It is made available under a CC-BY-NC 4.0 International license . 1

R	ρ 7	ar	۱n		r	I
- n	C2	aı	,0	u		J

	Rezapour J
1	Macula structural and vascular differences in glaucoma eyes with and
2	without high axial myopia
3	
4	Jasmin Rezapour, MD ^{1,2} , Christopher Bowd, PhD ¹ , Jade Dohleman ¹ , Akram Belghith, PhD ¹ , James A.
5	Proudfoot, MSc ¹ , Mark Christopher, PhD ¹ , Leslie Hyman, PhD ³ , Jost B. Jonas, MD ⁴ , Rafaella C. Penteado, MD ¹ ,
6	Sasan Moghimi, MD ¹ , Huiyuan Hou, MD ¹ , Massimo A. Fazio, PhD ^{5,6} , Robert N. Weinreb, MD ¹ , Linda M. Zangwill,
7	PhD ¹
8	
9	
10	
11	
12	1 Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, UC San
13	Diego, La Jolla, CA, United States
14	2 Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz,
15	Germany
16	3 Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA, United States
17	4 Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
18	5 Department of Ophthalmology and Vision Science, School of Medicine, The University of Alabama at
19	Birmingham, Birmingham, AL, United States
20	6 Department of Biomedical Engineering, School of Engineering, The University of Alabama at Dispuss the area Dispussion the area Alabama Attack
21	Birmingham, Birmingham, AL, Onlied States
22	
23	
25	
26	Word count: 2907
27	
28	
29	
30	
31	
32	*Corresponding author:
33	Linda M. Zangwill
34	9500 Gilman Drive
35	La Jolla, CA 92093-0946
36	Shiley Eye Institute/Hamilton Glaucoma Center
37	Viterbi Family Department of Ophthalmology
38	University of California, San Diego
39	T: (858) 534-7686
40	Email: <u>Izangwill@health.ucsd.edu</u>
41	

It is made available under a CC-BY-NC 4.0 International license . \$2 \$

Rezapour J

42 Precis

- 43 In glaucoma eyes, macula ganglion cell thickness measures were significantly associated
- 44 with severity of glaucoma but not axial length suggesting that macula OCT parameters may
- 45 be useful in detecting glaucoma in eyes with high myopia.

46

It is made available under a CC-BY-NC 4.0 International license . 3

Rezapour J

48 Abstract

- 49 **Aims**
- 50 To assess the thickness of various retinal layers, and the superficial vessel density (sVD) in
- 51 the macula of glaucomatous eyes and their associations with axial length (AL) and visual
- 52 field mean deviation (VFMD) to identify parameters useful for glaucoma management in
- 53 myopic eyes.
- 54 Methods
- 55 248 glaucoma patients (401 eyes) participating in the Diagnostic Innovations in Glaucoma
- 56 Study observational cohort representing 3 axial myopia groups (non-myopia: n=146 eyes;
- 57 mild myopia: n=208 eyes; high myopia (AL>26 mm): n=47 eyes) who completed macular
- 58 OCT and OCT-Angiography imaging were included. The cross-sectional associations of AL
- and VFMD with the thickness of the ganglion cell inner plexiform layer (GCIPL), macular
- retinal nerve fiber layer (mRNFL), ganglion cell complex (GCC), sVD and macular choroidal
- 61 thickness (mCT) were evaluated.

62 Results

- ⁶³ Thinner Global GCIPL and GCC were significantly associated with worse VFMD (R²=35.1%;
- and R^2 =33.4%; respectively p<0.001), but not with AL (all p>0.350). Thicker mRNFL showed
- a weak association with increasing AL (R^2 =3.4%; p=0.001) and a positive association with
- VFMD (global R^2 =20.5%; p<0.001). Lower sVD was weakly associated with increasing AL
- $(R^2=2.3\%; p=0.016)$ and more strongly associated with more severe glaucoma VFMD
- $(R^2=31.8\%; p<0.001)$. Thinner mCT was associated with increasing AL ($R^2=17.3\% p<0.001$)
- and not associated with VFMD (P=0.262). mRNFL was thickest while mCT was thinnest in all
- 70 sectors of high myopic eyes.

71 Conclusions

- 72 GCIPL and GCC thinned with increasing severity of glaucoma but were not significantly
- associated with axial length. GCIPL and GCC thickness may be useful clinical parameters to
- 74 identify glaucoma in myopic eyes.

It is made available under a CC-BY-NC 4.0 International license . 4

Rezapour J

Introduction 75

76

77 With its potential vision threatening risk and with its prevalence increasing globally, myopia,

especially high myopia, has become a major concern around the world.¹ 78

79 Although optical coherence tomography (OCT) based measurements of peripapillary retinal

80 nerve fiber layer (pRNFL) thickness can accurately discriminate between healthy and

glaucomatous eyes,² there is concern that in myopic eyes (and especially in high myopic 81

82 eyes) the diagnostic accuracy of OCT measures is decreased. Optic disc changes in myopic

83 eves such as morphologic changes in the parapapillary region and optic disc enlargement

pose significant challenges to the use of optical imaging and clinical optic disc evaluation to 84

detect and monitor glaucoma (Figure 1).^{1,3} This is due in part to difference in the regional 85

86 arrangement of the peripapillary retinal nerve fibers between myopic eyes and emmetropic

87 eyes that may result in sectoral values incorrectly classified as outside normal limits by

88 instrument-specific software analysis in healthy myopic eyes.⁴⁵

89

90 Approximately 50% of the retinal ganglion cells are concentrated within 10 degree of the 91 fovea⁶ making the macula an useful region for diagnosing optic neuropathies including 92 glaucoma, especially in myopic eyes because myopic axial elongation primarily affects the 93 optic nerve head region. Previous studies have reported that early glaucomatous damage 94 can be detected in the macula region⁷ and that measurements of the ganglion cell inner plexiform layer (GCIPL) can be used for detecting glaucoma in highly myopic eves.⁸⁻¹² 95 96 However, little information is available about differences in the topographic distribution of the 97 thickness of the various macular retinal layers and the retinal vessel density in glaucomatous 98 eyes with and without myopia. Sectoral measurements of the underlying macular vasculature 99 may offer additional insight into differences in glaucomatous eyes with and without myopia.

100

101 Several studies using OCT-Angiography (OCTA) have demonstrated a strong relationship between macular capillary density and the severity of glaucoma.^{13 14} Furthermore recent 102 103 studies have reported the peripapillary choroid to be thinner in highly myopic eyes compared

to non-myopic eyes.^{15 16} However, few studies have assessed macular choroidal thickness in

It is made available under a CC-BY-NC 4.0 International license . $$5\ensuremath{5}$

Rezapour J

105	highly myopic eyes ^{17 18} and to date, to the best of our knowledge, no study has documented
106	the local distribution of macular choroidal thickness in glaucomatous eyes with and without
107	high myopia.
108	
109	The purpose of this study was to characterize the local distribution of GCIPL, GCC, macular
110	retinal nerve fiber layer (mRNFL), choroidal thickness and vessel density in glaucoma eyes
111	with and without axial myopia. By better understanding how the topographic distribution of
112	these parameters varies with axial length and severity of disease, macula parameters that
113	may be useful for detecting and monitoring glaucoma in myopic eyes can be identified.
114	
115	Methods
116	Study Sample
117	This cross-sectional study included all glaucoma patients enrolled in the University of
118	California, San Diego Diagnostic Innovations in Glaucoma Study (DIGS; clinicaltrials.gov
119	identifier NCT00221897) with available axial length measurements and good quality macula
120	OCT scans acquired between 2015 and 2020. The study was approved by the institutional
121	review board of the University of California San Diego and according to the tenets of the
122	Declaration of Helsinki written informed consent was obtained from all patients. As described
123	previously; ¹⁹ participants underwent a complete ophthalmologic examination including
124	assessment of refractive error, axial length measurement (IOLMaster, Carl Zeiss Meditec,
125	Dublin, CA), visual field testing, simultaneous stereophotography of the optic disc and
126	macula, and macular OCT and OCTA imaging. Study participants were ≥18 years with best-
127	corrected visual acuity \geq 20/40 and open anterior chamber angles at baseline.
128	
129	Visual field (VF) testing was performed using the standard Humphrey Field Analyzer 24-2
130	Swedish interactive thresholding algorithm. Repeatable glaucomatous VF damage was
131	defined as the presence of glaucomatous optic nerve head (ONH) damage based on masked
132	assessment by two trained observers and glaucomatous VF damage. ¹⁹ ONH

> It is made available under a CC-BY-NC 4.0 International license . 6

Rezapour J

- 133 stereophotographs of highly myopic eyes were graded for glaucoma by two experts (CB and
- 134 JR) after training with a senior consultant (JBJ). Diagnosis was defined by consensus
- 135 between the two graders and adjudication by the senior consultant in case of disagreement.
- 136

137 Myopia definition

- 138 Because a change in refractive error can occur after refractive or cataract surgery, myopia
- 139 was classified by axial length into the following 3 groups.
- 140 -No myopia: axial length \leq 24.0 mm
- 141 -Mild myopia: 24.0mm < axial length \leq 26.0 mm
- 142 -High myopia: axial length > 26.0 mm
- 143

144 Optical coherence tomography and optical coherence tomography angiography

145 imaging

- OCT imaging of the macula was performed with the Spectralis OCT (version 6.10; 146
- 147 Heidelberg Engineering Inc, Heidelberg, Germany). Details of this instrument have been
- previously described.¹⁴ Macula horizontal posterior pole (p-Pole) scans covering an area of 148
- 149 30° x 25° (6 x 6 mm) were obtained. GCIPL, mRNFL and GCC (GCIPL + mRNFL) thickness
- 150 measurements were generated from each retinal layer from the central 1-, 3-, and 6-mm
- 151 circles as inner rings (1- and 3-mm circle) and outer rings (3- and 6-mm circle) according to
- 152 the Early Treatment Diabetic Retinopathy Study defined sectors (temporal, superior, nasal,
- 153 and inferior).
- 154

155 OCTA imaging of the macula was performed with the Avanti AngioVue OCT system (version 2017.1.0.151; Optovue, Inc., Fremont CA, USA).²⁰ Macular whole image vessel density was 156 157 calculated on a 3 x 3 mm² field macula scan (304 B-scans x 304 A-scans per B-scan) 158 centered on the fovea. Whole image vessel density of the temporal, superior, nasal, and 159 inferior sectors were reported. Macular parafoveal superficial VD (sVD) was calculated within

It is made available under a CC-BY-NC 4.0 International license . 7

Rezapour J

an annulus centered on the fovea, with an inner diameter of 1 mm and an outer diameter of

161 2.5 mm.

162

163 All images were reviewed by the Imaging Data Evaluation and Analysis (IDEA) Reading

164 Center for image quality, and accurate segmentation of the mRNFL, ganglion cell layer

165 (GCL), and inner plexiform layer (IPL). The automated Spectralis software segmentation was

166 manually corrected if needed, according to the standard IDEA Reading Center protocols.¹⁹

167

168 Choroidal thickness measurement using deep learning

169 As choroidal thickness is not available from standard software, custom deep learning-based software was developed to automatically measure mCT.²¹ A trained grader (JR) manually 170 171 segmented the Bruch's Membrane (BM) / RPE complex and the posterior boundary of the 172 choroid in 120 p-Pole scans in the SPX software (version 1.9.204.0; Heidelberg Engineering 173 Inc, Heidelberg, Germany) in a subset of 20 eyes, which was used as ground truth to train a deep convolutional neural network model (BCDU-Net).²² Two thousand two hundred fifty 174 175 seven scans (753 eyes) with automated choroid segmentation were reviewed for accuracy (JR). The overall performance of the deep learning algorithm for segmenting the choroid was 176 177 very good with 400/401 (99.8%) eyes included (no myopia: 146/146 (100%), mild myopia: 178 208/208 (100%) and high myopia: 46/47 (97.9%)).

179

Macular choroidal thickness (mCT) was obtained for the inner and outer rings of the macular p-Pole scans defined above. Each ring was subdivided into temporal, superior, nasal, and inferior sectors and global and sectoral choroidal thickness was calculated. The MCT was defined as the perpendicular distance between the posterior border of BM / retinal pigment epithelium (RPE) complex and the posterior boundary of the choroid.

185

186 Statistical Analyses

> It is made available under a CC-BY-NC 4.0 International license . 8

Rezapour J

- 187 Data is presented as mean (95% confidence interval (CI)) and count (percentage) for
- 188 continuous and categorical variables, respectively. Patient and eye characteristics were
- 189 compared across myopia groups using analysis of variance (ANOVA) and chi-squared tests
- 190 for continuous and categorical patient-level variables (respectively) and linear mixed effects
- 191 models for continuous eye-level variables, with a random intercept to account for within-
- 192 patient correlation. Univariable and age and VFMD adjusted multivariable models were
- 193 applied to evaluate the association between axial length and ocular parameters. P-values
- 194 less than 0.05 were considered statistically significant. All statistical analyses were
- 195 performed using R (version 3.6.3).
- 196

Results 197

198 Four-hundred-one glaucoma eyes of 248 patients were included with 146 eyes (87 patients)

199 in the non-myopic group, 208 eyes (125 patients) in the mild myopic group, and 47 highly

200 myopic eyes (36 patients) (Table 1). All p-values are reported as age-adjusted.

	No axial myopia (n=87; 146 eyes)	Mild axial myopia (n=125; 208 eyes)	High axial myopia (n=36; 47 eyes)	Overall (n=248, 401 eyes)	P-value	Age- adjusted p-value
Age Gender	76.5 (74.1,78.8	73.0 (71.1, 75.0)	67.5 (63.7, 71.4)	73.4(72.0,74.8)	< 0.001 ^{1,2,3}	-
Female	55 (63.2%)	55 (44.0%)	13 (36.1%)	123 (49.6%)	0.005	
Male Race	32 (36.8%)	70 (56.0%)	23 (63.9%)	125 (50.4%)		
African Descent	21 (24.1%)	22 (17.6%)	3 (8.3%)	46 (18.5%)	0.057 ^{2,3}	
Asian Descent	7 (8.0%)	15 (12.0%)	10 (27.8%)	32 (12.9%)		
Descent	57 (65.5%)	84 (67.2%)	21 (58.3%)	162 (65.3%)		
Axial length (mm)	23.4 (23.3, 23.6)	24.9 (24.8, 25.0)	26.5 (26.3, 26.7)	24.5 (24.4, 24.7)	< 0.001 ^{1,2,3}	< 0.001 ^{1,2,3}
SE (dpt) CCT VFMD (db)	-0.00 (-0.41, 0.41) 537.9 (529.5, 546.3) -5.75 (-7.05, -4.45)	-1.50 (-1.85, -1.16) 534.5 (527.4, 541.7) -7.10 (-8.19, -6.00)	-2.84 (-3.42, -2.26) 535.5 (523.0, 548.1) -7.18 (-9.32, -5.04)	-1.12 (-1.44, -0.79) 535.9 (530.2, 541.6) -6.61 (-7.43, -5.80)	<0.001 ^{1,2,3} 0.803 0.251	<0.001 ^{1,2,3} 0.637
IOP (mmHg) Cataract Surgery	14.6 (13.7, 15.5)	13.8 (13.1, 14.6)	14.1 (12.6, 15.5)	14.1(13.6, 14.7)	0.423	0.093 ¹
Yes No Refractive	63 (43.2%) 83 (56.8%)	78 (37.5%) 130 (62.5%)	14 (29.8%) 33 (70.2%)	155 (38.7%) 246 (61.3%)	0.236	
Yes No	0 (0.0%) 146 (100.0%)	12 (5.8%) 196 (94.2%)	2 (4.3%) 45 (95.7%)	14 (3.5%) 387 (96.5%)	0.003	

201 202 Table 1: Glaucoma patient and eye characteristics by myopia group.

Results are presented as mean (95% confidence interval) or percentage. Race was compared using

202 203 204 a chi-squared test. Continuous variables were compared using ANOVA (for age) or linear mixed models (for eye level data).

205 No myopia: AL ≤24.0mm; Mild myopia: AL: >24mm and ≤26.0mm; High myopia: AL >26.0mm

206 Missing 13^a , 2^b , and 8^c values.

207 208 No vs. Mild Myopia p < 0.05; No vs. High Myopia p < 0.05; Mild vs. High Myopia p < 0.05

Abbreviations: BMO; Bruch's membrane opening, IOP; intraocular pressure, MD; mean deviation

It is made available under a CC-BY-NC 4.0 International license . \$9\$

Rezapour J

	Rezapour J
209	The participants in the high myopia group were significantly younger (mean [95% CI]) 67.5
210	[63.7, 71.4] years) than the members of the mild (73.0 [71.1, 75.0] years) myopic group and
211	the non-myopic individuals (76.5 [74.1, 78.8] years) groups (p<0.001). There was a trend of a
212	higher proportion of individuals of Asian descent in the high myopia group compared to the
213	no-myopic and the mild myopic group (p=0.06).
214	
215	There was no significant difference in intraocular pressure (p=0.09), central corneal thickness
216	(p=0.64) and BMO area (p=0.51) among the three groups (Table 1). Non-myopes tended
217	(p=0.131) to have less severe glaucoma than the mild myopic group and the high myopic
218	group (mean visual field mean deviation (MD) -5.75 dB, -7.10 dB and -7.18 dB, respectively).
219	
220	Macular Thickness Measurements
221	A total of 43 eyes were excluded from the analysis for not meeting image quality criteria
222	(Spectralis quality score >15 dB or segmentation failure) with 14/140 (10.1%), 12/220 (5.5%)
223	and 17/64 (26.6%) eyes excluded from the no-, mild- and high-axial myopia groups,
224	respectively. Macular thickness measures are presented in Figure 2 and Supplemental Table
225	1.
226	
227	Associations with Axial Length
228	There were no statistically significant associations between global and sectoral GCC or
229	GCPIL thickness measurements and axial length except for a weak association of the GCIPL
230	outer nasal sector (R ² =1.9%, p=0.016). All mRNFL measurements, except for the inner
231	temporal and outer inferior sector were significantly (all p<0.024) but relatively weakly (all R ²
232	< 5%) associated with axial length. We found weak associations between global and sectoral
233	vessel density measurements and axial length (all $R^2 \leq 3.2\%$, all p<0.05) and stronger
234	associations between choroidal thickness measures and axial length (R ² range: 9.6%-19.3%,
235	all p<0.001) (Table 2).

It is made available under a CC-BY-NC 4.0 International license .

10

Rezapour J

	Patients (eyes)	Univariable		Multivariable	
		Regression Estimate	$P^2(p_v)$	Estimato	$P^{2(\%)}(n_{y})$
Age	N=248 (401)	-0.26 (-0.59, 0.07)	0.1(0.121)	-0.25 (-0.58, 0.07)	0.1(0.130)
VFMD	N=248 (401)	-0.35 (-0.97, 0.27)	0.4 (0.272)	-0.53 (-1.17, 0.12)	0.8 (0.110)
Spectralis					
GCIPL (μm)					
Global	N=248 (401)	-0.29 (-1.21, 0.63)	0.1 (0.531)	-0.41 (-1.19, 0.36)	0.4 (0.299)
Inner ring	N=248 (401)	-0.32 (-1.58, 0.94)	0.1 (0.618)	-0.36 (-1.42, 0.69)	0.2 (0.498)
Outer ring	N=248 (401)	-0.26 (-0.92, 0.40)	0.2 (0.443)	-0.45 (-1.05, 0.14)	0.7 (0.136)
Inner temporal	N=248 (401)	0.14 (-1.26, 1.54)	0.0 (0.843)	0.29 (-0.86, 1.43)	0.1 (0.625)
Inner superior	N=248 (401)	-0.60 (-1.90, 0.71)	0.3 (0.370)	-0.82 (-2.01, 0.37)	0.6 (0.180)
Inner nasal	N=248 (401)	-0.61 (-1.96, 0.74)	0.3 (0.380)	-0.76 (-1.99, 0.47)	0.5 (0.226)
Inner Interior	N=248 (401)	-0.21 (-1.69, 1.26)	0.0(0.780)	-0.11(-1.37, 1.15)	0.0 (0.859)
Outer temporal	N=246 (401)	-0.20 (-1.01, 0.62)	0.1(0.037) 0.1(0.567)	-0.20 (-0.91, 0.51)	0.1(0.577) 0.6(0.170)
Outer superior	N=248(401) N=248(401)	-0.21 (-0.32, 0.30)	0.1(0.307) 0.5 (0.225)	-0.92 (-1.66 -0.18)	1 9 (0.016)
Outer inferior	N=248 (401)	-0.18 (-0.84 0.48)	0.1 (0.595)	-0.27 (-0.90, 0.37)	0.2(0.411)
Spectralis RNFL			0.1 (0.000)	0.21 (0.00, 0.01)	0.2 (0.111)
(um)					
Global	N=248 (401)	0.33 (-0.05, 0.71)	0.9 (0.092)	0.59 (0.24, 0.95)	3.4 (0.001)
Inner ring	N=248 (401)	0.32 (0.06, 0.59)	1.8 (0.018)	0.49 (0.22, 0.76)	3.9 (<0.001)
Outer ring	N=248 (401)	0.33 (-0.21, 0.87)	0.5 (0.233)	0.70 (0.21, 1.19)	2.6 (0.005)
Inner temporal	N=248 (401)	0.04 (-0.16, 0.24)	0.1 (0.671)	0.19 (-0.01, 0.39)	1.0 (0.066)
Inner superior	N=248 (401)	0.55 (0.18, 0.92)	2.7 (0.004)	0.74 (0.35, 1.12)	4.4 (<0.001)
Inner nasal	N=248 (401)	0.44 (0.09, 0.79)	1.9 (0.014)	0.62 (0.25, 0.98)	3.4 (<0.001)
Inner inferior	N=248 (401)	0.27 (-0.09, 0.63)	0.7 (0.141)	0.44 (0.09, 0.80)	1.8 (0.015)
Outer temporal	N=248 (401)	0.07 (-0.13, 0.28)	0.2 (0.483)	0.23 (0.03, 0.44)	1.6 (0.024)
Outer superior	N=248 (401)	0.44 (-0.28, 1.16)	0.5 (0.231)	0.83 (0.15, 1.51)	1.8 (0.017)
Outer nasal	N=248 (401)	0.60 (-0.23, 1.43)	0.6 (0.160)	1.14 (0.36, 1.93)	2.7 (0.004)
Outer Interior	N=248 (401)	0.17 (-0.57, 0.91)	0.1 (0.654)	0.59 (-0.09, 1.26)	0.9 (0.088)
Spectralis GCC					
(µm) Global	N-248 (401)	0.03 (-1.19, 1.25)	0.0 (0.964)	0 18 (-0 88 1 25)	0 0 (0 737)
Inner ring	N=248(401) N=248(401)	0.00(-1.41, 1.41)	0.0 (0.904)	0.12 (-1.10, 1.25)	0.0(0.737) 0.0(0.844)
Outer ring	N=248 (401)	0.07(-1.04, 1.17)	0.0 (0.909)	0.25 (-0.75, 1.24)	0.1 (0.625)
Inner temporal	N=248 (401)	0.18 (-1.24, 1.61)	0.0 (0.800)	0.47 (-0.72, 1.66)	0.2(0.438)
Inner superior	N=248 (401)	-0.06 (-1.59, 1.48)	0.0 (0.943)	-0.08 (-1.53, 1.36)	0.0 (0.910)
Inner nasal	N=248 (401)	-0.16 (-1.68, 1.37)	0.0 (0.840)	-0.14 (-1.58, 1.31)	0.0 (0.852)
Inner inferior	N=248 (401)	0.06 (-1.68, 1.80)	0.0 (0.947)	0.33 (-1.20, 1.85)	0.1 (0.676)
Outer temporal	N=248 (401)	-0.12 (-1.05, 0.82)	0.0 (0.805)	0.03 (-0.80, 0.87)	0.0 (0.940)
Outer superior	N=248 (401)	0.23 (-1.07, 1.53)	0.0 (0.725)	0.36 (-0.87, 1.58)	0.1 (0.569)
Outer nasal	N=248 (401)	0.12 (-1.31, 1.55)	0.0 (0.873)	0.22 (-1.13, 1.56)	0.0 (0.750)
Outer inferior	N=248 (401)	-0.02 (-1.30, 1.27)	0.0 (0.978)	0.31 (-0.88, 1.51)	0.1 (0.608)
Avanti GCC (µm)					(
Whole image	N=204 (317)	-0.04 (-1.44, 1.36)	0.0 (0.954)	0.02 (-1.23, 1.26)	0.0 (0.979)
Paratovea	N=204 (317)	-0.15 (-1.64, 1.33)	0.0 (0.839)	-0.13(-1.45, 1.19)	0.0 (0.850)
l emporal	N=204 (317)	-0.11(-1.60, 1.38)	0.0 (0.888)	0.07 (-1.20, 1.33)	0.0 (0.920)
Nasal	N=203 (310) N=204 (317)	-0.15 (-1.61, 1.50)	0.0(0.057) 0.0(0.801)	-0.16 (-1.76, 1.43)	0.0 (0.039)
Inferior	N=204 (317) N=204 (316)	-0.31 (-2.14, 1.40)	0.0 (0.739)	-0.28 (-1.89, 1.20)	0.0 (0.739)
Avanti Vessel	0.010)	3.01 (2.17, 1.02)	0.0 (0.100)	0.20 (1.00, 1.04)	0.0 (0.700)
Density (%)					
Whole image	N=204 (317)	-0.35 (-0.87, 0.17)	0.7 (0.191)	-0.54 (-0.97, -0.10)	2.3 (0.016)
Parafovea	N=204 (317)	-0.42 (-0.97, 0.13)	0.9 (0.138)	-0.63 (-1.09, -0.18)	2.8 (0.007)
Temporal	N=204 (317)	-0.38 (-0.95, 0.18)	0.7 (0.183)	-0.49 (-0.96, -0.01)	1.5 (0.046)
Superior	N=203 (316)	-0.31 (-0.88, 0.26)	0.4 (0.293)	-0.59 (-1.09, -0.09)	2.0 (0.022)
Nasal	N=204 (317)	-0.48 (-1.05, 0.08)	1.1 (0.096)	-0.75 (-1.24, -0.25)	3.2 (0.004)
Inferior	N=204 (316)	-0.57 (-1.26, 0.11)	1.0 (0.102)	-0.78 (-1.36, -0.21)	2.7 (0.008)
Spectralis					
Choroid (µm)	N 047 (400)	40.05 (44.00	0.0 (.0.004)		47.0 (.0.004)
GIODAI	N=247 (400) N=247 (400)	-10.95 (-14.96, -6.94)	δ.9 (<0.001)	-15.17 (-18.96, -11.38)	17.3 (<0.001)
	N=247 (400) N=247 (400)	-11.01 (-10.18, -0.84)	1.5 (<0.001)	-10.04 (-20.49, -11.38)	14.0 (<0.001)
Inner Temporal	N=247 (400)	-10.01 (-14.70, -0.92) -8.05 (-12.53 -2.57)	J.∠ (<0.001)	-14.37 (-10.04, -11.30) -12 33 (-16 64 -9 02)	9.6 (<0.001)
Inner Superior	N=247 (400)	-0.00 (-12.00, -0.07) -12 56 (-17 72 -7 10)	+.1 (<0.001) 7 3 (∠0.001)	-12.33 (-10.04, -0.02)	3.0 (<0.001) 13.8 (<0.001)
Inner Nasal	N=247 (400)	-16.87 (-22.38 -11.36)	11.1 (<0.001)	-21.73 (-27.06, -16.41)	17.9 (<0.001)
Inner Inferior	N=247 (400)	-9.28 (-14,19, -4.37)	4.5 (<0.001)	-14.19 (-18.879.51)	10.8 (<0.001)
Outer Temporal	N=247 (400)	-6.56 (-10.302.83)	4.0 (<0.001)	-11.03 (-14.477.60)	11.8 (<0.001)
Outer Superior	N=247 (400)	-13.07 (-17.89, -8.24)	8.9 (<0.001)	-17.45 (-22.12, -12.78)	15.5 (<0.001)
Outer Nasal	N=247 (400)	-14.37 (-18.70, -10.04)	12.8 (<0.001)	-18.10 (-22.34, -13.86)	19.3 (<0.001)
Outer Inferior	N=247 (400)	-10.15 (-14.80, -5.50)	6.0 (<0.001)	-14.92 (-19.32, -10.51)	13.1 (<0.001)

237 238 239 240 241 **Table 2.** Ocular associations with axial length *Linear mixed models slope estimates (with 95% confidence intervals) from univariable and multivariable models adjusted for age and VFMD. AR² reported as a percentage Abbreviations: GCC; Ganglion cell complex, GCIPL; Ganglion cell inner plexiform layer, RNFL; Retinal nerve fiber layer, VFMD; Visual field mean deviction Visual field mean deviation

It is made available under a CC-BY-NC 4.0 International license .

11

Rezapour J

242 Associations with Severity of Glaucoma (Visual Field MD)

- 243 In multivariable models adjusted for age and axial length we found relatively strong
- 244 associations between thinner global and sectoral GCIPL measures and worse VFMD (R²
- range: 14.0%-38.1%, all p<0.001). Thinner mRNFL was also significantly associated with
- worse VFMD in all sectors (R² range: 3.1%-23.8%, all p<0.001) with exception of the inner
- 247 nasal and temporal sectors (p>0.285). Thinner global and sectoral Spectralis and Avanti
- 248 GCC measures were significantly associated with worse VFMD (R² range: from 20.2% to
- 37.0% and 18.6% to 35.4%, all p<0.001, respectively). In addition, we found a relatively
- 250 strong association between lower macular vessel density and worse VFMD (R² ranged from
- 251 20.3% to 33.2%, all p<0.001). Macular choroidal thickness was not associated with VFMD
- 252 (Table 3).

It is made available under a CC-BY-NC 4.0 International license .

12

Rezapour J

	Patients	Univariable Regression		Multivariable Regression	
	(eyes)	Estimate	R ² (p-value)	Estimate	R ^{2 (%)} (p-value)
Age	N=248 (401)	-0.006 (-0.025, 0.014)	0.0 (0.558)	-0.005 (-0.024, 0.015)	0.0 (0.636)
Axial length Spectralis GCIPL	N=248 (401)	0.002 (-0.007, 0.010)	0.0 (0.679)	0.001 (-0.008, 0.009)	0.0 (0.860)
(µm) Global	N=248 (401)	0.88 (0.77, 0.99)	35.7 (<0.001)	0.86 (0.75, 0.97)	35.1 (<0.001)
Inner ring	N=248 (401)	1.25 (1.10, 1.40)	38.1 (<0.001)	1.23 (1.08, 1.38)	37.5 (<0.001)
Outer ring	N=248 (401)	0.51 (0.42, 0.59)	23.7 (<0.001)	0.49 (0.41, 0.57)	23.1 (<0.001)
Inner temporal	N=248 (401)	1.40 (1.23, 1.58)	38.6 (<0.001)	1.39 (1.21, 1.57)	38.1 (<0.001)
Inner superior	N=248 (401)	1.02 (0.85, 1.19)	24.0 (<0.001)	0.99 (0.82, 1.16)	23.1 (<0.001)
Inner nasal	N=248 (401)	1.07 (0.90, 1.24)	25.1 (<0.001)	1.05 (0.88, 1.21)	24.4 (<0.001)
Inner inferior	N=248 (401)	1.45 (1.25, 1.64)	35.6 (<0.001)	1.43 (1.23, 1.62)	34.8 (<0.001)
Outer temporal	N=248 (401)	0.73 (0.63, 0.84)	31.5 (<0.001)	0.72 (0.61, 0.82)	30.7 (<0.001)
Outer superior	N=248 (401)	0.43 (0.33, 0.53)	14.7 (<0.001)	0.41 (0.31, 0.51)	13.8 (<0.001)
	N=248(401) N=248(401)	0.40 (0.33, 0.30)	14.7 (< 0.001)	0.43 (0.33, 0.33)	14.0 (<0.001)
Spectralis RNFL	11-240 (401)	0.40 (0.01, 0.40)	14.7 (\$0.001)	0.00 (0.00, 0.40)	14.0 (\$0.001)
(µm)					
Global	N=248 (401)	0.26 (0.21, 0.31)	18.8 (<0.001)	0.27 (0.22, 0.32)	20.5 (<0.001)
Inner ring	N=248 (401)	0.08 (0.04, 0.12)	3.5 (<0.001)	0.09 (0.05, 0.13)	4.4 (<0.001)
Outer ring	N=248 (401)	0.44 (0.37, 0.51)	26.2 (<0.001)	0.45 (0.38, 0.52)	27.5 (<0.001)
Inner temporal	N=248 (401)	0.01 (-0.02, 0.04)	0.1 (0.599)	0.02 (-0.01, 0.05)	0.3 (0.285)
Inner superior	N=248 (401)	0.09 (0.04, 0.15)	2.5 (0.001)	0.10 (0.05, 0.16)	3.1 (<0.001)
Inner nasal	N=248 (401)	0.02 (-0.04, 0.07)	0.1 (0.543)	0.03 (-0.03, 0.08)	0.3 (0.315)
Inner Interior	N=248 (401)	0.19 (0.13, 0.25)	10.4 (<0.001)	0.20 (0.14, 0.25)	11.3 (<0.001)
	N=240 (401)	0.05(0.02, 0.09) 0.52(0.42, 0.62)	2.0 (<0.001)	0.00(0.03, 0.10) 0.53(0.43, 0.63)	4.0 (< 0.001)
Outer superior	N=248(401) N=248(401)	0.52(0.42, 0.02) 0.63(0.53, 0.74)	20.1 (< 0.001) 22 3 (< 0.001)	0.65 (0.43, 0.03)	23.4 (< 0.001)
Outer inferior	N=248 (401)	0.56 (0.46, 0.67)	23.0 (<0.001)	0.58 (0.48, 0.68)	23.8 (<0.001)
Spectralis GCC	- (- /		- (/		
(μm)					
Global	N=248 (401)	1.14 (0.99, 1.29)	34.0 (<0.001)	1.13 (0.98, 1.28)	33.4 (<0.001)
Inner ring	N=248 (401)	1.33 (1.16, 1.51)	34.5 (<0.001)	1.32 (1.15, 1.49)	33.9 (<0.001)
Outer ring	N=248 (401)	0.95 (0.81, 1.08)	29.1 (<0.001)	0.94 (0.81, 1.08)	28.6 (<0.001)
Inner temporal	N=248 (401)	1.41 (1.23, 1.59)	37.5 (<0.001)	1.41 (1.23, 1.59)	37.0 (<0.001)
Inner superior	N=248 (401)	1.12 (0.91, 1.32)	20.9 (<0.001)	1.10 (0.89, 1.31)	20.2 (<0.001)
Inner inferior	N=248(401) N=248(401)	1.10 (0.90, 1.29)	20.8 (<0.001)	1.09 (0.09, 1.20)	20.2 (< 0.001) 32.2 (< 0.001)
Outer temporal	N=248(401) N=248(401)	0.78 (0.66, 0.91)	28.0 (<0.001)	0.78 (0.66, 0.90)	27.3 (<0.001)
Outer superior	N=248 (401)	0.95 (0.77, 1.13)	20.8 (<0.001)	0.94 (0.76, 1.12)	20.4 (<0.001)
Outer nasal	N=248 (401)	1.09 (0.91, 1.27)	22.9 (<0.001)	1.08 (0.90, 1.26)	22.4 (<0.001)
Outer inferior	N=248 (401)	0.96 (0.79, 1.13)	22.4 (<0.001)	0.96 (0.79, 1.14)	22.1 (<0.001)
Avanti GCC (µm)					
Whole image	N=204 (317)	1.23 (1.05, 1.42)	31.2 (<0.001)	1.23 (1.04, 1.42)	30.9 (<0.001)
Paratovea	N=204 (317)	1.33 (1.13, 1.53)	31.9 (<0.001)	1.32 (1.12, 1.52)	31.6 (<0.001)
l emporal	N=204 (317)	1.42 (1.21, 1.63)	35.7 (<0.001)	1.41 (1.20, 1.62)	35.4 (<0.001)
Superior	N=203 (316)	1.13 (0.88, 1.37)	18.9 (<0.001)	1.12 (0.87, 1.37)	18.6 (<0.001)
Inferior	N=204(317) N=204(316)	1.11 (0.90, 1.32)	20.2 (<0.001)	1.10 (0.89, 1.32)	20.0 (< 0.001) 31.9 (< 0.001)
Avanti Vessel	11-201 (010)	1.67 (1116, 1166)	02.0 ((0.001)	1.00 (1.00, 1.02)	
Density (%)					
Whole image	N=204 (317)	0.46 (0.38, 0.53)	31.1 (<0.001)	0.44 (0.37, 0.52)	31.8 (<0.001)
Parafovea	N=204 (317)	0.48 (0.40, 0.56)	31.0 (<0.001)	0.47 (0.39, 0.54)	31.9 (<0.001)
Temporal	N=204 (317)	0.50 (0.42, 0.59)	31.7 (<0.001)	0.49 (0.41, 0.58)	31.6 (<0.001)
Superior	N=203 (316)	0.42 (0.33, 0.50)	21.6 (<0.001)	0.40 (0.32, 0.49)	22.1 (<0.001)
INASAI	N=204 (317)	0.39(0.31, 0.48)	19.9 (<0.001)	0.38(0.30, 0.47)	20.3 (<0.001)
Spectralis Choroid	N=204 (310)	0.02 (0.53, 0.72)	32.8 (<0.001)	0.01 (0.51, 0.70)	33.2 (<0.001)
(um)					
Global	N=247 (400)	0.35 (-0.11, 0.80)	0.3 (0.137)	0.25 (-0.19, 0.69)	0.2 (0.262)
Inner Ring	N=247 (400)	0.51 (-0.04, 1.06)	0.5 (0.068)	0.39 (-0.13, 0.92)	0.4 (0.144)
Outer Ring	N=247 (400)	0.31 (-0.14, 0.75)	0.2 (0.177)	0.21 (-0.22, 0.63)	0.2 (0.335)
Inner Temporal	N=247 (400)	0.43 (-0.17, 1.04)	0.4 (0.159)	0.27 (-0.30, 0.85)	0.2 (0.355)
Inner Superior	N=247 (400)	0.67 (0.01, 1.33)	0.7 (0.046)	0.49 (-0.14, 1.12)	0.5 (0.127)
Inner Nasal	N=247(400)	0.77(0.10, 1.44)	0.8 (0.025)	0.59 (-0.05, 1.22)	0.6 (0.071)
	N=247 (400)	0.40 (-0.14, 1.10)	0.4 (0.130)	0.33 (-0.26, 0.93)	0.2(0.274)
Outer Superior	N=247 (400) N=247 (400)	0.40 (-0.03, 0.00)	0.5 (0.106)	0.20 (-0.20, 0.71)	0.3 (0.201) 0.0 (0.687)
Outer Nasal	N=247 (400)	0.34 (-0.20, 0.87)	0.2 (0.217)	0.18 (-0.32, 0.69)	0.1 (0.477)
Outer Inferior	N=247 (400)	0.46 (-0.11, 1.02)	0.4 (0.118)	0.32 (-0.23, 0.86)	0.2 (0.253)

 Table 3. Ocular characteristics associations with Visual Field mean deviation

 *Linear mixed models slope estimates (with 95% confidence intervals) from univariable and multivariable models

254 255 256 257 258 Adjusted for age and axial length. ^R² reported as a percentage Abbreviations: GCC; Ganglion cell complex, GCIPL; Ganglion cell inner plexiform layer, RNFL; Retinal nerve fiber layer

It is made available under a CC-BY-NC 4.0 International license .

13

Rezapour J

259 Secondary Analysis of Differences by Axial Myopia Group

260 As a secondary analysis, we compared macular thickness- and vascular measurement

- 261 differences across the three axial myopia groups and adjusted for age and VFMD. In
- 262 general, mRNFL was thickest in high myopic eyes in all sectors, while mCT was significantly
- thinner in all sectors in high myopic eyes. The pattern of other macular thickness and vessel
- 264 density measurements were less consistent across the three axial myopia groups
- 265 (Supplemental Table 1 and Figures 2A-2F.)
- 266

267	Specifically, global and sectoral GCC (both Spectralis and Avanti) and GCIPL thickness
268	values were similar across myopic groups, except for the inner and outer nasal rings, and
269	inferior outer ring GCIPL (all p≤0.033) (see Figures 2A, 2C and 2D). Compared to no and
270	mild myopia groups, thicker mRNFL was generally found in high myopes globally and in
271	specific sectors (age and VF adjusted MD global: p=0.031, global inner: p=0.051, global
272	outer p=0.042, inner superior ring p=0.001 and outer superior ring (p=0.017) (Figure 2B).
273	Parafoveal vessel density tended to be slightly higher in non-myopes compared to mild and
274	high myopes, but only reached statistical significance in the nasal sector (mean [95% CI]);
275	nasal vessel density in high myopes (42.7% [40.7%, 44.6%]) and non-myopes (44.5%
276	[43.3%, 45.7%]) (p=0.011) (Figure 2E). Global and sectoral mean MCT was significantly
277	thinner in high myopes compared to mild and non-myopes (all p<0.001, See Figure 2F).
278	

279 **Discussion**

The results of this work have implications for diagnosing glaucoma in the challenging patients with high myopia. Specifically, our results suggest that macula measurements can be useful measurements to diagnose and monitor glaucoma in myopic eyes as the GCIPL and GCC thinned with increasing severity of glaucoma but are not associated with axial length. Except for choroidal thickness, all other macula thickness measures obtained in this study were associated with the severity of glaucoma. Because ganglion cell-related macular

It is made available under a CC-BY-NC 4.0 International license . 14

Rezapour J

286 thickness measurements are strongly associated with VFMD but do not vary with axial

287 length, GCIPL and GCC show promise for detecting glaucoma in myopic eyes.

288

289 Because the macula is devoid of morphometric variations such as tilt and peripapillary 290 atrophy, it's diagnostic role in detecting glaucoma in highly myopic eyes is gaining more 291 attention recently. Specifically, there is evidence that myopia can lead to a high rate of falsepositives in the measurement of the peripapillary RNFL (pRNFL).²³ Several studies have 292 293 examined the diagnostic ability of GCIPL, pRNFL and GCC and reported that GCIPL thickness has been reported as superior ⁸⁹²⁴⁻²⁷ or comparable to pRNFL thickness²⁸ for 294 295 diagnosing glaucoma in myopic eyes. Shoji et al. found that GCC parameters had high 296 diagnostic accuracy to detect glaucoma in highly myopic eyes and that the diagnostic ability was higher than that of the pRNFL.⁸ In another study, these authors reported that GCC 297 298 parameters were not significantly related to refractive errors and had good accuracy to detect glaucoma in non-myopes and in high myopes.⁹ Similarly, Kim et al. determined that in highly 299 300 myopic eyes, the accuracy of glaucoma detection based on the macular GCC thickness was comparable to that based on the pRNFL thickness.²⁹ These findings and those of other 301 302 studies^{8 9 27} are consistent with our results that GCIPL and GCC thickness measured using 303 both Spectralis and Avanti showed no association between the GCIPL thickness and axial 304 length suggesting GCIPL thickness is less sensitive to changes due to axial elongation. 305 Moreover, in our study GCIPL and GCC measurements showed the strongest association 306 with VFMD, suggesting that both are useful for measuring ganglion cell loss associated with 307 glaucoma in both non-highly myopic and highly myopic eyes. These results are generalizable 308 across instruments as both Spectralis GCC and Avanti GCC showed similar results.

309

310 High myopia is characterized by marked structural changes in the retina and choroid and the corresponding vasculature.^{30 31} With the introduction of the non-invasive technique, OCTA 311 312 images can provide a microvascular map from different retinal layers. To the best of our

It is made available under a CC-BY-NC 4.0 International license .

15

Rezapour J

313	knowledge this is the first study comparing both macular tissue thickness and vascular
314	measurements in axial non-myopic, mild and high myopic glaucomatous eyes.
315	In the current study, the macular vessel density showed a weak association with axial length
316	and a moderate association with VFMD. Previous studies reported conflicting results. This
317	inconsistency can be explained in part by differences in study populations and image
318	acquisition and analysis protocols. For instance, we employed a 3 x 3 mm imaging area
319	whereas Yang et al. employed a larger 6 x 6 mm area. ³¹ A large scan size can be more
320	sensitive to image artefacts but also may identify microvasculature dropout in outer regions. ³¹
321	We found only a weak association between superficial macula vessel density and axial
322	length but a moderate association between vessel density and VFMD. Our results suggest
323	that although myopic changes might affect vessel density in the macula, effects due to
324	glaucoma are much stronger as indicated by the stronger association to the VFMD and
325	therefore may also be useful for monitoring glaucoma in myopic eyes. ³²
326	
327	In terms of choroidal thickness, as axial length increased, the choroid thinned in all sectors.
328	Previously reported results have demonstrated choroidal thinning in highly myopic eyes. ³³⁻³⁵
329	Ho et al. $^{\rm 33}$ reported that subfoveal choroidal thickness decreased by 6.20 μm for each diopter

of myopia and was thinnest in the nasal sectors in all groups, which is similar to the distributions of non-axial myopes, mild axial myopes and high axial myopes in our study. The choroid is a highly vascular layer, supplied by the posterior ciliary arteries and provides the retinal photoreceptors and the retinal pigment epithelium with oxygen and nourishment.³⁶ Our results did not show an association between choroidal thickness and VFMD which suggests

that choroidal thickness likely is not a useful metric for differentiating glaucomatous from

healthy eyes or for monitoring glaucomatous progression.

337

338 The current study has several limitations. First, individuals with high myopia were younger.

339 As retinal tissue is known to thin in older eyes³⁷ we adjusted for age and VFMD in all

analyses. In addition, we compared the 3 axial myopic groups after age-matching and found

It is made available under a CC-BY-NC 4.0 International license .

16

Rezanour I

	Rezapour J
341	similar results (data not shown) with respect to the pattern of the retinal and vascular
342	measurements in the three groups. Second, it has been suggested that axial length might
343	affect retinal vessel density measurements and lead to incorrect scaling in OCTA imaging,
344	which should be taken into account when interpreting our results. ³⁸ Moreover, as vessel
345	density measurements vary across instruments, ³⁹ these sVD results are not necessarily
346	generalizable to macula vessel density measurements from other OCTA instruments or to
347	macula deep layer vessel density measurements. In addition, axial elongation often leads to
348	retinal layer segmentation errors and measurement failures. However, we reviewed the OCT
349	images meticulously for segmentation errors and excluded data with uncorrectable
350	segmentation failures. Finally, the sample size of the high myopic group was relatively small
351	compared to the other two groups and the mean axial length was only 26.5 mm. We can
352	therefore not generalize our results to eyes with longer axial length.
353	
354	In conclusion, GCIPL and GCC thickness can be useful measurements to diagnose and
355	monitor glaucoma in myopic eyes as they thinned with increasing severity of glaucoma but
356	did not vary with axial length. Macular sVD may also be useful for detecting glaucoma in
357	myopic eyes, however we found a weak association between vessel density and axial length
358	which needs to be explored further.
359	
360	Funding
361	Grant support:
362	JR: German Research Foundation research fellowship grant recipient (RE 4155/1-1) and
363	German Ophthalmological Society Grant
364	MC: K99EY030942

- 365 SM: Tobacco-Related Disease Research Program T31IP1511
- 366 RNW: National Eye Institute R01EY029058, an Unrestricted grant from Research to Prevent
- 367 Blindness (New York, NY)
- 368 LMZ: National Eye Institute R01EY011008, R01EY019869, R01EY027510, P30EY022589 369
- 370 **Competing Interests:**
- 371 None: JR, CB, JD, AB, JAP, MC, LH, JBJ, RCP, SM, HH, MAF

It is made available under a CC-BY-NC 4.0 International license .

17

Rezapour J

- 372 RNW: Consulting: Bausch & Lomb, Eyenovia, Aerie Pharmaceuticals, Allergan; Research
- 373 Funding or Equipment: Bausch & Lomb, Heidelberg Engineering, Carl Zeiss Meditec, Konan
- 374 Medical, Genentech, Optos, Optovue, Centervue; Patent: Toromedes, Carl Zeiss Meditec-
- 375 Zeiss
- 376 LMZ: Research Funding and Equipment: Heidelberg Engineering; Research Equipment:
- 377 Optovue Inc, Carl Zeiss Meditec Inc, Topcon Medical Systems Inc; Patent: Carl Zeiss
- 378 Meditec.
- 379
- 380
- 381

It is made available under a CC-BY-NC 4.0 International license .

18

Rezapour J

382 **References**

383	1. Marcus MW, de Vries MM, Junoy Montolio FG, et al. Myopia as a risk factor for open-angle
384	glaucoma: a systematic review and meta-analysis. <i>Ophthalmology</i> 2011;118(10):1989-94 e2.
385	doi: 10.1016/j.ophtha.2011.03.012 [published Online First: 2011/06/21]
386	2. Leung CK, Cheung CY, Weinreb RN, et al. Retinal nerve fiber layer imaging with spectral-domain
387	optical coherence tomography: a variability and diagnostic performance study.
388	<i>Ophthalmology</i> 2009;116(7):1257-63, 63 e1-2. doi: 10.1016/j.ophtha.2009.04.013 [published
389	Online First: 2009/05/26]
390	3. Jonas JB, Gusek GC, Naumann GO. Optic disk morphometry in high myopia. Graefe's archive for
391	clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und
392	experimentelle Ophthalmologie 1988;226(6):587-90. doi: 10.1007/BF02169209 [published
393	Online First: 1988/01/01]
394	4. Leung CK, Mohamed S, Leung KS, et al. Retinal nerve fiber layer measurements in myopia: An
395	optical coherence tomography study. Investigative ophthalmology & visual science
396	2006;47(12):5171-6. doi: 10.1167/iovs.06-0545 [published Online First: 2006/11/24]
397	5. Leung CK, Yu M, Weinreb RN, et al. Retinal nerve fiber layer imaging with spectral-domain optical
398	coherence tomography: interpreting the RNFL maps in healthy myopic eyes. Investigative
399	ophthalmology & visual science 2012;53(11):7194-200. doi: 10.1167/iovs.12-9726 [published
400	Online First: 2012/09/22]
401	6. Curcio CA, Allen KA. Topography of ganglion cells in human retina. <i>The Journal of comparative</i>
402	neurology 1990;300(1):5-25. doi: 10.1002/cne.903000103 [published Online First:
403	1990/10/01]
404	7. Hood DC, Raza AS, de Moraes CG, et al. Glaucomatous damage of the macula. <i>Progress in retinal</i>
405	and eve research 2013:32:1-21. doi: 10.1016/i.preteveres.2012.08.003 [published Online
406	First: 2012/09/22]
407	8. Shoji T, Sato H, Ishida M, et al. Assessment of glaucomatous changes in subjects with high myopia
408	using spectral domain optical coherence tomography. Investigative ophthalmology & visual
409	science 2011;52(2):1098-102. doi: 10.1167/iovs.10-5922 [published Online First: 2010/11/06]
410	9. Shoji T, Nagaoka Y, Sato H, et al. Impact of high myopia on the performance of SD-OCT parameters
411	to detect glaucoma. Graefe's archive for clinical and experimental ophthalmology = Albrecht
412	von Graefes Archiv fur klinische und experimentelle Ophthalmologie 2012;250(12):1843-9.
413	doi: 10.1007/s00417-012-1994-8 [published Online First: 2012/05/05]
414	10. Akashi A, Kanamori A, Nakamura M, et al. The ability of macular parameters and circumpapillary
415	retinal nerve fiber layer by three SD-OCT instruments to diagnose highly myopic glaucoma.
416	Investigative ophthalmology & visual science 2013;54(9):6025-32. doi: 10.1167/iovs.13-
417	12630 [published Online First: 2013/08/03]
418	11. Nakanishi H, Akagi T, Hangai M, et al. Effect of Axial Length on Macular Ganglion Cell Complex
419	Thickness and on Early Glaucoma Diagnosis by Spectral-Domain Optical Coherence
420	Tomography. Journal of glaucoma 2016;25(5):e481-90. doi: 10.1097/IJG.0000000000000330
421	[published Online First: 2015/11/10]
422	12. Hung KC, Wu PC, Poon YC, et al. Macular Diagnostic Ability in OCT for Assessing Glaucoma in High
423	Myopia. Optometry and vision science : official publication of the American Academy of
424	Optometry 2016;93(2):126-35. doi: 10.1097/OPX.0000000000000776 [published Online First:
425	2015/12/26]
426	13. Wu J, Sebastian RT, Chu CJ, et al. Reduced Macular Vessel Density and Capillary Perfusion in
427	Glaucoma Detected Using OCT Angiography. Current eye research 2019;44(5):533-40. doi:
428	10.1080/02713683.2018.1563195 [published Online First: 2018/12/24]
429	14. Moghimi S, Zangwill LM, Penteado RC, et al. Macular and Optic Nerve Head Vessel Density and
430	Progressive Retinal Nerve Fiber Layer Loss in Glaucoma. Ophthalmology 2018;125(11):1720-
431	28. doi: 10.1016/j.ophtha.2018.05.006 [published Online First: 2018/06/17]

It is made available under a CC-BY-NC 4.0 International license . 19

Rezapour J

432 433	15. Gupta P, Cheung CY, Saw SM, et al. Peripapillary choroidal thickness in young Asians with high myopia. Investigative ophthalmology & visual science 2015;56(3):1475-81. doi:
434	10.1167/iovs.14-15742 [published Online First: 2015/02/07]
435	16. Yang H, Luo H, Gardiner SK, et al. Factors Influencing Optical Coherence Tomography Peripapillary
436	Choroidal Thickness: A Multicenter Study. Investigative ophthalmology & visual science
437	2019;60(2):795-806. doi: 10.1167/iovs.18-25407 [published Online First: 2019/02/28]
438	17. Flores-Moreno I, Lugo F, Duker JS, et al. The relationship between axial length and choroidal
439	thickness in eyes with high myopia. <i>American journal of ophthalmology</i> 2013;155(2):314-19
440	e1. doi: 10.1016/j.ajo.2012.07.015 [published Online First: 2012/10/06]
441	18. Ikuno Y, Tano Y. Retinal and choroidal biometry in highly myopic eyes with spectral-domain
442	optical coherence tomography. Investigative ophthalmology & visual science
443	2009;50(8):3876-80. doi: 10.1167/iovs.08-3325 [published Online First: 2009/03/13]
444	19. Sample PA, Girkin CA, Zangwill LM, et al. The African Descent and Glaucoma Evaluation Study
445	(ADAGES): design and baseline data. Arch Ophthalmol 2009;127(9):1136-45. doi:
446	10.1001/archophthalmol.2009.187
447	20. Ghahari E, Bowd C, Zangwill LM, et al. Macular Vessel Density in Glaucomatous Eyes With Focal
448	Lamina Cribrosa Defects. <i>J Glaucoma</i> 2018;27(4):342-49. doi:
449	10.1097/IJG.0000000000000922 [published Online First: 2018/02/21]
450	21. Rezapour J, Bowd C, Dohleman J, et al. The influence of axial myopia on optic disc characteristics
451	of glaucoma eyes. <i>Sci Rep</i> 2021;11(1):8854. doi: 10.1038/s41598-021-88406-1 [published
452	Online First: 2021/04/25]
453	22. Hongmei Song, Wenguan Wang, Sanyuan Zhao, Jianbing Shen, Kin-Man Lam; Pyramid Dilated
454	Deeper ConvLSTM for Video Salient Object DetectionProceedings of the European
455	Conference on Computer Vision (ECCV), 2018, pp. 715-731.
156	23 Riswas S. Lin C. Loung CK. Evaluation of a Myonic Normative Database for Analysis of Potinal
450	Nonce Eiber Lover Thickness, 1/1/1/2016;12/(9):1022, 9, doi:
457	10 1001 /iamaonhthalmol 2016 2242 [nublished Online Eirst: 2016/07/22]
450	24 Sool PP, Jooung JW, Bark KH, Glausema Detection Ability of Macular Canglion Cell Inner
455	24. Seoi DN, Seoung JW, Fark KH. Glaucoma Detection Ability of Macular Galgion Cell-Inner
400	visual science 2015:56/13):8306-13. doi: 10.1167/joys.15-181/11 [published Opline First:
401	2016/01/01]
402	25 Kim VK, Voo BW, Jeoung IW, et al. Glaucoma-Diagnostic Ability of Ganglion Cell-Inner Pleviform
405	2.5. Kim TK, 100 BW, Seoung SW, et al. Gladcoma-Diagnostic Abinty of Gangion Cen-inner Flexhorm
404	and the local & visual science 2016:57(14):5856.63 doi: 10.1167/joys.16.20116 [published
405	Opling First: 2016/11/02]
400	26 Rook SIL Kim KE, Kim VK, et al. Development of Tenegraphic Scoring System for Identifying
407	20. back 50, Kim Ke, Kim Ke, et al. Development of Topographic Scotting System for Identifying
400	19. doi: 10.1016/i.ophtha.2018.0E.002 [published Online Eirst: 2018/06/12]
409	27 Vang 7 Tatham AL Weinroh PN, et al. Diagnostic ability of macular ganglion coll inner playiform
470	27. Tang 2, Tatham AJ, Wenneb KN, et al. Diagnostic ability of macular gangion centimer prexitorm
471	tomography <i>BLoS One</i> 2015:10/5):e0125057. doi: 10.1271/journal.pone.0125057
472	28. Choi VI, Jooung JW, Bark KH, et al. Glaucoma detection ability of ganglion cell inner playiform
473	28. Choiry J, Jeoung JW, Park KH, et al. Glaucoma detection ability of ganglion cell-inner plexiform
474	layer thickness by spectral-domain optical concretence tomography in high myopia.
475	invesugative opininalinology & visual science 2013;34(3):2296-304. aoi: 10.116//10VS.12- 10530 [published Opling First: 2013/02/07]
470	29 Kim NP Log ES Soong GL at al. Comparing the ganglion cell complex and ratinal nerve fibre layer
478	measurements by Fourier domain OCT to detect glaucoma in high myonia. The British journal
479	of onbthalmology 2011.95(8):1115-21 doi: 10.1136/bio.2010.182/193 [published Online First:
480	2010/09/021
481	30 Ye I Wang M Shen M et al. Deen Retinal Canillary Pleyus Decreasing Correlated With the Outer
482	Retinal Layer Alteration and Visual Acuity Impairment in Pathological Myopia. Investigative

It is made available under a CC-BY-NC 4.0 International license . $$20\end{tabular}$

Rezapour J

483	ophthalmoloay & visual science 2020:61(4):45. doi: 10.1167/iovs.61.4.45 [published Online
484	First: 2020/04/29]
485	31. Yang D, Cao D, Zhang L, et al. Macular and peripapillary vessel density in myopic eyes of young
486	Chinese adults. Clinical & experimental optometry 2020;103(6):830-37. doi:
487	10.1111/cxo.13047 [published Online First: 2020/02/14]
488	32. Lee K, Maeng KJ, Kim JY, et al. Diagnostic ability of vessel density measured by spectral-domain
489	optical coherence tomography angiography for glaucoma in patients with high myopia.
490	Scientific reports 2020;10(1):3027. doi: 10.1038/s41598-020-60051-0 [published Online First:
491	2020/02/23]
492	33. Ho M, Liu DT, Chan VC, et al. Choroidal thickness measurement in myopic eyes by enhanced
493	depth optical coherence tomography. <i>Ophthalmology</i> 2013;120(9):1909-14. doi:
494	10.1016/j.ophtha.2013.02.005 [published Online First: 2013/05/21]
495	34. Harb E, Hyman L, Gwiazda J, et al. Choroidal Thickness Profiles in Myopic Eyes of Young Adults in
496	the Correction of Myopia Evaluation Trial Cohort. Am J Ophthalmol 2015;160(1):62-71 e2.
497	doi: 10.1016/j.ajo.2015.04.018
498	35. Wei WB, Xu L, Jonas JB, et al. Subfoveal choroidal thickness: the Beijing Eye Study.
499	<i>Ophthalmology</i> 2013;120(1):175-80. doi: 10.1016/j.ophtha.2012.07.048 [published Online
500	First: 2012/09/27]
501	36. Linsenmeier RA, Padnick-Silver L. Metabolic dependence of photoreceptors on the choroid in the
502	normal and detached retina. Investigative ophthalmology & visual science 2000;41(10):3117-
503	23. [published Online First: 2000/09/01]
504	37. Hammel N, Belghith A, Bowd C, et al. Rate and Pattern of Rim Area Loss in Healthy and
505	Progressing Glaucoma Eyes. <i>Ophthalmology</i> 2016;123(4):760-70. doi:
506	10.1016/j.ophtha.2015.11.018 [published Online First: 2016/01/10]
507	38. Sampson DM, Gong P, An D, et al. Axial Length Variation Impacts on Superficial Retinal Vessel
508	Density and Foveal Avascular Zone Area Measurements Using Optical Coherence
509	Tomography Angiography. Investigative ophthalmology & visual science 2017;58(7):3065-72.
510	doi: 10.1167/iovs.17-21551 [published Online First: 2017/06/18]
511	39. Li XX, Wu W, Zhou H, et al. A quantitative comparison of five optical coherence tomography
512	angiography systems in clinical performance. International journal of ophthalmology
513	2018;11(11):1784-95. doi: 10.18240/ijo.2018.11.09 [published Online First: 2018/11/20]
514	
515	

It is made available under a CC-BY-NC 4.0 International license .

21

Rezapour J

516 Figure Legends

- 517
- 518 **Figure 1:** Optic disc photograph (left), optical coherence tomography optic nerve head en
- 519 face image (middle) and optical coherence tomography macula posterior pole image (right)
- of an eye with (A) no axial myopia (axial length = 23.8 mm), (B) mild axial myopia (axial
- 521 length = 24.7 mm and (C) high axial myopia (axial length = 29 mm).

- 523 Figure 2: Sectoral and global thickness distribution of the Spectralis GCIPL thickness (1A),
- 524 Spectralis macular RNFL thickness (1B), Spectralis GCC thickness (1C), Avanti GCC
- 525 thickness (1D), Avanti macular vessel density (1E) and Spectralis macular choroidal
- 526 thickness (1F) in non-myopic, mild myopic and highly myopic glaucoma eyes.
- 527 Abbreviations: GCC; ganglion cell complex, GCIPL; ganglion cell inner plexiform layer,
- 528 RNFL; retinal nerve fiber layer

A AL ≤ 24 mm

B 24 mm < AL \leq 26 mm

C AL > 26 mm

