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Abstract: Prosthetics and orthotics have been recognized for decades as a potential means to 

restore hand function and independence to individuals living with impairment due to stroke. 

However, 75% of stroke survivors, caregivers, and health care professionals (HCP) believe 

current practices are insufficient, specifically calling out the upper extremity as an area where 

innovation is needed to develop highly usable prosthetics/orthotics for the stroke population. A 

promising method for controlling upper limb technologies is to infer movement intent non-

invasively from surface electromyography (EMG) activity. While this approach has garnered 

significant attention in the literature, existing technologies are often limited to research settings 

and struggle to meet stated user needs. To address these limitations, we have developed the 

NeuroLife® EMG System, which consists of a wearable forearm sleeve with 150 embedded 

electrodes and associated hardware and software to record and decode surface EMG. Here, we 

demonstrate accurate decoding of 12 functional hand, wrist, and forearm movements, including 

multiple types of grasps from participants with varying levels of chronic impairment from stroke, 

with an overall accuracy of 77.1±5.6%. Importantly, we demonstrate the ability to decode a 

subset of 3 fundamental movements in individuals with severe hand impairment at 85.4±6.4% 

accuracy, highlighting the potential as a control mechanism for assistive technologies. 

Feedback from stroke survivors who tested the system indicates that the sleeve's design meets 

various user needs, including being comfortable, portable, and lightweight. The sleeve is in a 

form factor such that it can be used at home without an expert technician and can be worn for 

multiple hours without discomfort. Taken together, the NeuroLife EMG System represents a 

platform technology to record and decode high-definition EMG for the eventual real-time control 

of assistive devices in a form factor designed to meet user needs. 

Introduction  

Stroke is a leading cause of long-term disability in the United States, affecting more than 

800,000 people per year [1]. Unilateral paralysis (hemiparesis) affects up to 80% of stroke 

survivors, leaving many to struggle with activities of daily living (ADLs) involving manipulating 

objects such as doors, utensils, and clothing due to decreased upper-limb muscle coordination 

and weakness [2]. Restoration of hand and arm function to improve independence and overall 

quality of life is a top priority for stroke survivors and caregivers [3]. Intensive physical 

rehabilitation is the current gold standard for improving motor function after stroke. 

Unfortunately, 75% of stroke survivors, caregivers, and health care providers report that current 

upper extremity training practice is insufficient [4]. The development of user-centric 
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neurotechnologies to restore motor function in stroke survivors could address these unmet 

clinical needs through a range of different mechanisms such as improving motivation, 

enhancing neuroplasticity in damaged sensorimotor networks, and enabling at-home therapy. 

Assistive technologies (AT) hold potential to restore hand function and independence to 

individuals with paralysis [5]. ATs, including exoskeletons and functional electrical stimulation 

(FES), can assist with opening the hand and also evoke grips strong enough to hold and 

manipulate objects [6]. Additionally, these systems have been used therapeutically during 

rehabilitation to strengthen damaged neural connections to restore function [7]. A wide variety of 

mechanisms to control ATs have been investigated including voice [8], switch [9], position 

sensors [10], electroencephalography (EEG) [11], electrocorticography (ECoG) [12], intracortical 

microelectrode arrays (MEA) [13], and electromyography (EMG) [14]. Unfortunately, no single 

system has simultaneously delivered an intuitive, user-friendly system with a high degree-of-

freedom (DoF) control for practical use in real-world settings [4]. 

Recent advances in portable, high-definition EMG-based (HDEMG) systems have the 

potential to overcome several of these barriers and deliver an intuitive and entirely non-invasive 

AT control solution [15,16]. While various EMG-based ATs exist, including the MyoPro Orthosis 

that is commercially available [15], most of these systems use a small number of electrodes and 

rely on threshold-based triggering [14]. Consequently, these systems have limited DoF control 

which limits their practical use. Conversely, HDEMG systems leveraging machine learning 

approaches to infer complex movement intention can provide high DoF control, significantly 

expanding functional use cases and the proportion of the stroke population that could benefit 

from these technologies [16,17]. Currently, HDEMG systems are primarily confined to the 

research setting and have usability limitations, including being difficult to set up, requiring 

manual placement of electrodes, and being non-portable and bulky, which can hinder the 

successful translation of technologies [4]. 

To address these limitations, we have recently developed the NeuroLife® EMG System 

to decode complex forearm motor intention in chronic stroke survivors while simultaneously 

addressing end user needs. The EMG system was designed to be used as a control device for 

various end effectors such as FES systems and exoskeletons. Additionally, the system was 

designed to meet user needs in the following domains that have previously been identified as 

high-value for stroke survivors: donning/doffing simplicity, device setup and initialization, 

portability, robustness, comfortability, size and weight, and intuitive usage [4]. The sleeve is a 

wearable garment consisting of up to 150 embedded electrodes that measure muscle activity in 

the forearm to decode the user’s motor intention. A single zipper on one edge of the sleeve 

allows for a simplified and streamlined donning and doffing by the user and/or a caregiver. The 

sleeve design facilitates an intuitive setup process as embedded electrodes are consistently 

placed on the arm eliminating the need for manual electrode placement on specific muscles. 

The lightweight stretchable fabric, similar to a compression sleeve, was chosen to enhance 

comfort for long-term use. Overall, these design features of the sleeve help address critical 

usability factors for ATs [4].  

In this work, we demonstrate that our wearable EMG system can extract task-specific 

myoelectric activity at high temporal and spatial resolution to resolve individual movements. 

Based on EMG data collected from seven individuals with upper extremity hemiparesis due to 

stroke, trained neural network machine learning models can accurately decode muscle activity 

in the forearm to infer movement intention, even in the absence of overt motion. We assess the 
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viability of this technique for real time decoding, demonstrating the feasibility of controlling ATs 

based on motor intention. Finally, we present usability data collected from the study participants 

that highlight the user-centric design of the sleeve. This data will be used to inform future 

developments to ultimately deliver an effective EMG-based neural interface that meets end user 

needs. Together, we present a capable, user-centric EMG-based neural interface for the 

detection of motor intention after stroke, with usability guidelines that will inform future device 

improvements. 

Methods 

Participants 
Eight individuals (3 female, 4 male; 60±5 years) with a history of stroke participated in a 

study that recorded EMG using the NeuroLife EMG System while attempting various hand and 

wrist movements. Additionally, data was collected from seven able-bodied individuals (4 female, 

3 male; 27±1 years) to serve as a general comparison of EMG data, and to benchmark 

decoding algorithms. Data was collected as part of an ongoing clinical study being conducted at 

Battelle Memorial Institute and approved by the Battelle Memorial Institute Institutional Review 

Board (IRB No. 0779 and IRB No. 0773, respectively). Informed consent was obtained from all 

participants prior to any experimental procedures. Demographics on study participants with 

stroke are provided in Table 1, and for able-bodied participants in Supplementary Table 1. 

Eligibility criteria were set to recruit adult chronic stroke survivors with hemiparesis affecting the 

arm and hand and who were able to follow 3-step commands and communicate verbally. 

Specific inclusion and exclusion criteria are listed in the Supplementary Methods. 

 During the first session prior to EMG data collection, standardized clinical assessments 

were performed by a licensed occupational therapist in all participants with stroke. These 

included the upper extremity section of the Fugl-Meyer (UE-FM) to assess upper extremity 

motor impairment, the Box and Blocks test to assess manual dexterity, and the Modified 

Ashworth test to assess spasticity of the finger, wrist, and elbow flexors. Based on 

predetermined exclusion criteria, one participant was removed from data analysis due to 

hemispatial neglect affecting their ability to consistently follow movement cues. 

Experimental Setup 
Participants were seated facing a computer monitor with their arms placed on a table, 

and the sleeve was placed on the paretic arm for participants with stroke, and the right arm for 

able-bodied participants, regardless of handedness (Figure 1). The sleeve comprises a 

stretchable fabric with an embedded array of electrodes (Supplementary Figure 1). Depending 

on the forearm size of the participant, a small, medium, or large sized sleeve was used 

containing 128 electrodes (64 channel pairs), 142 electrodes (71 channel pairs), or 150 

electrodes (75 channel pairs) respectively. Each electrode is 12mm diameter, spaced 25mm 

apart, and wrap the forearm from elbow to wrist. With a flexible and lightweight nylon-Lycra 

hybrid material, the sleeve wears like a compression sleeve and weighs 180, 195, and 220 

grams for the small, medium, and large sleeves, respectively. A zipper on the ulnar edge of the 

sleeve allows for easy donning and doffing. Prior to donning, an electrode solution spray 

(Signaspray, Parker Laboratories, Fairfield, NJ) was applied to the participant’s forearm to 

improve signal quality. Bipolar EMG signals were sampled at 3KHz using an Intan Recording 

Controller (Intan Technologies, Los Angeles, CA). An embedded electrode in the sleeve near 

the elbow was used as a reference for all bipolar amplifiers. The sleeve was connected to a 
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custom-built EMG signal acquisition module, which then connected to a laptop computer (Figure 

1 and Supplementary Figure 1a). 

 The participants were instructed to attempt a series of hand, wrist, and forearm 

movements. A series of images of the desired hand movement was presented on a computer 

monitor, and the participants were instructed to attempt each movement shown to the best of 

their ability. Participants were instructed to attempt the movement at 25-50% maximal effort to 

minimize muscle fatigue and co-contractions throughout the session.  

 The following movements were collected during the session: Hand Flexion, Hand 

Extension, Index Extension, Thumb Flexion, Thumb Extension, Thumb Abduction, Forearm 

Supination, Forearm Pronation, Wrist Flexion, Wrist Extension, Two Point Pinch, and Key Pinch. 

These movements were identified by a licensed occupational therapist as highly relevant 

functional movements for dexterous hand use, and these movements have been used in similar 

studies [18]. Recording blocks consisted of a single movement repeated 10 times (referred to as 

“single blocks”), or multiple movements repeated within a single recording block (referred to as 

“mixed blocks”). Every block began with an 8s rest period, followed by alternating movement 

and rest periods. During mixed blocks, a collection of movements (e.g., hand flexion, hand 

extension, forearm supination) were randomly presented to the participant with interleaved rest 

periods. Before beginning the block, participants were shown the movement(s) in the upcoming 

block. For participants with stroke, the time for each movement was randomly selected from a 

uniform distribution between 4-6s, and rest time was randomly selected between 4-6s. For able-

bodied participants, the movement and rest times were both set randomly between 2-3s. The 

cue and rest times were shortened in able-bodied participants due to faster movement times 

and the expectation of simpler decoding compared to the participants with stroke. In the last 

recording session, a usability questionnaire assessing user needs (adapted from [4]) was given 

to subjects to evaluate the usability of the current sleeve design (responses from participants 

are presented in Supplementary Table 3). 

Data was collected across 3-4 sessions with each participant with stroke, and in 1 

session with able-bodied participants. Each session was <2 hours. For participants with stroke, 

data from all sessions except the last half of the final session were used to train the classifiers. 

Total amount of training data per movement for participants with stroke are shown in 

Supplementary Figure 3. For able-bodied experiments, data was collected in a single session 

with a total of 10 repetitions for each movement with the first 5 repetitions used for training, and 

the last 5 repetitions used for testing, corresponding to 7.5 seconds of data used for both 

training and testing. 

To assess each participant’s ability to perform the movements without any assistance, 

each movement was scored by a licensed occupational therapist based on a scoring scheme 

adapted from the Action Research Arm Test (ARAT) [18]. The “observed movement score” was 

ranked using the following categories: 0=no movement; 1=incomplete range of motion; 

2=complete range of motion but impaired; 3=normal. 

Pre-processing, windowing, and feature extraction 
 The EMG data was bandpass filtered between 20-400Hz using a 10th order Butterworth 

filter, and a 60Hz notch filter was applied similar to previous studies [20]. Following pre-

processing, the root mean square (RMS) was extracted using 100ms data windows with no 

overlap. An example of the RMS extraction for multiple movement sets are shown in Figure 
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2B,C. For decoding of movement intent during a given time window, the current window and 

three preceding windows were used, totaling 400ms of RMS data used for each prediction. 

Next, the training data was normalized (mean=0, variance=1) and the testing data was 

normalized using the mean and variance from the training data.  

Classification of movement intention in stroke participants was performed in two different 

ways: (1) using the 2.5s center during a cue or rest period, or (2) on the continuous timeseries 

data. For the 2.5s center window method, the middle 2.5s of each cue and rest period during a 

block was extracted (Figure 3A). This resulted in a total of 22 predictions of 100ms binned RMS 

data per cue (2.5s with the first three 100ms bins removed for containing out of window data at 

the beginning of the cue). This method was applied to both the training and testing datasets to 

reduce noise by removing the transition periods, similar to previous studies [21]. This dataset 

was used to evaluate different machine learning models for decoding the user‘s movement 

intent. In able-bodied subjects, classification was performed as described above but using the 

1.5s center during a cue or rest period, resulting in a total of 12 predictions. These data are 

presented in Figure 3 for participants with stroke, and Supplementary Figure 5 for able-bodied 

participants. 

For decoding of continuous timeseries data, we performed a dynamic cue shifting 

technique to account for the variability in the participant's ability to respond to the onset and 

offset of cues. Latency between cue onset and the onset of EMG activity is a persistent problem 

within decoding that can lead to significant deficits in algorithm performance and is exacerbated 

in data recorded from participants with neurological impairments such as stroke. Traditionally, 

these onset and offset variabilities are handled by shifting cues a predetermined amount of time 

based on reaction times [22], or can be assigned for each cue manually [18]. However, these 

methods still fail to capture the full distribution of onset and offset variability. Here we use an 

automated approach to dynamically shift cue labels to match the EMG activity. The average 

EMG signal was aligned with the intended cue times, and residuals were calculated between 

the EMG signal and the signal mean for each cue segment. The transition point between 

segments was then iteratively optimized to minimize the sum of squared residuals 

(Supplementary Figure 4). Cue timings were shifted up to a maximum time of 2s beyond the 

intended cue time. These data are presented in Figure 5. 

Classification 
Classification was performed using all recording blocks (single and mixed). Importantly, the 

testing consisted of the final 4 recording blocks of data collected for that subject. In other words, 

none of the training set occurred later in time than the testing set to prevent data leakage of time 

dependent signal fluctuations that can significantly influence decoding performance. 

 

Three classifiers were compared, including a logistic regression (LR) model, support vector 

machine (SVM), and a neural network (NN). For the LR and SVM models, data was additionally 

preprocessed using principal component analysis for dimensionality reduction, keeping 

components that accounted for >95% of the variance. LR and SVM models were trained using 

the scikit-learn toolbox [23] in Python 3.8. To optimize hyperparameters for both LR and SVM, a 

grid search on the training data with 5-fold cross validation was applied to tailor a specific model 

for each subject. Hyperparameter C was varied from 1e-4 to 1e4 for LR, and hyperparameters 

C and Gamma were varied from 1e-4 and 1e4 for SVM. The best performing model 

hyperparameter combinations for each were selected for evaluation. 
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The NN was developed in Python 3.8 using the FastAI package [24]. FastAI defaults were 

used for training except where noted. The model architecture takes an input of a flattened N 

channels x 4 array from the N channels of the sleeve and 4, 100ms windows of mean RMS 

signal. The input layer connects to two fully-connected dense layers, with size 1000 and 500 

respectively, with batch normalization and the ReLU activation function between layers. The 

final layer had 13 classes corresponding to the 12 cued movements and rest. Finally, a Softmax 

activation function was applied to the model outputs to provide prediction probabilities for each 

of our movements. The predicted movement for a given time point was the movement with the 

greatest prediction probability. The training procedure used label smoothing cross entropy loss 

(p=0.9) and the Adam optimizer. During training, dropout was applied to each layer with 20% 

probability to prevent overfitting. The learning rate was optimized using the FastAI learning rate 

finder tool [24]. Each model was trained for 400 epochs with early stopping criterion, using the 

one cycle training policy from FastAI. 

 To measure performance, we use two complementary metrics. Accuracy is defined as 

the percentage of 100ms time bins predicted by the classifier to be the same as ground truth. 

Accuracy is a standard classification metric and provides a high temporal resolution metric of 

performance. We also present success rate as a decoding performance metric, similar to 

previous studies [22]. A movement is considered successful if there is at least 1s continuous 

period within a cue that is correctly decoded as the intended movement. The success rate is 

then calculated as the percentage of cues which are considered successful. This metric 

approximates an observer rating each cue as a binary success or failure and is more aligned 

with how a user would perceive performance.  

 
All comparisons were planned in the experimental design a priori. Normality of 

distributions were tested using Lilliefors tests. Significant differences were determined using 

paired t-tests (Figure 3D, 4A) and unpaired t-tests where appropriate. Significant differences for 

multiple comparisons were determined using one-way ANOVAs followed by Tukey HSD tests 

(Figure 3D). Alpha of 0.05 were used for single comparisons. To correct for multiple 

comparisons, a Bonferroni-corrected alpha of 0.0167 was used for Figure 3C and an alpha of 

0.025 was used for Figure 5A. Statistical tests for each comparison are noted in the text. 

Statistical analysis was performed in Python 3.8 using SciPy and Statsmodels. In all figures, * 

indicates p<0.05, ** indicates p<0.01, and *** indicates p<0.001. Error bars indicate mean ± 

SEM in all figures. 

Results 

Movement intention can be inferred from forearm EMG activity of participants with 

stroke using the NeuroLife EMG System 
To demonstrate the utility of the NeuroLife EMG System to sense and interpret muscle 

activity in the forearm, we first assessed the ability to decode hand, wrist, and forearm 

movement intention. Participants were guided through various blocks of movements and EMG 

data was recorded. To extract the most stable segment of the signal, the middle 2.5-seconds of 

each cue and rest period was isolated to remove transition periods (Figure 3A). By removing the 

transition periods and focusing on periods of consistent activity we are left with a standardized 

dataset to compare performance of various models. 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 12, 2021. ; https://doi.org/10.1101/2021.09.07.21262896doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.07.21262896


Heatmaps of EMG activity across the sleeve are shown for one participant with stroke 

(Figure 3B). These heatmaps highlight the visual differences between forearm EMG activity 

across the various movements. EMG activity is less localized in the heatmaps of participants 

with stroke compared to the able-bodied participants (Supplementary Figure 2). This trend is 

consistent across stroke severity, with the more severely impaired participants having less 

localized forearm EMG activity (Supplementary Figure 9). These results are consistent with 

previous reports of lack of independent muscle control following stroke [25]. 

Decoding of EMG activity can be performed using a variety of different techniques, we 

therefore evaluated three commonly used machine learning decoding approaches including a 

logistic regression (LR) [26], support vector machine (SVM) [27], and neural network (NN) [28]. 

To validate our decoding pipeline, we tested decoding performance in able-bodied subjects 

across all 12 movements with the expectation of highly accurate decoding. Overall, the NN 

obtained 96.8±0.5% accuracy and outperformed LR and SVM models which had 91.5±0.8% 

and 90.8±1.2% accuracy respectively (Supplementary Figure 5; Able-Bodied Model: paired t-

test NN vs. LR, p=5.8 x 10-5; NN vs. SVM, p= 1.6 x 10-3). These decoding results are consistent 

in the dataset comprised of participants with stroke attempting all 12 movements, where the NN 

obtained 77.1±5.6% accuracy, and outperforms the LR (69.0±5.4%) and SVM models 

(66.6±6.9%) (Figure 3C; Stroke Model: paired t-test NN vs. LR, p=9.1 x 10-4; NN vs. SVM, p=9.3 

x 10-3). In summary, the NN outperforms the LR and SVM when decoding forearm EMG activity 

to infer movement intention. All subsequent analysis is performed in participants with stroke and 

using the NN for decoding. 

Next, we investigated the relationship between the participant's ability to perform a 

movement unassisted and our ability to accurately decode that movement. Generally, decoding 

performance improved as the observed movement score increased (Figure 3D; Observed 

Movement Score, One-way ANOVA, Accuracy (%): F[3, 80] = 13.38, p= 3.7 x 10-7). A 

comparison of decoding accuracy based on movement score was computed using a Tukey 

HSD test (Supplementary Table 2). For movements with visible motion (score >= 1), the overall 

decoding accuracy was 85.7±3.2% (Chance: 27.9%), whereas for movements where the 

participant had no visible motion (score=0) the accuracy dropped significantly to 27.3±3.2% 

(Chance: 4.0%) (Movement Ability: Movement score=0 vs. Movement score=1-3: unpaired t-

test, p=3.9 x 10-9). 

Next, we investigated decoding performance of individual movements in participants with 

stroke. The confusion matrix with individual movements for one subject is shown in Figure 3E. 

The best performing movements across subjects were Rest, Wrist Flexion, and Index Extension 

with an average accuracy of 93.3±6.5% (Figure 3E, right column). On average across subjects, 

the worst performing movements were Forearm Supination and Thumb Abduction, with an 

average accuracy of 39.4±9.9% (Supplementary Figure 6).  The success rate per movement 

type for one subject is presented in the right column of the confusion matrix (Figure 3E). Overall 

grand average success rate across all movements achieved 75.9±4.2%. The top three 

movements had an average success rate of 93.2±7.6% (Successes/Attempts; Rest: 409/425, 

Index Extension: 23/30, Wrist Flexion: 20/30), with the bottom two movements obtaining a much 

lower success rate of 36.0±11.5 (Successes/Attempts; Forearm Supination: 14/43, Thumb 

Abduction: 17/43).  
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Decoding movement subsets to achieve high performance in participants with severe 

stroke impairments 
As the decoding performance of our algorithms was dependent on the presence of 

visible movement in our participants, we next investigated the association of hand impairment 

severity based on the Upper Extremity Fugl-Meyer Hand Subscore (UEFM-HS) with observed 

movement scores and decoding performance (Figure 4A). Both the observed movement score 

and decoding performance in participants with severe hand impairment (UEFM-HS < 3) is 

significantly different than in individuals with moderate or mild hand impairment (UEFM-HS ≥ 3) 

(Average movement score: unpaired t-test UEFM-HS < 3 vs. UEFM-HS ≥ 3, p=0.02; Decoding 

accuracy: unpaired t-test UEFM-HS < 3 vs. UEFM-HS ≥ 3, p=0.006). Our complete 12-

movement survey is helpful for understanding what movements may be decodable for each 

participant and may be appropriate for facilitating ATs in individuals with moderate or mild hand 

impairments.  However, those with severe hand impairments are unlikely to be able to 

accurately control that many movements. Instead, it may be desirable to subset down to a 

smaller number of movements, customized to the individual, that they can accurately control.  

First, we assessed if sufficient signal was present to decode general muscular activity 

during cued movement periods compared to rest. Practically, this decoding scheme would 

enable an individual with severe hand impairment to control an AT with a single movement. We 

separated the problem into two classes (Rest vs. Move) where the “Move” class consists of 

combining the 12 different movements into one class (Figure 4B). The NN decoder was able to 

achieve high performance in individuals with severe hand impairment with 86.7±2.6% accuracy 

and 85.2±3.6% success rate (Successes/Attempts; Rest: 164/185, Move: 151/185). These 

results indicate that the surface EMG collected from individuals with severe hand impairment is 

sufficient for binary scenarios. 

Encouraged by the binary decoder performance, we extended our analysis to include 

key functional movements for restoring grasp function, namely Rest, Hand Flexion, and Hand 

Extension (Figure 4C). With these key movements in individuals with severe hand impairment, 

the decoding performance achieved 85.4±6.4% accuracy and 88.0±7.7% success rate 

(Successes/Attempts; Rest: 45/46, Hand Flexion: 22/23, Hand Extension: 14/23). While, 

decoding the movements to enable hand flexion and hand extension is ideal for intuitive control 

of an AT, alternatively decoded movements with the greatest performance can be mapped to 

the most impactful functional movements. Thus, we tested decoding only the top performing 

movements for each subject (Figure 4D). When comparing Rest and the top two movements for 

each individual, decoding performance achieved 91.0±3.9% with grand average success rate of 

90.6±4.2% (see Supplementary Table 4 for full details). This performance is comparable to the 

decoding performance of individuals with UEFM-HS ≥ 3 on 12 movements (87.6±3.4%) and 

provides a reasonable alternative for participants with more severe impairments. 

Decoding continuous forearm EMG data in simulated real-time scenarios in chronic 

stroke survivors 
To demonstrate the utility of the NeuroLife EMG System to interpret muscle activity from 

the forearm to act as a control signal for assistive devices, we next tested our decoding 

algorithms in simulated real-time scenarios. Following a stroke, the ability to contract and relax 

muscle groups is slowed and highly variable [29], which consequently makes automated 

labeling of cues using a static time shift (e.g., 800ms) for training machine learning models 

imprecise. To account for this cue onset and offset variability, we first performed a dynamic cue 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 12, 2021. ; https://doi.org/10.1101/2021.09.07.21262896doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.07.21262896


shifting technique to automatically shift cue labels to match EMG activity (Supplementary Figure 

4A). An average of 843±95ms of cue data per cue change or a grand average of 16.1±1.0% of 

the full cue data stream across all subjects was shifted using this technique (Supplementary 

Figure 4B). To verify this method, we compared decoding performance with and without cue 

shifting. Dynamic cue shifting significantly improved decoding performance achieving 

74.7±5.0% overall with no cue shift achieving 62.5±6.7% (Figure 5A; Cue Shift: paired t-test 

Dynamic vs. None, p=0.020). Comparing dynamic cue shifting with a static 800ms shift 

(70.5±5.4% decoding accuracy) representing an estimate of the average dynamic shift, we 

determined no significant difference (Figure 5A; Cue Shift: paired t-test Dynamic vs. Static 

800ms, p=0.22). One subject (13762) had an increase in decoding performance from a static 

shift with the rest of the subjects experiencing a decrease or no change in performance. 

Therefore, a dynamic cue shifting technique may present a more robust and automated solution 

to account for differences in subjects. Improvement in decoding performance from using 

dynamic cue shifting is likely due to 1) improved accuracy of the timing of cue onset and offsets 

in the training data which gives a better representation of each movement and thus better 

decoding performance, and 2) more accurate testing alignment and better testing parameters. 

These results suggest that cue labeling can substantially affect overall decoding performance in 

real-time decoders, and intelligent cue labeling can improve overall performance. 

Using the dynamic cue shifting technique, we investigated decoding performance of 

individual movements in the simulated real-time dataset. The confusion matrix with individual 

movements for a single subject is shown in Figure 5B. The best performing movements across 

subjects were Rest, Wrist Flexion, and Wrist Extension, with an average accuracy of 89.7±7.3% 

for these movements. The worst performing movements across subjects were Forearm 

Supination and Thumb Abduction, with an average accuracy of 29.5±9.0%. A continuous time 

series plot of movement probabilities is shown in Figure 5D. Shaded regions indicate the cued 

movement with the probability of the movement type decoded based on motor intention. 

To assess whether the NN decoder could be used in real-time situations, inference 

testing was conducted using a Surface Book 2 with NVIDIA GeForce GTX 1060 GPU. The 

trained NN decoder was exported and loaded in using the Open Neural Network Exchange 

(ONNX) Runtime [30] for inference testing. NN forward model prediction times on average took 

less than 1ms (307±49µs). Taking the entire preprocessing pipeline into consideration in 

addition to the NN forward prediction, the total inference time was 23.1±4.4ms. Since the 

resulting inference time is under 100ms (time bin for RMS feature calculation), the NN model is 

suitable for real-time inference. 

The NeuroLife Sleeve meets usability needs of chronic stroke survivors 
Usability is a critical factor in the long-term adoption of an AT. Inconveniences of setup 

and comfort, as well as frustrations with reliability can often lead to eventual device 

abandonment. Therefore, in our final EMG recording session with each participant, we collected 

initial usability data of the NeuroLife Sleeve for use in chronic stroke survivors to help guide 

future development efforts. The questions posed to participants here were adapted to 

investigate overarching themes mentioned by stroke survivors, caregivers, and HCPs for the 

use of an assistive technology [4]. Participants answered each question on a 1 to 5 scale, and 

questions were targeted at the following categories: simple to apply, comfort for long-term use, 

freedom of movement during use, functionality / lightweightness and portability, potential for 

clinical and home use, and overall aesthetic design of the device (Supplementary Table 5). 

Summary data from the usability questionnaire is presented in Figure 6. For usability metrics 
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with more than one question (e.g. simple to apply), the mean value was scored for that 

assessment. 

In general, participants were optimistic that they could don and doff the NeuroLife Sleeve 

with the help of a caretaker in their home (3.60±0.28). Concerns were generally centered 

around the pre-application of the conductive spray and relative positioning of the system, which 

we are actively addressing in our next design iteration. During sessions, participants had the 

sleeve donned for >1.5 hours, and all participants reported general satisfaction with the overall 

comfort of the device (4.57±0.20). ATs should not hinder movement so that the user can 

successfully perform rehabilitation exercises or complete normal daily activities while using the 

device. The sleeve was designed with a lightweight stretchable fabric, and participants were 

generally satisfied with the ability to move their arm while the sleeve was donned (4.07±0.32). 

Participants were highly confident (4.07±0.22) that they could wear the sleeve doing functional 

light activities around their home, suggesting that the sleeve is non-restrictive, lightweight, 

portable, and promising for home use. A commonly overlooked barrier to widespread adoption 

of assistive technologies is user acceptance of the overall look and feel of the device [4]. 

Overall, all participants were extremely satisfied with the overall design of the sleeve 

(4.36±0.24). In general, they were all very excited for the opportunity to use the sleeve with the 

”general favorability” metric receiving the highest score of 4.79±0.15. In summary, the usability 

results from the current study provide promising early data that the NeuroLife Sleeve can meet 

end user needs with directions on where to improve for future iterations. 

Discussion 

In this study, we demonstrate decoding of motor intention using the NeuroLife EMG 

System in people with upper-limb hemiparesis due to chronic stroke. Based on high-density 

surface EMG data collected from the forearm,12 functional hand, wrist and forearm movements 

were classified with high accuracy. Overall decoding accuracy was associated with the 

participant’s ability to perform the movement (quantified here as observed movement score), 

with greater functional movement corresponding with higher decoding accuracy. Even in 

movements with little to no movement capacity (movement score <= 1), the system was able to 

accurately differentiate movement intent, albeit with some decrease in performance. This 

demonstrates the NeuroLife EMG System's ability to infer movement intention in stroke 

survivors with severe motor impairments. 

Previous studies have demonstrated decoding of motor intention using surface EMG in 

the upper extremity in chronic stroke survivors [18,31–33]. In these studies, a range of machine 

learning techniques, impairment levels of the participants with stroke, and types of movements 

have been investigated. Classification accuracy was comparable to previous work with similar 

movement sets, although differences in study methodology restrict direct comparison. Of note, 

recent studies have shown encouraging results with a limited set of manually placed electrodes, 

which may account for some performance differences [18,32]. Moreover, localizing electrodes to 

muscular activity critical to grasp production can be an effective strategy to minimize system 

complexity. The optimization of electrode placement and reduction of hardware complexity is a 

planned future direction for the NeuroLife Sleeve. Additional studies have used similar numbers 

of channels as we have presented [18,34,35]. However, the systems used in the previous 

studies were laboratory grade EMG systems that require lengthy and difficult setup processes 

by trained technicians. Usability around donning/doffing is a key concern for adoption of AT, and 

systems with extensive setup procedures risk poor acceptance in clinics, rehabilitation settings, 
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and the home. Prior studies have also shown that time domain features, such as RMS, 

combined with NN approaches can outperform more classical statistical or machine learning 

approaches. Our results agree with these findings, further supporting that high density EMG 

recordings have sufficient complexity to leverage the recent developments in deep learning. We 

extend the findings of previous studies by presenting an easy to don and doff wearable device 

that removes the need for manual placement of electrodes. This reduces the necessary setup 

time and ensures consistent placement of recording electrodes across sessions. Additionally, 

we present data to support the real time performance of the decoding paradigm. Our device can 

decode motor intention with high performance across a variety of subjects, with fast enough 

speed to reliably perform inference alongside data collection. Finally, we present a viable, 

automated cue shifting method that removes the necessity for manual relabeling and improves 

system performance. 

Usability is an important factor for clinical technologies to assist with stroke rehabilitation 

by supporting motivation for consistent and active training. While existing AT solutions show 

promising results, these systems tend to focus on the technology and often fall short in the user-

centric designs. Most clinical ATs involve manual placement of patch electrodes and long 

calibration procedures which limits the amount of practice that can be achieved within a given 

rehabilitation session. Furthermore, many systems are bulky and lack portability, which can limit 

patient adoption for use outside of rehabilitation training and into the home [36]. Here, we 

demonstrate that the NeuroLife EMG System can address many usability concerns of current 

technologies while providing robust decoding of motor intention. In combination with soft 

exoskeletons or FES, the sleeve can drive intention-based training coupled with functional 

movements in a user-centric form factor. 

We collected and report user feedback to quantify features of the system that end-users 

were satisfied with, and identify areas for further development efforts. Based on user feedback 

from the current study, the sleeve design meets various end user needs. The design allows for 

use on either arm, and the stretchable, lightweight fabric design was reported by participants to 

be comfortable and does not limit natural arm movements. Aesthetically, subjects were pleased 

with the sleeve design and advocated that they would use the system at home for rehabilitation 

and activities of daily living given the opportunity. Participants mostly agreed that the sleeve was 

straightforward to don and doff during the study with the help of the researchers, and believed 

that they could apply the sleeve with the help of a caretaker. However, participants identified the 

simplicity to apply the sleeve as an area that is currently lacking, and participants were not 

confident in being able to apply the sleeve independently without assistance. This is an 

identified area for future development and will be the focus of next design iterations to enable 

at-home use. Despite this current usability limitation, participants indicated that not only would 

they feel comfortable performing rehabilitation therapy at home, but are excited for the 

possibility of using the sleeve as a therapy tool indicated by the highest score for general 

favorability. 

The present study provides an initial demonstration of the NeuroLife EMG System to 

decode motor intention in chronic stroke survivors while simultaneously meeting needs, but 

some limitations merit consideration. While the reported results indicate that the Neurolife EMG 

System can be used to decode motor intention in a package that meets end user needs, there is 

still room for improvement in various areas including refinement of decoding algorithms, the 

sleeve design and related hardware, and eventual applications. Future work refining decoding 

algorithms will focus on overall improvements to decoding performance by leveraging many of 
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the advancements made in recent years in the field of deep learning. We will investigate the use 

of more complex neural network models, including recurrent neural networks (RNNs) and 

transformers optimized for time series modeling and which could improve overall decoding 

accuracy, specifically for participants with limited movement capability. Additionally, we will 

apply various machine learning techniques including unsupervised learning to expedite setup 

and calibration times for new users to address this important aspect of usability. Improvements 

to data quality itself can be accomplished with visual reinforcement to subjects. An online 

decoding system that displays the decoded intention may be more beneficial to participant 

engagement over the image cues used in the current study. While we provide the initial proof-of-

concept demonstration of the NeuroLife EMG System here, the data collected during the study 

was not representative of how the system will be ultimately deployed as an assistive device. For 

example, in the current study participants kept their elbow stationary on the table during 

movements and did not interact with objects, both of which can significantly influence forearm 

EMG activity and thus decoding performance. Future studies will focus on capturing training 

data in more complex situations, such as during reach and grasp tasks and object 

manipulations, to develop decoders robust to movement. Similarly, the decoding performance 

presented here was in the absence of assistive device control. Commonly used assistive 

devices including FES and exoskeletons may interfere with EMG activity when active and thus 

can significantly affect decoding performance [31,37]. Our group is working to integrate FES 

functionality within the same EMG recording electrodes to eliminate the need for additional 

hardware such as an exoskeleton or additional patch electrodes. Future work from our group 

will focus on developing algorithms that can decode EMG during FES activity. With a technology 

that incorporates EMG and FES into a single consolidated sleeve, the system has the potential 

to help support motor recovery and assist in ADLs [14,22]. 

Conclusion 

The focus of this study was to validate the NeuroLife EMG System by decoding hand, 

wrist, and forearm movements and collect usability data from participants with stroke. We 

demonstrate accurate EMG decoding of 12 different movement classes with a neural network in 

both able-bodied and stroke participants. Decoding accuracy was associated with the 

movement ability of the participant. The decoding results are consistent with similar myoelectric 

intention-based studies. Finally, we present data on the common usability factors of assistive 

devices including the simplicity, comfortability, portability, and weight of the sleeve. Overall, all 

participants reported good to outstanding ratings for each of the usability categories, indicating 

that the NeuroLife EMG System can provide accurate decoding of upper extremity motor 

intention while meeting the usability needs of end users. 
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Figures 

 

Figure 1. Illustration of experimental data collection procedure. Participants were seated in front of a 

computer monitor with the sleeve on their impaired arm, and their arms placed on the table. The sleeve 

was connected to a custom-built EMG signal acquisition module, which then connected to a laptop 

computer. Images of hand postures were shown on the monitor and the participant followed along to 

the best of their ability. Each recording block was approximately 2-3 minutes in length, and involved 

hand posture cues interleaved with rest periods. The recording block began with an 8-second lead in 

rest period. Each cue and rest period presentation time were randomly selected between 4-6 seconds 

for participants with stroke. An operator ran the data collection software and observed EMG signals 

during data collection to ensure proper recording of data.  
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Figure 2. Representative EMG data recorded from participant with stroke. (A) Filtered EMG data 

recorded from 3 separate channels on the NeuroLife Sleeve during 3 movements: hand extension, 

forearm supination, and hand flexion. (B) Heatmap of normalized RMS activity, with the channel number 

on the y-axis and time on the x-axis. Note the activity across clusters of electrodes for each of the 3 

separate movements. (C) Normalized RMS activity mapped to the sleeve orientation, with a legend 

showing the orientation of the sleeve mapping (flex. = flexors, ext. = extensors). Note the location of 

EMG activity is spatially located near the related musculature for each of the 3 movements. 
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Figure 3. Decoding hand gestures using the NeuroLife EMG System. (A) Illustration depicting the data 

used for training and testing the decoder. The presentation of the cue is shown as a black bar on the top 

of the plot, and the middle 2.5 seconds of the cue presentation is used for analysis. (B) Heatmaps of 

various movements from a participant with stroke. (C) Decoding performance comparing 3 models: LR 

(Logistic Regression), SVM (Support Vector Machine), and NN (Neural Network). The NN outperforms 

both the LR and SVM models, as well as chance accuracy (Stroke Model: paired t-test NN vs. SVM, p=9.3 

x 10-3; NN vs. LR, p=9.1 x 10-4; NN vs. Chance, p=4.4 x 10-4). (D) Association between the observed 

movement score and decoder performance of the neural network (Observed Movement Score, One-way 

ANOVA, Accuracy (%): F[3, 80] = 13.38, p= 3.7 x 10-7). The decoder struggles learning to predict 

movement attempts in which there was no observable movement (movement score = 0), and performs 

similarly when there is observable movement (movement score >= 1). (E) Confusion matrix for a 

participant with stroke detailing the decoding performance across all movements. 
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Figure 4. Decoding hand gestures in patients with severe hand impairment (UEFM-HS < 3). (A) Left: 

Comparison of severe (UEFM-HS < 3) and mild (UEFM-HS ≥ 3) subject impairment average movement 

scores (Average movement score: unpaired t-test UEFM-HS <3 vs. UEFM-HS ≥ 3, p=0.02). Right: 

Comparison of NN decoding performance for severe and mild subject impairments (Decoding accuracy: 

unpaired t-test UEFM-HS < 3 vs. UEFM-HS ≥ 3, p=0.006). (B) Decoding performance of NN binary 

classifier for UEFM-HS < 3 subjects comparing Rest and Move in which Move is made up of combining all 

12 movements into a single class. Confusion matrix of subject 61204 for the two-class problem. The 

observed movement score is the average of all movement types’ observed movement scores. The two-

class decoder can reliably distinguish the difference between a resting and moving state.  (C). Decoding 

performance of NN model when restricting classes to Rest, Hand Flexion, and Hand Extension. Confusion 

matrix of lowest performing subject (61204) for the three-class problem. The three-class decoder is not 

sufficient to distinguish the movements reliably. (D) Decoding performance of NN model when 

restricting classes to Rest and the top 2 movements for each subject for a total of three classes. 

Confusion matrix of subject 61204 for the three-class problem. Focusing on movements specific to 

subjects increases the robustness of decoder performance. 

 

Figure 5. Decoding hand gestures in simulated real-time scenarios. (A) Dynamic cue shifting 

significantly improved accuracy compared to no cue shift (Cue shift: paired t-test Dynamic vs. None, 

p=0.020). There was no significant difference between a dynamic cue shift and static 800-millisecond 

cue shift (approximately the average cue shift across subjects) (Cue shift: paired t-test Dynamic vs. Static 

800ms, p=0.22). (B) Confusion matrix detailing performance from one subject in the simulated real-time 

scenario. (C) Time series plot depicting decoder class probabilities across time. The presented cue is 

shown in above the time series plot as a rectangular colored bar with the color corresponding to the 

movement class. 
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Figure 6. Summary of the NeuroLife Sleeve usability data from participants with stroke. Each 

participant with stroke ranked the NeuroLife Sleeve based on 6 usability domains. Group data is 

presented for each of the 6 domains.  

 

 

Participant UEFM UEFM-

HS 
Time 

since 

stroke, 

years 

Side of 

paresis 

13762 36 6 6 Right 

29562 22 2 4 Right 

30458 32 6 3 Left 

47513 19 4 4 Right 

61204 8 0 6 Right 

87134 7 0 7 Right 

98473 38 7 6 Right 

Table 1. Demographics of participants with stroke. 
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Supplementary Material 

Supplementary Methods 

Inclusion and Exclusion Criteria 
For physically impaired individuals, inclusion criteria address the minimum length of time since 

the stroke that led to the impairment. Inclusion criteria may also pertain to meeting dimensional 

requirements related to interacting with the system hardware (e.g., subject’s arm dimensions 

must be such that they can appropriately don an existing electrode sleeve design). 

For populations with potential for cognitive impairment (e.g., stroke survivors), inclusion criteria 

indicating ability to follow 3-step commands and communicate verbally (e.g., at least able to 

provide yes/no responses with accuracy) apply. 

Specific Inclusion Criteria include: 

1. Males and females ≥ 18 years old  

2. Chronic stroke survivors who are at least 180 days post-stroke 

3. Ability to provide appropriate consent to partake in the study 

4. Ability to follow 3-step commands and deemed by an occupational therapist to have the 

capacity to complete required upper extremity movements 

5. Ability to secure transportation to attend scheduled study sessions 

6. Stroke-related hand impairment that interferes with ability to complete activities of daily living 

and is classified as Stage 1-6 on the hand subscale of the Chedoke McMaster Stroke 

Assessment 

Persons with life-supporting or sustaining equipment or critical non-removeable implanted 

electronic devices are excluded for safety reasons since it is not known if the experimental 

systems would interfere with this equipment. 

Specific exclusion criteria include: 

1. Presence of any other clinically significant medical comorbidity for which, in the judgment of 

the Investigator, participation in the study would pose a safety risk to the subject 

2. Currently participating in physical rehabilitation (e.g., occupational or physical therapy) for 

stroke-related upper limb impairment 

3. Co-occurring neurological condition (e.g., Parkinson’s disease, Multiple Sclerosis) or other 

neuromuscular disorder (e.g., Carpal Tunnel Syndrome, neuropathy) that, in the judgment of the 

Investigator, may influence study results 

4. Individuals who are immunosuppressed, have conditions that typically result in becoming 

immunocompromised, taking chronic steroids, or currently receiving immunosuppressive 

therapy 

5. Individuals having or requiring any of the following: implanted pacemaker, life 

supporting/sustaining equipment, or critical non-removable implantable electronic devices such 
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as an insulin pump or neurostimulator. An implanted Medtronic LINQ monitor does not meet this 

criterion (i.e., patients with a LINQ monitor may participate in this study). 

6. Persistent pain ≥ 7/10 in impaired upper extremity, as measured by Numeric Pain Rating 

Scale (0-10) 

7. Individuals whose forearm is determined to be too small or too large to fit the electrode sleeve 

being investigated. 

8. Individuals who are pregnant or plan to get pregnant during the course of the study (self- 

report). 

 

Supplementary Figures 

 

 

 

Supplementary Figure 1. (A) Configuration of hardware used for EMG data collection showing the 

sleeve and EMG signal acquisition module (ESAM). (B) View of the sleeve donned on a participant.  
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Supplementary Figure 2. Representative EMG data recorded from able-bodied participant. (A) Filtered 

EMG data recorded from 3 separate channels on the NeuroLife Sleeve during 3 movements: hand 

extension, forearm supination, and hand flexion. (B) Heatmap of normalized RMS activity, with the 

channel number on the y-axis and time on the x-axis. Note the activity across clusters of electrodes for 

each of the 3 separate movements. (C) Normalized RMS activity mapped to the sleeve orientation, with 

a legend showing the orientation of the sleeve mapping (flex. = flexors, ext. = extensors). Note the 

location of EMG activity is spatially located near the related musculature for each of the 3 movements. 
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Supplementary Figure 3. Amount of EMG data collected in time for each movement type per subject to 

train the decoders. 

 

 

Supplementary Figure 4. Dynamic cue shifting. (A) Cue shifting to improve the alignment of RMS of 

EMG signals during cue start and end times. Without dynamic cue shifting, the detected EMG signal is 

delayed during cue onset due to reaction time deficits and is sustained through the end of the cue due 

to residual muscular activity. By shifting dynamically based on underlying EMG activity, we properly 

align the intended cue with motor intent during training for better decoding performance. (B) Average 

cue shift per subject determined from the dynamic cue shifting technique. 
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Supplementary Figure 5. Model performance for able-bodied participants comparing 3 models: LR 

(Logistic Regression), SVM (Support Vector Machine), and NN (Neural Network). The NN outperforms 

both the LR and SVM models (Model: paired t-test NN vs. LR, p=5.8 x 10-5; NN vs. SVM, p= 1.6 x 10-3). 

 

Supplementary Figure 6. Decoding performance of the NN model based on movement type per subject.  
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Supplementary Figure 7. Observed movement score for each of the functional movements per subject 

ranked in order of ability from left to right. The Key Pinch and Hand Flexion were the simplest for 

subjects to perform whereas more complex movements such as Index Extension and Thumb Abduction 

were more challenging for stroke participants. 

 

 

Supplementary Figure 8. Decoding performance of NN model when down-selecting classes across all 

subjects. (A) Decoding performance of NN binary classifier comparing Rest and Move in which Move is 

made up of combining all 12 movements into a single class. (B) Decoding performance of NN model 

when restricting classes to Rest, Hand Flexion, and Hand Extension. (C) Decoding performance of NN 

model when restricting classes to Rest and the top 2 movements for each subject for a total of three 

classes. 
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Supplementary Figure 9. Normalized RMS activity mapped to the sleeve across all subjects and 

movements. Refer to Figure 2 for sleeve heatmap orientation. 
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 Small Medium Large 

Number of Electrodes 128 142 150 

Number of Electrode Pairs 64 71 75 

Weight (grams) 180 195 220 

Supplementary Table 1. Characteristics of the 3 different sized NeuroLife Sleeve. 

 

Participant Age Range, 

years 

Sex 

1857 26-30 Male 

2397 31-35 Female 

3895 26-30 Female 

4427 26-30 Male 

5648 21-25 Female 

5823 21-25 Female 

6871 26-30 Male 

Supplementary Table 2. Demographics of able-bodied participants. 

 

Group 1 

Movement 

Score 

Group 2 

Movement 

Score 

Mean 

Accuracy 

Difference (%) 

P-value Reject 

0 1 38.2 0.001 True 
0 2 49.7322 0.001 True 
0 3 46.5521 0.001 True 
1 2 11.5323 0.5262 False 
1 3 8.3521 0.703 False 
2 3 -3.1802 0.9 False 

Supplementary Table 3. Tukey HSD multiple comparison results of decoded accuracy vs. movement 

ability. Subjects not able to perform the movement at all (Movement score=0) had a statistically 

significant difference in decoding performance compared to movements with scores ≥ 1. 

 

Subject Top Movements: Successes/Attempts 

29562 Rest: 10/10 Key Pinch: 5/5 Wrist Flexion: 5/5 

61204 Rest: 10/10 Two Point Pinch: 5/5 Index Extension: 4/5 

87134 Rest: 24/26 Hand Flexion: 11/13 Hand Extension: 7/13 

Supplementary Table 4. Success rate of top performing movements in participants with severe hand 

impairment (UEFM-HS < 3). 

 

Scale 1-5 (1 bad, 5 great) Domain 2956

2 
9847

3 
3045

8 
4751

3 
6120

4 
8713

4 
1376

2 
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How simple was the 

sleeve to put on with our 

help? (1 = not simple, 5 = 

extremely simple) 

Simple to 

apply 
1 
  

5 4 3 3 5 5 

How simple was the 

sleeve to take off with our 

help? (1 = not simple, 5 = 

extremely simple) 

Simple to 

apply 
1 5 5 5 4 4 5 

How confident are you that 

a caregiver could help you 

put the sleeve on 

properly? (1 = not 

confident, 5 = extremely 

confident) 

Simple to 

apply 
4 5 3 4 5 3 5 

How confident are you that 

a caregiver could help take 

off the sleeve properly? (1 

= not confident, 5 = 

extremely confident) 

Simple to 

apply 
4 5 4 5 5 3 5 

How confident are you that 

you could put the sleeve 

on by yourself properly? (1 

= not confident, 5 = 

extremely confident) 

Simple to 

apply 
1 2 2 2 3 1 3 

How confident are you that 

you could take the sleeve 

off by yourself properly? (1 

= not confident, 5 = 

extremely confident) 

Simple to 

apply 
3 3 3 5 4 1 3 

How comfortable was the 

sleeve during the two-hour 

session (1 = extremely 

uncomfortable, 5 = 

extremely comfortable)? 

Comfortability 4 5 5 5 5 4 4 

How much did the sleeve 

restrict your normal arm 

and hand movement (1 = 

extremely restrictive, and 5 

= not restrictive)? 

Freedom of 

movement 
4 4 5 3 5 3 4.5 

How confident are you that 

you could wear the sleeve 

doing light activities 

around your home if the 

sleeve is wireless (1 = not 

confident, 5 = extremely 

confident)? 

Functionality / 

lightweight / 

portability 

5 4 4 4 2 3 5 

How likely would you be to 

wear the sleeve for a long 

duration during the day 

(more than 2 hours) (1 = 

Functionality / 

lightweight / 

portability 

4 4.5 5 5 5 3 3.5 
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extremely unlikely, 5 = 

extremely likely)? 
Would you want to use this 

system with a therapist (1 

= you wouldn’t want to use 

it, 5 = you would really 

want to use it)? 

General 

favorability 
5 5 5 4 5 5 5 

Would you want to use this 

system in your home (1 = 

you wouldn’t want to use it, 

5 = you would really want 

to use it)? 

General 

favorability 
3 5 5 5 5 5 5 

How do you like the overall 

design of the device (look, 

feel, comfort, etc.)? (1=I 

hate it, 5=I love it) 

Aesthetics / 

Design 
5 5 4 4 5 4 3.5 

Supplementary Table 5. Complete usability questionnaire responses from all participants with stroke in 

the study. Each question was categorized to a specific domain, shown in the domain column and this 

data was used in Figure 6. 
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