfer (FMT) 

in humans are currently employed to establish causality between microbiome and health, but few 

have been attempted, and even fewer have been conclusive (Depommier et al. 2019; Mocanu et 

al. 2021). To date, most successful randomized control study of FMT on humans has been applied 

to the treatment of recurrent or refractory Clostridioides difficile infections (Wortelboer, 

Nieuwdorp, and Herrema 2019) and some to ulcerative colitis (Costello et al. 2017). Mice FMTs 

are a valuable exploratory tool, but inference to human subjects is hazardous. Particularly, a 

substantial proportion of species in the human gut are not present in mice (Zheng, Baird, et al. 

2017). For example, several FMT in mice from lean to obese mice resulted in improved 

cardiometabolic profile (Lai et al. 2018; Zoll et al. 2020), but these findings failed to replicate in 

humans. A systematic review of all three randomized placebo-controlled studies to treat obesity 

published to date found no impact of FMT on obesity, fasting plasma glucose, hepatic insulin 

sensitivity, or cholesterol markers across all included studies (Zhang et al. 2019). For human 
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observational studies, multiple confounding factors could create spurious correlation between 

microbiome and chronic diseases, including antibiotic use, age, sex, diet, geography, BMI and 

alcohol intake (Kim et al. 2017). Moreover, dysbiosis could potentially be a consequence of 

disease states rather than a causal factor (Cani 2018).  

 

In sum, the large proportion of “negative” findings (i.e., human gut dysbiosis may not cause 

chronic disease) is in line with recent literature showing an overwhelming positive publication bias 

in the microbiome literature (Walter et al. 2020). The publication bias can occur if studies are not 

adequately corrected for multiple testing and can be identified with attempt and failure to replicate 

(i-e winners curse bias) (Schloss 2018). For example, it was originally published that individuals 

with obesity were more likely to have lower bacterial diversity and relative abundances of the 

phylum Bacteroidetes (Turnbaugh et al. 2009), but this result failed to replicate in 9 independent 

cohorts (Finucane et al. 2014; Sze and Schloss 2016; Walters, Xu, and Knight 2014). Every 

method has its own strengths and weaknesses. Therefore, it is crucial to triangulate with different 

methods such as MR to address a causal research question, combining their strengths to overcome 

their individual weaknesses (Schloss 2018).  

 

Strengths and limitations 

An important strength of this study is the use of the MR design with the largest publicly available 

GWAS datasets. Because alleles are randomly assigned and fixed at conception, biases due to 

confounding and reverse causality are mitigated in an MR analysis (Larsson et al. 2020). A further 

strength is that sample was majoritally restricted to individuals of European ancestry to reduce 

bias due to population stratification. However, it also restricts the generalizability of the results to 

this ethnic group. Lastly, power calculations were performed to ensure that results reported here 

were null because of a clear lack of association and not due to inadequate power to detect 

associations (Burgess et al. 2020). 

 

Our study, however, has limitations. Robust genetic instruments for microbial species are 

challenging to find. First, microbiome heterogeneity and interindividual variability are high, 

substantially reducing the statistical power of microbiome GWAS analyses. Second, the phenotype 

is distal from individual genes making it a complex polymorphic trait with many variants of small 
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effect size which could be prone to pleiotropy. Lastly, the twin heritability for gut microbiota taxa 

abundance is only on average 20% (Goodrich et al. 2014; 2016). This heritability estimate 

represents the upper ceiling that variance explained by genetic instruments can attain, reducing 

power. These factors all contributed to the fact that the number of mbQTLs identified to date is 

rather modest. For these reasons, we used a less stringent p-value cut-off to include a greater 

number of genetic variants to allow the use of sensitivity analysis and increase power. However, a 

less stringent p-value cut-off has the trade-off to potentially increase the chance of including false-

positive effect variants which induce biases. The most important bias it introduces, the winner’s 

curse bias, refers to the fact that the genetic hits in discovery samples are more likely to be false 

positive, adding noise to the analysis which will typically bias MR results toward the null. Second 

in importance, the weak instrument bias occurs when the variance explained by the instrument and 

the sample size are low (Burgess, Thompson, and CRP CHD Genetics Collaboration 2011). In the 

two sample MR setting, it will bias towards the null (Burgess, Davies, and Thompson 2016). Third 

in importance, invalid instruments are pleiotropic variants that affect the outcome via another 

pathway than the one going through the exposure. Pleiotropic variants can invalidate the MR 

estimate and usually bias away from the null (Slob and Burgess 2020). We minimized weak 

instrument biases by including only exposures with genetic instruments with an average F-statistic 

above 15. We minimized the propensity of the results to be biased by pleiotropic variants by 

including only exposures with three genetic instruments minimum and performed sensitivity 

analysis. A second limitation is that the microbiome GWAS included in the current analysis did 

not target the entire 16S gene, which greatly diminished their ability to achieve a sufficient 

taxonomic resolution to identify potential therapeutic targets. The meta-analysis by Ruhlemann 

targeted the V1-V2 subregion while the meta-analysis by Kurilshikov et al. included mostly the 

V4 subregion and to a lesser extent the V1-V3 subregion. Targeting only 16S subregions such as 

V4 leads to lower taxonomic resolution achieved compared to sequencing the full V1-V9 16S gene 

(Johnson et al. 2019). Indeed, using a variable region as a surrogate for the entire 16S gene only 

allows for the identification of taxa at the genus level or above (Johnson et al. 2019). Being 

confident at the genus level provides little information to shape disease treatment. Indeed, within 

a high-level taxon such as a phylum, some species may have a positive correlation with a disease, 

but some neutral or negative. For example, in our study, the phylum Actinobacteria was potentially 

protective for CAD, while the subsequent level, the class Actinobacteria was a potential risk factor 
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for the same disease. Employing third-generation technologies has the potential to allow the 

sequencing of the full 16S gene in a high throughput manner, and improve taxonomic 

discrimination. 

 

Conclusions 

Using MR, an approach less subject to reverse causality and confounding factors in comparison to 

traditional methods, we showed that several features of human gut dysbiosis including IBD, 

plasma and fecal metabolites as well as a large proportion of associations between 48 microbial 

taxa and 8 chronic diseases and longevity were not significant. While further study is needed, these 

results do not support causal impact of microbiome and microbial metabolites on human chronic 

diseases and longevity. As the microbiome field matures, the use of more populous microbiome 

GWAS study taking advantage of discriminatory potential of the full 16S gene is warranted. 

 

 

Methods 

 

Study exposures 

We derived our 60 exposures of interest from six different publicly available data sources 

(supplementary table 4). Genetic instruments for IBD were obtained from a meta-analysis of 

38,155 cases and 48,485 controls. Data originated from a meta-analysis of genome-wide 

association from seven Crohn’s disease and eight ulcerative colitis GWAS collections with 

genome-wide genotyping or immunochip data from individuals of European descent from 15 

countries in Europe, North America and Oceania (Liu et al., 2015a). Diagnosis of IBD was based 

on radiological, endoscopic or histopathological evaluation. We included independent genetic 

variants (r2 ≤ 0.001) strongly associated with IBD (p-value <5e-8).  

 

Genetic instruments for fecal propionate and PWY-5022 were obtained from a GWAS on 952 

normoglycemic participants of the LifeLines-DEEP cohort, a population-based cohort from 

northern Netherlands (age ranges 18–84 years) (Sanna et al. 2019). Fecal propionate levels were 

measured by gas chromatography-mass spectrometry (GCMS). The functional pathway PWY-

5022 was obtained with HUMAnN2 (v 0.4.0) (Franzosa et al., 2018) and MetaCyc metabolic-
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pathway database (Vatanen et al. 2016). Genotyping was carried out with two Illumina arrays, 

HumanCytoSNP-12 BeadChip and ImmunoChip.  

 

Genetic instruments for plasma TMAO, carnitine, betaine, choline and indole-3-propionate were 

extracted from a GWAS conducted in 2076 participants from European ancestry from the 

Framingham Heart Study (FHS) offspring cohort (Rhee et al. 2013). The FHS offspring cohort is 

a prospective community-based cohort from Framingham, Massachusetts, USA. Children of the 

spouse of the FHS study were recruited in 1971. Metabolites profiling was performed by liquid 

chromatography-mass spectrometry (T. J. Wang et al. 2011). Genotyping was conducted using the 

Affymetrix 500K mapping array and the Affymetrix 50K gene-focused MIP array. The 

participants all provided their informed consent and the study was approved by the Boston 

University Medical Center.  

 

Genetic instruments for plasma branched-chain amino acids (leucine, isoleucine and valine) and 

acetate were extracted from a meta-analysis of GWAS conducted on 10 European cohorts 

totalizing 24,925 individuals (Kettunen et al. 2016). Human blood metabolites were quantified 

with quantitative high-throughput NMR metabolomics platform.  

 

Genetic instruments for bacterial taxon were extracted from a GWAS of bacterial taxon 

abundances of 8,956 German individuals from the PopGen (population-based cohort), the FoCus 

(population registry based), the KORA FF4 (population-based adult cohort initiated in 1984) and 

the SHIP cohort (longitudinal population-based cohort) (Rühlemann et al. 2021). Human 

Genotyping and fecal microbial 16S rRNA gene surveys were performed using multiple arrays. 

Additionally, other genetic instruments for bacterial taxon were extracted from a meta-analysis 

conducted by the MiBioGen consortium on 16S fecal microbiome data from 18,340 individuals 

(24 cohorts) (Kurilshikov et al. 2021). All cohorts implemented the standardized 16S processing 

pipeline that uses SILVA as a reference database, with truncation of the taxonomic resolution of 

the database to genus level. Cohorts were Middle Eastern, East Asian, American Hispanic/Latin, 

African American and admixed, although the majority of the sample (more than 72%) came from 

European descent. Because the effect sizes of mbQTLs were not available in the summary data, 

we estimated beta from the z statistic using the following equation. 𝑏 = 𝑧 ∗ 𝑆𝐸 where b is the beta, 
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z is the z-statistics and SE is the standard error. We estimated SE with the following equation  𝑆𝐸 =

1/√2𝑝(1 − 𝑝)(𝑛 + 𝑧2) where p is minor allele frequency and n is sample size. Allele frequency 

was also not available in the GWAS summary statistics. It was estimated from the reference panel 

used by 23 out of 24 cohorts, the Haplotype Reference Consortium (HRC 1.1 reference panel) 

(McCarthy et al. 2016). 

 

Study Outcomes 

We used publicly available GWAS summary statistics from the largest studies of chronic disease 

that have been previously linked to the human gut microbiota (with the exception of NAFLD which 

was performed for the purpose of this study) (Supplementary Table 5). CAD. GWAS summary 

statistics for CAD were obtained from a GWAS on 88,192 cases and 162,544 controls from 

CARDIoGRAMplusC4D and UK Biobank (van der Harst and Verweij 2018). Ischemic stroke. 

GWAS summary statistics for ischemic stroke were obtained in 67,162 cases/454,450 controls  

from the MEGASTROKE consortium (Malik et al. 2018). Alzheimer’s disease. GWAS summary 

statistics for Alzheimer’s Disease were obtained from a meta-analysis of the PGC-ALZ, IGAP, 

ADSP consortium and UK Biobank comprising 71,880 cases/383,378 controls (Jansen et al. 2019). 

Depression. GWAS summary statistics were obtained for depression from a meta analysis of 

PGC/UKB (excluding 23andme) including 500,199 (170,756 cases and 329,443 controls) 

individuals (Howard et al. 2019). Osteoporosis. Genetic association estimates for osteoporosis 

were obtained in the UK Biobank (PheCode_743.1) comprising of 7547 cases and 455,386 

controls (Zhou et al. 2018). Type 2 diabetes. GWAS summary statistics for type 2 diabetes were 

obtained from the DIAGRAM consortium (74,124 cases/824,006 controls) (Mahajan et al. 2018). 

Chronic kidney disease. GWAS summary statistics for chronic kidney disease were obtained 

from the CKDGen consortium including 41,395 cases and 439,303 controls (Wuttke et al. 2019). 

Parental lifespan and longevity. We also used publicly available GWAS summary statistics for 

human longevity-related outcomes namely parental survival (from a meta-analysis of the UK 

Biobank and the LifeGen consortium of 26 population cohorts [n=1,012,240; all of European 

ancestry]) (Timmers et al. 2019) and human longevity from a meta-analysis of 18 European 

cohorts (Deelen et al. 2019). Longevity was defined as individuals surviving at or beyond the age 

corresponding to the 90th survival percentile and controls whose age at death or at last contact was 

at or below the age corresponding to the 60th survival percentile (11,262 cases/25,483 controls). 
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Non-alcoholic fatty liver disease. To obtain a comprehensive set of NAFLD GWAS summary 

statistics, we performed a GWAS meta-analysis of four cohorts as previously described (Ghodsian 

et al. 2021). Data sources included the Electronic Medical Records and Genomics (eMERGE) 

network, the UK Biobank, the Estonian Biobank and FinnGen. The NAFLD GWAS (1106 cases 

and 8571 controls) in the eMERGE network has previously been published and summary statistics 

were made available (Namjou et al. 2019). We performed a new GWAS for NAFLD in the UK 

Biobank that included 2558 cases and 395,241 controls (data application number 25205). UK 

Biobank has approval from the North West Multi-Centre Research Ethics Committee. We also 

performed a GWAS for NAFLD using SAIGE in the Estonian Biobank (4119 cases and 190,120 

controls. This was approved by the Research Ethics Committee of the University of Tartu 

(Approval number 288/M-18). Finally, we used publicly available NAFLD GWAS summary 

statistics of the FinnGen cohort (651 cases and 176,248 controls). The total study sample for the 

GWAS meta-analysis included 8434 cases and 770,180 controls. This project was approved by the 

Institutional Review Board of the Quebec Heart and Lung Institute. 

 

Selection of Genetic Variants and Variants Harmonization 

We first identified all SNPs associated with exposures. Summary parameters for genetic 

instrument selection can be found at supplementary table 6. These SNPs were then clumped using 

the 1,000-Genome Project Phase 3 European LD reference panel to make sure instrumental 

variables were independent  (Auton et al., 2015) with a 10 Mb window and pairwise linkage 

disequilibrium (LD) r2 <0.01. This step was implemented with the TwoSampleMR package in R 

(Hemani et al. 2018). Because of their known association with pleiotropic pathways, we excluded 

from the analysis all SNPs of the HLA, ABO and APOE genetic regions. We then performed Steiger 

filtering to remove variants with evidence of a stronger association with the outcome than its 

association with the exposure (Hemani, Tilling, and Davey Smith 2017). Instrument strength was 

quantified using the F-statistic (Burgess, Thompson, and CRP CHD Genetics Collaboration 2011), 

and the variance explained was quantified using the R2  (Pierce, Ahsan, and VanderWeele 2011).  

 

Variant harmonization was performed by aligning the betas of different studies on the same effect 

allele with the TwoSampleMR package (Hemani et al. 2018). We inferred positive strand alleles, 

using allele frequencies for palindromes whenever possible. This method is effective when effect 
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allele frequency difference is large, but may not, however, be a reliable indicator of reference 

strands when it is close to 0.5 (Hartwig et al. 2016). Consequently, palindromic SNPs with MAF 

> 0.3 were removed from the analysis. When a particular exposure SNP was not present in the 

outcome dataset, we used proxy SNPs instead (r2 > 0.8). We obtained the LD matrix of the 1000 

genomes project - European sample of the Utah residents from North and West Europe via the 

LDlink API (Machiela and Chanock 2015). We interrogated the LDlink API with the LDlinkR 

package (Myers, Chanock, and Machiela 2020). We kept only the results based on at least three 

independent shared SNPs with mean F statistics> 15 to reduce weak instrument bias and allow for 

sensitivity analysis. 

 

Statistical Analyses 

Genetic correlation was performed using linkage disequilibrium score regression (LDSC). LDSC 

computes the genetic covariance between traits based on genome wide summary statistics obtained 

from GWAS (Bulik-Sullivan et al. 2015). The complete summary statistics of IBD and all 

outcomes were used. The LDScore regression function was fit using the GenomicSEM R package 

(Grotzinger et al. 2019) except for osteoporosis, where the genetic correlation was computed with 

the LD Hub database (Zheng, Erzurumluoglu, et al. 2017). LD Hub includes GWAS publicly 

available summary statistics on hundreds of human traits and enables the assessment of LD score 

regression among those traits. 

 

We conducted primary MR analysis on each outcome and exposure association. As primary 

method for causal inference, we performed the IVW method with multiplicative random effects 

with a standard error correction for under dispersion as recommended by recent MR guidelines 

(Burgess et al. 2020). The IVW-MR combines the ratio estimates from each genetic instrument in 

a meta-analysis model by giving more weight to the ratio estimates with lower variance (Burgess, 

Small, and Thompson 2017). A total of 582 primary analyses were performed: 60 exposures * 10 

outcomes—18 exposures/outcomes with fewer than three overlapping genetic instruments. We 

applied a Benjamini Hochberg correction for multiple testing using a false discovery rate of 5% to 

reduce the propensity of false positive finding. All continuous exposure estimates are normalized 

and reported on a standard deviation scale. For dichotomous traits (all outcomes except longevity 
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and IBD as exposure), we transformed ORs and CIs to effect sizes and standard error when it was 

not already done. Longevity estimates were reported by additional year of lifespan. 

 

For nominally significant associations (IVW-MR p-value <0.05) sensitivity analyses to estimate 

the robustness of our primary causal estimate were performed. We used 6 different robust methods 

that make different assumptions about the nature of the underlying pleiotropy. As a general test to 

the presence of pleiotropy, we used Egger intercept regression (MR-Egger), the MR-Robust 

Adjusted Profile Score (MR-RAPS) approaches and the contamination mixture approach. MR-

Egger is similar to the IVW method except the regression model estimates an intercept (Bowden 

et al., 2015). An intercept significantly different from zero gives indication of pleiotropy (Burgess 

& Thompson, 2017). The MR-Egger method gives consistent estimates of the causal effect under 

the InSIDE assumption, which states that pleiotropic effects of genetic variants must be 

uncorrelated with genetic variants—exposure association (Slob and Burgess 2020). MR-RAPS 

models the pleiotropic effects of genetic variants directly using a linear random effects distribution. 

This method provides an unbiased estimate when there is no pleiotropy (Zhao et al. 2018). The 

contamination mixture provides consistent estimate under the plurality valid assumption (Slob and 

Burgess 2020). It assumes that not all genetic variants are valid IVs and runs a likelihood function 

to categorize genetic instruments as valid or invalid. As a general test of robustness of the IVW-

MR estimates, we used the weighted median and the weighted mode methods. The weighted 

median allows an unbiased estimate to be obtained if the “majority valid” assumption is upheld, 

that is if up to 50% of the weight comes from variants that are valid IVs (Bowden et al. 2016). The 

weighted mode estimates the causal effect from the value taken by the largest number of genetic 

variants. This method allows the true causal estimates to be unbiasedly estimated if the “plurality 

valid” assumption is upheld, that is only 40% of the genetic variants are valid instruments and no 

larger group with the same estimate exists (Hartwig, Davey Smith, and Bowden 2017). Finally, as 

a general test to the presence of outliers, we used the outlier-robust method MR-PRESSO, which 

is a simulation approach where genetic variants are removed based on their contributions to 

heterogeneity (Verbanck et al. 2018). This method provides consistent estimates under the same 

assumptions as the IVW-MR method for the set of genetic variants that are not identified as outliers 

(Slob and Burgess 2020). We also provide a measure of the heterogeneity between variant-specific 

causal estimates, with Cochran’s Q statistic (Bowden et al. 2017).  
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Obesity and alcohol intake frequency were recently identified as major confounding factors in the 

gut-disease associations (Vujkovic-Cvijin et al. 2020) because they are both to some extent 

associated with the health outcome under study (Blüher 2019; Jani et al. 2021) while potentially 

simultaneously influencing microbiome composition (Dubinkina et al. 2017). In observational 

studies, adding BMI and alcohol intake frequency are the most important predictors of microbiota 

composition and health and adding them as covariates in linear mixed-effect models reduced the 

numbers of spurious microbiome health associations that are identified as significant (Vujkovic et 

al. 2021). To account for this, we performed multivariable MR as a sensitivity analysis to correct 

for measured confounders (Gormley et al. 2020). BMI and alcohol intake frequency GWAS were 

obtained from accessing the MR-BASE database from the TwoSampleMR package (Walker et al. 

2019). Both GWAS were derived from the UK biobank. Multivariate MR IVW estimates were 

computed using the MendelianRandomization package (Yavorska and Burgess 2017). 

 

Institutional Review Board Approval 

All GWAS summary statistics that were used we in the public domain with the exception of the 

NAFLD GWAS meta-analysis that is based on two new analysis from the UK Biobank and the 

Estonian Biobank. The UK Biobank was performed using data application number 25205. UK 

Biobank has approval from the North West Multi-Centre Research Ethics Committee. This 

analysis of the Estonian Biobank was approved by the Research Ethics Committee of the 

University of Tartu (approval number 288/M-18). For the other publicly available GWAS 

summary statistics, all participants provided informed consent and study protocols were approved 

by their respective local ethical committee (Deelen et al. 2019; Howard et al. 2019; Jansen et al. 

2019; Kettunen et al. 2016; Kurilshikov et al. 2021; J. Z. Liu et al. 2015b; Mahajan et al. 2018; 

Rhee et al. 2013; Rühlemann et al. 2021; Sanna et al. 2019; Timmers et al. 2019; van der Harst 

and Verweij 2018; Wuttke et al. 2019). This project was approved by the Institutional Review 

Board of the Quebec Heart and Lung Institute. 

 

Data Availability 

All data used in this study are in the public domain (or will be shortly). Supplementary tables 4 

and 5 describe the data used and relevant information to retrieve the summary statistics.  
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Code Availability 

Code was performed in the R V.4.0.0 computing environment using publicly accessible functions 

from the TwoSampleMR V.0.5.5 https://github.com/MRCIEU/TwoSampleMR, the 

MendelianRandomization V.0.5.1 

https://cran.rproject.org/web/packages/MendelianRandomization/index.html and the data.table 

V.1.14.0 https://github.com/Rdatatable/data.table packages. The tidyverse V.1.3.1 collection of R 

packages was also used (Wickham et al. 2019). 
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Figure legends 

 

Figure 1. Overview of the multidimensional Mendelian randomization framework used to 

investigate the association between gut dysbiosis (inflammatory bowel disease, microbial 

metabolites and microbial taxa abundance) and chronic diseases and longevity.  

 

Figure 2. Forest plot of the association of inflammatory bowel disease with all 10 health 

outcomes. A) Genetic correlation B) MR causal estimates with inverse variance weighted 

multiplicative random effect. 

  

Figure 3. Balloon plot of the association of microbial fecal metabolites, microbial pathway 

and plasma metabolites with all 10 health outcomes. Associations with LDL cholesterol are 

added as positive controls. Non-available (NA) associations stem from a lack of overlapping SNPs 

or proxies between exposure and outcome resulting in fewer than three genetic instruments in the 

harmonized data set. Non-significant associations (p-value > 0.05) are depicted with crosses. 

 

Figure 4. Balloon plot of the association of gut microbial taxa abundance with all 10 health 

outcomes. Associations with LDL cholesterol are added as positive controls. Non-available (NA) 

associations stem from a lack of overlapping SNPs or proxies between exposure and outcome 

resulting in fewer than three genetic instruments in the harmonized data set. Non-significant 

associations (p-value > 0.05) are depicted with crosses. 
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Tables 

Table 1. Description of cohorts used in this study 
 

Trait Cohort of study Sample size Populations  
(Author, 

year) 
pubmed id 

Exposures 

      

Diseases 
Inflammatory Bowel 

Disease 

only european individuals from BEL1, BEL2, 

CEDARS, CHOP, GERMAN, NIDDK, WTCCC, 

NORWEGIAN and SWEDISH. 

38,155 cases - 

48,485 controls 
European 

(Liu et al., 

2015) 
26192919 

functional 

microbial 

pathways 

PWY-5022  LifeLines-DEEP  952 European 
(Sanna et 

al., 2019) 
30778224 

fecal 

metabolites 
Propionate LifeLines-DEEP  898 European 

(Sanna et 

al., 2019) 
30778224 

fecal 

metabolites 

TMAO, indole-3-

propionate (IPA), 

carnitine, betaine and 

choline 

Framingham Heart Study offspring cohort  2076 European 
(Rhee et al., 

2013) 
23823483 

 leucine, isoleucine and 

valine and acetate  

EGCUT, ERF, FTC, FR97, COROGENE, GenMets, 

HBCS, KORA, LLS, NTR, NFBC, PredictCVD, 

PROTE, YFS 

24,925 European 
(Kettunen et 

al., 2016) 
27005778 

Microbial 

Abundance 

Microbial relative 

abundance 
PopGen, FoCus, KORA FF4, SHIP  8,956 European 

(Rühlemann 

et al., 2021) 
33462482 

 Microbial relative 

abundance 

BSPSPC, CARDIAb, CARDIAw, COPSAC, 

DanFunD, FGFP, FOCUS, GEM, GenR, KSCS, 

LLD, METSIM, MIBS, NGRC, NTR, PNP, 

POPCOL, RS3, SHIP, HCHS/SOL, TwinsUK 

18,34 
Mixed 

(>72%European) 

(Kurilshikov 

et al., 2021) 
33462485 

Outcomes 

      

Chronic 

diseases 
Coronary artery disease   CARDIoGRAMplusC4D and UK Biobank  

122,733 cases - 

424,528 controls 
European 

(Van der 

Harst, 2018) 
29212778 

 Ischemic stroke MEGASTROKE consortium  
67,162 cases - 

454,450 controls  
European 

(Malik, 

2018) 
29531354 
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 Type 2 diabetes DIAGRAM consortium  
74,124 cases - 

824,006 controls 
European 

(Mahajan, 

2018) 
30297969 

 Non-alcoholic fatty 

liver disease 

eMERGE, UK Biobank, Estonian Biobank and 

FinnGen  

8434 cases - 

770,180 controls 
European 

(Ghodsian, 

2021) 
unpublished 

 Chronic kidney disease  CKDGen consortium  
41,395 cases - 

439,303 controls 
European 

(Wuttke, 

2019) 
31152163 

 Osteoporosis UK Biobank  
7547 cases - 

455,386 controls 
European UKB 

PheCode_743.1 

in the UKB 

 Depression  PGC and UK Biobank  
170,756 cases - 

329,443 controls 
European 

(Howard, 

2019) 
30718901 

 Alzheimer's disease  PGC-ALZ, IGAP, ADSP and UK Biobank  
246,363 cases - 

561,190 controls 
European 

(Jansen, 

2019) 
30617256 

Lifespan  Parental lifespan LifeGen and UK Biobank  n = 1012,240 European 
(Timmers, 

2019) 
30642433 

 Longevity  

100-plus/LASA/ADC, AGES, CEPH, CHS, DKLS, 

FHS, GEHA, HRS, LLFS LLS, Longevity, MrOS, 

Newcastle 85 +, RS, SOF, Vitality 90 +,  

11,262 cases - 

25,483 controls 
European 

(Deelen, 

2019) 
31413261 
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