Anopheles salivary antigens as serological biomarkers of vector exposure and malaria transmission: A systematic review with multilevel modelling ================================================================================================================================================ * Ellen A Kearney * Paul A Agius * Victor Chaumeau * Julia C Cutts * Julie A Simpson * Freya JI Fowkes ## Abstract **Background** Entomological surveillance for malaria is inherently resource-intensive and produces crude population-level measures of vector exposure which are insensitive in low-transmission settings. Antibodies against *Anopheles* salivary proteins measured at the individual-level may serve as proxy biomarkers for vector exposure and malaria transmission, but their relationship is yet to be quantified. **Methods** A systematic review of studies measuring antibodies against *Anopheles* salivary antigens (PROSPERO: CRD42020185449). Multilevel modelling estimated associations between seroprevalence with *Anopheles* human biting rate (HBR) and malaria transmission measures. **Results** From 3981 studies identified in literature searches, 42 studies across 16 countries were included contributing 393 meta-observations of anti-*Anopheles* salivary antibodies determined in 42,764 samples. A positive non-linear association between HBR and seroprevalence was found; overall a 50% increase in HBR was associated with a 13% increase in odds of seropositivity (OR: 1.13, 95%CI: 1.06-1.20, *p*<0.001). The association between HBR and *Anopheles* salivary antibodies was strongest with concordant, rather than discordant *Anopheles* species. Seroprevalence was also significantly positively associated with established epidemiological measures of malaria transmission: entomological inoculation rate, *Plasmodium* spp. prevalence, and malarial endemicity class. **Conclusions** *Anopheles* salivary antibody biomarkers can serve as a proxy measure for HBR and malaria transmission, and could monitor vectorial capacity and malaria receptivity of a population to sustain malaria transmission. Validation of *Anopheles* species-specific biomarkers are important given the global heterogeneity in the distribution of *Anopheles* species. Salivary biomarkers have the potential to transform surveillance by replacing impractical, inaccurate entomological investigations, especially in areas progressing towards malaria elimination. **Funding** Australian National Health and Medical Research Council, Wellcome Trust. ## Introduction Sensitive and accurate tools to measure and monitor changes in malaria transmission are essential to track progress towards malaria control and elimination goals. Currently, the gold standard measurement of malaria transmission intensity is the entomological inoculation rate (EIR), a population-measure defined as the number of infective *Anopheles* mosquito bites a person receives per unit of time. EIR is calculated as the human biting rate (HBR; measured at the population-level by entomological vector-sampling methodologies (gold standard: human landing catch)) multiplied by the sporozoite index (proportion of captured *Anopheles* with sporozoites present in their salivary glands). However, estimation of EIR and HBR via entomological investigations are inherently labour and resource intensive, requiring trained collectors, specialised laboratories and skilled entomologists. Furthermore, these approaches provide a crude population-level measure of total vector exposure at a particular time and location, precluding investigation of heterogeneity and natural transmission dynamics of individual-level vector-human interactions [1]. For example, indoor human landing catches provide poor estimates of outdoor biting and thus total vector exposure [2]. The sensitivity of EIR is further compromised in low transmission settings where the number of *Plasmodium-*infected specimens detected is low and often zero. Evaluation of the human antibody response to *Anopheles* spp. salivary proteins has the potential to be a logistically practical approach to estimate levels of exposure to vector bites at an individual-level. Several *Anopheles* salivary proteins have been shown to be immunogenic in individuals naturally exposed to the bites of *Anopheles* vectors and have been investigated as serological biomarkers to measure *Anopheles* exposure [3–11], malaria transmission [12–14] and as an outcome for vector control intervention studies [4-6, 14, 15]. However, a major short-coming of the literature is that studies are largely descriptive and do not quantify the association between entomological and malariometric measures and anti-*Anopheles* salivary antibody responses. We undertook a systematic review with multilevel modelling, to quantify the association between HBR, EIR, and other markers of malaria transmission, with anti-*Anopheles* salivary antibody responses and to understand how these associations vary according to transmission setting and dominant *Anopheles* vectors. This knowledge is pertinent to advance the use of salivary antibody biomarkers as a vector and malaria transmission sero-surveillance tool. ## Methodology ### Search strategy and selection criteria We performed a systematic review with multilevel modelling according to the MOOSE and PRISMA guidelines [16, 17] (Reporting Standards Document). Five databases were searched for published studies investigating antibodies to *Anopheles* salivary antigens as a biomarker for mosquito exposure or malaria transmission published before 30th of June 2020. The protocol (Supplementary File 1) was registered with PROSPERO (CRD42020185449). The primary criteria for inclusion in this systematic review was the reporting of estimates of seroprevalence or total levels of Immunoglobulin (Ig) in human sera against *Anopheles* salivary antigens. We considered for inclusion: cross-sectional, cohort, intervention and case-control studies of individuals or populations living in all geographies with natural exposure to *Anopheles* mosquitoes. Studies that were solely performed in participants not representative of the wider naturally exposed population (*i.e.* mosquito allergic patients, soldiers, returned travellers) were excluded. ### Measures #### Outcomes The primary outcome of our systematic review was antibodies (seroprevalence or levels, including all Ig isotypes and subclasses) against any *Anopheles* salivary antigens (full-length recombinant proteins, peptides and crude salivary extract). As measurement of antibody levels does not produce a common metric between studies only values of seroprevalence could be included in multilevel modelling analyses. Therefore, to maximise data, authors of studies that reported only antibody levels were contacted and asked to classify their participants as ‘responders’ or ‘non-responders’ according to seropositivity (antibody level relative to unexposed sera). Studies that provided antibody levels or categorised seropositivity based upon arbitrary cut offs are included in narrative terms only. #### Exposures The primary exposures of interest were the entomological metrics HBR (average number of bites received per person per night) and EIR (infectious bites received per person per year). Secondary exposures included study-reported prevalence of *Plasmodium* spp. infection (confirmed by either microscopy, rapid diagnostic test, or polymerase chain reaction (PCR)) and seroprevalence of antimalarial antibodies against pre-erythrocytic and blood-stage *Plasmodium* spp. antigens. Where exposure estimates were not provided, we attempted to source data from other publications by the authors, or using the site geolocation and year to obtain estimates of EIR from the Pangaea dataset [18], *P. falciparum* rates in 2-10 year olds (*Pf*PR2-10) and dominant vector species (DVS) from the Malaria Atlas Project (MAP) [19]. Malarial endemicity classes were derived by applying established endemicity cut-offs to *Pf*PR2-10 estimates [20]. For the purposes of the modelling analyses we defined DVS as where *An. gambiae sensu lato* (*s.l.*) was the only DVS, where *An. gambiae s.l.,* was present with additional DVS, or where *An. gambiae s.l.* was absent. Studies of salivary antigens where exposure variables could not be sourced and data could not be extracted were excluded. ### Statistical analysis Where seroprevalence estimates of antibodies against the same salivary antigen and exposure of interest were reported in more than one study, generalised multilevel (mixed-effects, logistic) modelling was used to quantify associations between the exposures of interest and salivary antibody seroprevalence measurements [21]. Random intercepts for study and country were included to account for nested dependencies induced from multiple meta-observations (level one) from the same study (level two) and multiple studies from the same country (level three). Additionally, a random slope for the entomological and malariometric exposure parameters was included to model study-specific heterogeneity in the effect of the exposure of interest (HBR/EIR/malaria prevalence/antimalarial antibody seroprevalence). The associations between the various exposures and the different salivary antigens were analysed separately, however estimates of IgG seroprevalence against the recombinant full-length protein (gSG6) and synthetic peptide (gSG6-P1, the one peptide determined in all studies utilising peptides) form of the gSG6 antigen were analysed together. Potential effect modification of the associations between exposures and anti-*Anopheles* salivary antibody responses were explored. In analyses quantifying the associations between HBR, as well as EIR, and seropositivity, we included an interaction term with DVS and for vector collection method (human landing catch or other indirect measures *e.g.* light traps, spray catches, etc.). For the association between *Plasmodium* spp. prevalence and seropositivity, interaction terms with malaria detection methodology (light microscopy or PCR) and malarial species (*P. falciparum* only, or *P. falciparum* and *P. vivax*) were estimated. The natural log of the exposure measures (HBR, EIR, malaria prevalence and antimalarial antibody seroprevalence) were estimated in modelling to account for their non-linear associations with seroprevalence. Intraclass correlation coefficients (ICCs) were estimated for country- and study-specific heterogeneity using estimated model variance components. All statistical analyses were performed using STATA v15.1. ### Risk of bias in individual studies Risk of bias was assessed by one reviewer using the Risk of Bias in Prevalence Studies tool [22]. The risk of bias pertains to the reported seroprevalence estimates of anti-*Anopheles* salivary antibodies included in the multilevel modelling. ## Results Literature searches identified 158 potentially relevant studies, of which 42 studies were included in the systematic review (Figure 1) and are described in Table 1. Briefly, studies were performed in 16 countries mostly in hypo or mesoendemic areas of Africa where *An. gambiae s.l.* is a dominant vector (n=32), with a minority performed in South America (n=4), Asia (n=4), and the Pacific (n=2) where *An. gambiae s.l.* is not found. In total, our review included 393 meta-observations of anti-*Anopheles* salivary antibodies determined from antibody measurements in a total of 42,764 sera samples. The salivary antigen most commonly assessed was *An. gambiae* Salivary Gland 6 (gSG6), as a full-length protein (n=8) and synthetic peptide (*An. gambiae* Salivary Gland 6 Peptide 1; gSG6-P1; n=24). Additional salivary antigens assessed included *An. gambiae* gSG6-P2 (n=3), recombinant cE5 (n=2), g-5’nuc (n=1), and recombinant *An. funestus* fSG6 (n=2) and f-5’nuc (n=1). Seven studies measured antibodies to whole salivary gland extracts from *An. gambiae* (n=4), *An. darlingi* (n=2), *An. albimanus* (n=1), and *An. dirus* (n=1), while one study assessed antibodies against synthetic peptides of *An. albimanus* (Table 1). All studies investigated total IgG and only five determined an additional isotype or subclass [7, 23–26]. The paucity of studies investigating these latter-mentioned antibody types and *Anopheles* salivary biomarkers precluded extensive multilevel analyses; instead, we present their associations in narrative terms in Supplementary File 5. Analyses reported below focus on quantifying the relationships between HBR, EIR and markers of malaria transmission with total IgG to *An. gambiae* gSG6. The distributions of exposure estimates were: HBR (median: 3.1 bites per person per night, IQR: 0.9-12.1; range: 0-121.4), EIR (median: 7.3 infectious bites received per person per year, IQR: 0-36.4; range: 0-585.6), and *Plasmodium* spp. prevalence (median: 9.1%; IQR: 4-22%; range: 0-94.6%). ![Figure 1.](http://medrxiv.org/http://medrxiv.stage.highwire.org/content/medrxiv/early/2021/09/17/2021.09.14.21263589/F1.medium.gif) [Figure 1.](http://medrxiv.org/content/early/2021/09/17/2021.09.14.21263589/F1) Figure 1. Flow diagram of study identification. Excluded studies are detailed in Figure 1 – Supplement 1. View this table: [Table 1:](http://medrxiv.org/content/early/2021/09/17/2021.09.14.21263589/T1) Table 1: Key descriptive information from included studies Generalised multilevel modelling of 132 meta-observations from 12 studies estimated a positive association between *Anopheles* spp.-HBR and seroprevalence of IgG to *An. gambiae* gSG6 salivary antigen [5, 7, 8, 10, 11, 13, 29, 33, 36, 38, 39, 53]. The magnitude of the association was such that a 50% relative increase in HBR was associated with a 13% increase (OR: 1.13; 95%CI: 1.06-1.20, *p*<0.001) in the odds of anti-gSG6 IgG seropositivity (Figure 2 and Figure 2 – Supplement 1). As the association between gSG6 IgG and HBR (log transformed) is non-linear, relative change in gSG6 IgG will vary across HBR levels. To quantify this, we estimated odds ratios for different incremental per cent increases in HBR, shown in Figure 3A. Heterogeneity in the effect of HBR on gSG6 across studies was observed (likelihood ratio χ2 (1) = 109.25, *p*<0.001); the 95% reference range of study-specific effects for a 50% relative increase in HBR ranged from a 7% reduction to a 37% increase in odds (OR: 0.93-1.37). There was no evidence (*p*=0.443) that the association between HBR and gSG6 IgG varied according to vector collection method (human landing catch or other indirect methods). However, the magnitude of the association between *An. gambiae* gSG6 IgG seropositivity and HBR was greatest where *An. gambiae s.l.* was the only dominant vector (*p*<0.001); a 50% relative increase in HBR was associated with a 20% increase (OR: 1.20; 95%CI: 1.11-1.31; *p*<0.001) in the odds of gSG6 IgG seropositivity, compared to an 8% (OR: 1.08; 95%CI: 0.99-1.18; *p*=0.079) and 3% (OR: 1.03; 95%CI: 1.02-1.05; *p*<0.001) increase in odds of gSG6 IgG seropositivity where other DVS were present in addition to *An. gambiae s.l.* and where *An. gambiae s.l.* was absent, respectively (Figure 4; Figure 4 – Supplement 1). In order to quantify the relationship between gSG6 IgG seroprevalence and HBR, for given HBR values we estimated gSG6 IgG seroprevalence by producing model-based predicted probabilities overall and by DVS (Figure 4). Where *An. gambiae s.l* is the only DVS, predicted seroprevalence of *An. gambiae* gSG6 ranged from 8% (95%CI: 0-22%) to 86% (95%CI: 67-100%) for an HBR of 0.01 to 100 bites per person per night respectively. ![Figure 2.](http://medrxiv.org/http://medrxiv.stage.highwire.org/content/medrxiv/early/2021/09/17/2021.09.14.21263589/F2.medium.gif) [Figure 2.](http://medrxiv.org/content/early/2021/09/17/2021.09.14.21263589/F2) Figure 2. Association between anti-gSG6 IgG seroprevalence and human biting rate (HBR). Figure shows the observed anti-gSG6 IgG (either recombinant or peptide form) seroprevalence (%) and HBR for each meta-observation, as well as the predicted average anti-gSG6 IgG seroprevalence (predicted probability for the average study and country) with 95% confidence intervals (95%CI). Circles are proportional to the size of the sample for each meta-observation. Association estimated using generalised multilevel mixed-effects modelling to account for the hierarchical nature of the data, using an anti-gSG6 IgG meta-observation, nested within study nested in country (model output shown in Figure 2 – Supplement 1; *p*<0.001). Note: to aid visualisation the graph is truncated to show 75% of HBR data (*i.e.* 75th percentile 12.2 bites per person per night) but HBR estimates up to 121.4 were observed and analysed. ![Figure 3.](http://medrxiv.org/http://medrxiv.stage.highwire.org/content/medrxiv/early/2021/09/17/2021.09.14.21263589/F3.medium.gif) [Figure 3.](http://medrxiv.org/content/early/2021/09/17/2021.09.14.21263589/F3) Figure 3. Estimated change in odds of anti-gSG6 IgG seropositivity for given per cent increases in A) HBR (bites/person/night) and B) EIR (infective bites/person/year). Forest plots show estimated odds ratios (ORs) with 95% confidence intervals for given per cent increases in HBR or EIR, estimated using generalised multilevel mixed-effects modelling of the association between anti-gSG6 IgG seropositivity and log HBR or EIR, with random-effects for country-specific and study-specific heterogeneity in gSG6 IgG seroprevalence and study-specific heterogeneity in effect of HBR or EIR (see Figure 2 – Supplement 1 and Figure 3 – Supplement 1 for model output). ![Figure 4.](http://medrxiv.org/http://medrxiv.stage.highwire.org/content/medrxiv/early/2021/09/17/2021.09.14.21263589/F4.medium.gif) [Figure 4.](http://medrxiv.org/content/early/2021/09/17/2021.09.14.21263589/F4) Figure 4. Forest plots of predicted anti-gSG6 IgG seroprevalence (%) and *Anopheles* species-specific human biting rate (HBR). Panels show the predicted average anti-gSG6 IgG seroprevalence (predicted probability for the average study and country) with 95% confidence intervals for given HBR, for all *Anopheles* spp. (using model output from Figure 2 – Supplement 1) and for specific-dominant vector species (DVS): where *An. gambiae s.l.* is the only DVS, where other DVS were present in addition to *An. gambiae s.l.* and where *An. gambiae s.l.* was absent (using model output from Figure 4 – Supplement 1). A positive association was also found between seroprevalence of anti-gSG6 IgG antibodies and EIR in analysis of 38 observations from eight studies (Figure 3B, Figure 3 – Supplement 1) [3, 9, 13, 29, 39-41, 53]. For a 50% increase in EIR, the odds of anti-gSG6 IgG seropositivity increased by 6% (OR: 1.06; 95%CI: 1.03-1.10; *p*<0.001), with heterogeneity in the study-specific effects (95% reference range: 1.00-1.13; likelihood ratio χ2 (1) = 15.02, *p*<0.001). There was no evidence of effect modification by either vector collection method (*p*=0.095) or DVS (*p*=0.800) on the association between seroprevalence of anti-gSG6 IgG and EIR. Similar positive associations were also found between anti-gSG6 IgG levels, HBR and EIR in 11 studies [7-11, 29, 36, 37, 39, 42, 52] and three studies [9, 13, 39] respectively but seven studies showed no association between HBR and levels of IgG to gSG6 [5, 13, 32, 33, 38, 43, 53]. The association between anti-gSG6 IgG seroprevalence and population-level prevalence of *Plasmodium* spp. infection was investigated. Generalised multilevel modelling of 212 meta-observations from 14 studies [3, 5, 9, 13, 15, 29, 30, 33, 35, 36, 38, 41, 47, 51] showed that for a 10% relative increase in the prevalence of *Plasmodium* spp. infection the odds of gSG6 IgG seropositivity increased by 4%, although the confidence intervals were wide (OR: 1.04; 95%CI: 0.98-1.11; *p*=0.148) (Figure 5 and Figure 5 – Supplement 1). In the association between gSG6 IgG seropositivity and *Plasmodium* spp. infection, there was no evidence for a moderating effect of *Plasmodium* spp. detection method (light microscopy, or PCR, *p*=0.968) or species (*P. falciparum* and *P. vivax,* or *P. falciparum*, *p*=0.586) potentially because all studies that reported *P. vivax* were co-prevalent with *P. falciparum*. ![Figure 5.](http://medrxiv.org/http://medrxiv.stage.highwire.org/content/medrxiv/early/2021/09/17/2021.09.14.21263589/F5.medium.gif) [Figure 5.](http://medrxiv.org/content/early/2021/09/17/2021.09.14.21263589/F5) Figure 5. The association between anti-gSG6 IgG seroprevalence (%) and *Plasmodium* spp. prevalence (%). Figure shows the observed anti-gSG6 IgG (either recombinant or peptide form) seroprevalence (%) and prevalence of any *Plasmodium* spp. infection (%) for each meta-observation, as well as the predicted average anti-gSG6 IgG seroprevalence (predicted probability for average study) with 95% confidence intervals (95%CI). Circles are proportional to the size of the sample for each meta-observation. Association estimated using generalised multilevel mixed-effects modelling to account for the hierarchical nature of the data, using an anti-gSG6 IgG meta-observation, nested within study. See Figure 5 – Supplement 1 for model output. Additionally, 14 studies reported estimates of anti-gSG6 IgG levels and the prevalence of *Plasmodium* spp. infections. The median anti-gSG6 IgG antibody levels increased with increasing *Plasmodium* spp. prevalence in six of these studies [5, 13, 15, 37, 38, 51], or in *Plasmodium* spp. infected compared to non-infected individuals [12, 50], but showed no association in eight studies [9, 29, 30, 32, 33, 35, 36, 43]. Furthermore, we also investigated associations with serological measures of malaria exposure and found that for a 10% relative increase in pre-erythrocytic and blood-stage stage antigen seroprevalence there was an 11% (OR: 1.11; 95%CI: 1.02-1.21%, *p*=0.013) and 5-27% (OR range: 1.05-1.27; *p* range: <0.001 to 0.523) increase in the odds of anti-gSG6 IgG seropositivity, respectively (Supplementary File 3). To give epidemiological context we estimated anti-gSG6 seroprevalence by producing model-based predicted probabilities by malarial endemicity class. Multilevel modelling on 297 meta-observations from 22 studies shows that the estimated anti-gSG6 IgG seroprevalence is higher for the higher endemicity classes (eliminating malaria: 20% (95%CI: 8-31%); hypoendemic: 34% (95%CI: 19-49%); mesoendemic: 52% (95%CI: 35-68%); hyperendemic settings: 47% (95%CI: 27-64%); holoendemic: 78% (95%CI: 67-90%); *p*<0.001; Table 2). In addition, using Bayes Best-Linear-Unbiased Predictions (BLUPs) we estimated country-specific gSG6 IgG seroprevalence from an intercept only multilevel model fitted to 301 meta-observations from 22 studies. It showed that IgG seroprevalence to *An. gambiae* gSG6 was lowest in countries in the Pacific Region where *An. gambiae* is absent (Vanuatu (31%) and Solomon Islands (32%)) and highest in countries where *An. gambiae* is a DVS (Benin (72%) and Burkina Faso (65%); Supplementary File 4). View this table: [Table 2:](http://medrxiv.org/content/early/2021/09/17/2021.09.14.21263589/T2) Table 2: Association between gSG6 IgG seroprevalence (%) and malarial endemicity (*Pf*PR2-10). Assessments of internal and external study validity revealed there was a moderate risk of selection bias (Supplementary File 2) due to the study-specific inclusion criteria of populations at higher risk of malaria which contributed gSG6 seroprevalence estimates. ## Discussion This systematic review and multilevel modelling analysis provides the first quantification of a positive non-linear association between seroprevalence of *An. gambiae* gSG6 IgG antibodies and HBR and demonstrated that its magnitude varied with respect to the DVS present in the area. Importantly, this review identified a paucity of studies conducted outside of Africa, as well as investigating salivary antigens representing different *Anopheles* spp. and antigenic targets. gSG6 antibodies were positively associated with the prevalence of *Plasmodium* spp. infection as well as established epidemiological measures of malaria transmission: malaria endemicity class and EIR. Overall, our results demonstrate that antibody seroprevalence specific for *Anopheles* spp. salivary antigens has the potential to be an effective measure of vector exposure and malaria transmission at the population- and, potentially, individual-level. *An. gambiae* gSG6 IgG seropositivity increased with increasing HBR, although these increases had diminishing impact on *An. gambiae* gSG6 IgG seropositivity at higher levels of HBR. We also observed that the association was strongest in areas where *An. gambiae s.l.* was the only DVS (that is concordant *An. gambiae* species-specific HBR with *An. gambiae* gSG6 antibodies). Associations, albeit weaker, were also observed between discordant species-specific HBR and gSG6, most likely because the *An. gambiae SG6* gene shares moderate sequence identity with vector species that are dominant in other regions (Africa: 80% *An. funestus*; Asia: 79% *An. stephensi* and *An. maculatus*; 54% *An. dirus*; Pacific: 52.5% *An. farauti*), and is absent from the DVS of the Americas (*An. albimanus* and *An. darlingi*) [55]. The generalisability of *An. gambiae* gSG6 IgG as a biomarker of exposure to other *Anopheles* spp. may therefore be limited. However, our review also identified a paucity of studies investigating additional salivary antigenic targets and *Anopheles* species not present in Africa. The identification of novel salivary antigens that are species-specific will be valuable in quantifying exposure to the other *Anopheles* vectors that share limited identity with *An. gambiae SG6* (such as *An. farauti* and *An. dirus*), as well as *Anopheles* spp. which lack *SG6* (as done for *An. albimanus* and *An. darlingi* [49, 56]). An *Anopheles* species-specific serological platform could advance vector surveillance by more accurately capturing exposure to DVS in the South American and Asia Pacific regions which exhibit diverse biting behaviours and vector competence (DVS typically bite outdoors during the night and day respectively [19, 57–61]), as well as the increasing threat of urban malaria from *An. stephensi* in Africa [62, 63]. Importantly, this review demonstrated that the prevalence of *Anopheles* salivary antibodies increased with increasing prevalence of *Plasmodium* spp. infection as well as established epidemiological measures of malaria transmission: malaria endemicity class and EIR. Anti-salivary antibodies, such as SG6 IgG, therefore, have the potential to serve as a proxy measure for vectorial capacity and malaria receptivity of a population to sustain malaria transmission. Their application could be particularly relevant in pre-elimination areas, or non-endemic areas under threat of imported malaria, where *Anopheles* salivary antibodies are more readily detectable than parasites; salivary antibodies were predicted to be prevalent (20%) in areas defined as eliminating malaria (<1% *Pf*PR2-10). Furthermore, if SG6 IgG seroprevalence can be effectively combined with a measurement of the sporozoite index, salivary antibodies as a marker of HBR could help overcome sensitivity limitations of EIR in low transmission areas. Additional measures could include estimates of malaria prevalence or serological biomarkers that are species- or life stage-specific (e.g. *Plasmodium* spp. pre-erythrocytic antigens as biomarkers for recent parasite inoculation). Indeed, positive associations between antibodies specific for *Plasmodium* spp. pre-erythrocytic and blood-stage antigens with gSG6 were demonstrated in analyses of data from diverse malaria endemic areas. Serological tools combining salivary antigens with antigens specific for the different *Plasmodium* spp. would be particularly beneficial in the Asia Pacific, a region of relatively low malaria transmission with goals of elimination, but the highest burden of *P. vivax* malaria where blood-stage infection can be caused by relapses from dormant liver stages. In these areas, parasite prevalence may therefore overestimate ongoing malaria transmission, making vector surveillance tools essential to informing elimination strategies in the Asia Pacific and other regions where *P. vivax* is endemic. The gold standard entomological measures HBR and EIR provide crude population-level estimates of vector and malaria exposure that are specific in space and time and preclude investigation of individual-level heterogeneity and natural transmission dynamics. Our study demonstrated that salivary biomarkers measured at the individual-level, such as gSG6 IgG, can be used to quantify total vector exposure at the population-level, without requiring laborious entomological experiments. However, validating an individual-level serological measure, which demonstrates considerable individual-level variation, against the imperfect population-level gold standards of HBR and EIR is challenging and reflected in the variation in study-specific estimates in the association between gSG6 IgG and HBR in modelling analyses. However, the accuracy of salivary antibodies to measure individual-level exposure to *Anopheles* bites is yet to be validated; literature searches identified no studies investigating this association at the individual-level. Without detailed measurements of individual-level vector exposure, or a detailed knowledge of the half-life of *Anopheles* salivary antibodies post biting event, the true accuracy of salivary antibodies, such as SG6 IgG, to measure individual-level HBR remains unknown. This knowledge is particularly pertinent where *Anopheles* salivary biomarkers might be applied to assess the effectiveness of a vector control intervention or used to measure temporal changes in malaria transmission; particularly in areas or populations where there is considerable heterogeneity in individual-level risk of *Anopheles* exposure (*e.g.* unmeasured outdoor biting due to occupational exposure for forest workers [64]). The broad nature of our inclusion and quality criteria was a key strength of our systematic review, which aimed to provide a comprehensive analysis of all *Anopheles* salivary biomarkers and determine their associations with entomological and malariometric measures of transmission. However, this review has two main limitations. First, despite the inclusive nature, assessment of the external validity of the review revealed a moderate risk of bias; some studies exhibited a high risk of selection bias as they were performed in specific high-risk populations not representative of the overall population (*i.e.* children only). This is accounted for to some degree by specification of a random effect (*i.e.* intercept) for study, which accounts for unmeasured study-specific factors that may introduce study-specific measurement error to measurement of the outcome. Second, with respect to internal validity, there may be potential selection bias introduced by the exclusion of studies reporting zero HBR (seven observations from three studies [9, 36, 53]), EIR (22 observations from three studies [9, 13, 29]) and malaria prevalence (15 observations from three studies [15, 36, 51]) estimates, given we modelled the log of these factors. However, adding a small constant (*e.g.* 0.001) to a zero value to permit modelling of a log estimate can also introduce considerable bias (*i.e.* seemingly small differences between values become very large on the log scale). In light of this, we also chose to provide estimates of association and gSG6 IgG seroprevalence according to widely accepted, discrete, endemicity classes (which permitted inclusion of all studies) and according to a selected range of epidemiologically relevant hypothetical HBR’s (no widely accepted HBR classification exists in the literature) to provide epidemiological context. ## Conclusions In order to advance progress towards malaria elimination the World Health Organisation has called for innovative tools and improved approaches to enhance vector surveillance and monitoring and evaluation of interventions [65]. Our systematic review has provided strong evidence that *Anopheles* salivary antibodies are serological biomarkers of vector and malaria exposure, by quantifying their strong positive association with *Anopheles*-HBR and established epidemiological measures of malaria transmission. These salivary biomarkers have the potential to replace crude population-level entomological experiments with a precise and scalable tool that measures *Anopheles* vector exposure at the individual-level. This approach could be expanded into a sero-surveillance tool to assess the effectiveness of vector control interventions, define heterogeneity in malaria transmission and inform efficient resource-allocation, that would ultimately accelerate progress towards elimination. ## Contributors All authors developed the protocol and the analytical plan. EAK performed literature searches, screened studies and extracted data with input from FJIF. EAK and PAA analysed the data. All authors interpreted the data. EAK and FJIF drafted the report. All authors read and critically revised the draft report, and approved the final report. All authors agreed to be accountable for all aspects of the work. ## Declaration of interests We declare no competing interests. ## Data Availability All datasets and code associated with the analyses can be found at the [https://github.com/ellenakearney/Anopheles\_salivary\_biomarker\_systematic\_review.git](https://github.com/ellenakearney/Anopheles\_salivary_biomarker_systematic_review.git) ## Supplementary Files Supplementary File 1. Supplementary Methodology. ### Search strategy We performed a systematic review with multilevel modelling of the published literature according to the Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines [1] and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) specifications [2]. The protocol was registered with PROSPERO (CRD42020185449). The electronic databases PubMed, Scopus, Web of Science, African Index Medicus, and the Latin American and Caribbean Health Sciences Literature (LILACS) were searched for studies published before June 30, 2020 investigating *Anopheles* salivary antigens as a biomarker for mosquito exposure or malaria transmission. Search terms were as follows: *Anophel** AND saliva* AND (antibod* OR sero* OR antigen OR marker* OR biomarker* OR gSG6* OR gSG* OR SG* OR cE5). The reference lists of included studies were screened for additional studies, and Google Scholar was used to identify additional works by key authors. No formal attempt was made to identify unpublished population studies as it would have required significant description of the design, methods and analysis used in these studies, and a review of ethical issues. ### Selection criteria The primary criteria for inclusion in this systematic review was the reporting of estimates of seroprevalence or total levels of Immunoglobulin (Ig) antibodies (including all isotypes and subclasses) in human sera against recombinant or synthetic peptide *Anopheles* salivary antigens. We considered for inclusion: cross-sectional studies, cohort studies, intervention studies and case-control studies of individuals or populations (including sub-populations) living in all geographies with natural exposure to *Anopheles* mosquitoes. Studies that were solely performed in participants not representative of the wider population (i.e. mosquito allergic patients, soldiers, returned travellers) were excluded. The minimum quality criteria for inclusion in this review were: antibody detection performed using enzyme-linked immunosorbent assay (ELISA), multiplex or Luminex assays. The exposure variables of interest included entomological and malariometric parameters, including: (i) human biting rate (HBR), defined as the number of bites received per person per unit of time; (ii) entomological inoculation rate (EIR), defined as the number of infectious bites per person per unit of time, calculated as the HBR multiplied by the sporozoite index; (iii) estimates of malaria prevalence; (iv) population-level seroprevalence estimates against *Plasmodium* spp. malarial antigens. To ensure HBR estimates were given for the same unit of time (bites per person per night), biting rates given per week were divided by 7, and biting rates given per month we multiplied by 12 and divided by 365. Similar approaches were employed to ensure consistent units for EIR (infectious bites per person per year). *Plasmodium* spp. infections had to be confirmed by either microscopy, rapid diagnostic test (RDT) or molecular methods (polymerase chain reaction (PCR)). *Plasmodium* spp. diagnosis was included for all *Plasmodium* spp. combined and the species-level if provided. Where exposure estimates were not provided, we attempted to source data from other publications by the authors, or using the site geolocation and year to obtain estimates of EIR from the Pangaea dataset [3]. *P. falciparum* rates in 2-10 year olds (globally, 2000–2017) and dominant vector species (DVS) from the Malaria Atlas Project (MAP) [4]. Studies of salivary antigens where exposure variables could not be sourced and data that could not be extracted were excluded. ### Selection of studies One author performed database searches and screened reference lists to identify possible studies. One author screened studies against inclusion criteria, with discussion and input from a second reviewer. ### Approaches to include all available studies The authors of any studies that did not contain relevant information on the study design, populations, eligibility criteria, or key study data, were contacted and relevant data requested. Authors were contacted via an initial email detailing the precise nature of the systematic review and the data required. If the authors did not reply to three email requests, or were unable to provide relevant data, the studies were deemed to insufficiently meet inclusion/quality criteria and were excluded. As measurement of antibody levels does not produce a common metric between studies, authors were asked to classify their participants as ‘responders’ or ‘no-responders’ according to seropositivity (antibody level relative to unexposed sera) within each study, to allow comparisons of seroprevalence between studies [5–7]. Studies that were only able to provide antibody levels or categorised seropositivity based upon arbitrary cut offs were excluded from multilevel modelling analyses and included in narrative terms. Where the salivary antibody response and exposure variable were measured in the same population and reported in multiple publications, the study with the largest sample size was included, otherwise the earliest study was included. ### Data extraction Data were extracted using a data collection form by one reviewer. Any data that was provided at the sub-population level was extracted at the lowest level i.e. if a study was performed across multiple sites, and an estimate for both salivary antibody seroprevalence/levels and the outcome of interest is given for each site, it was included the site level, rather than an aggregated level. ### Measures Outcomes The primary outcome of interest of our systematic review was the reported antibody response (both seroprevalence and levels of all Ig subclasses and isotypes) to *Anopheles* salivary antigens. Multilevel modelling analyses were performed where the seroprevalence of antibodies against the same antigen and the exposure of interest were reported in more than one study. ### Exposures The primary exposures of interest included in the multilevel modelling analyses were the HBR and EIR, a measure of the average number of bites received per person per night and infectious bites received per person per year, respectively. Secondary exposures assessed include the prevalence of any *Plasmodium* spp. infection (including *P. falciparum* only, *P. vivax* only, or untyped infections). Additional secondary exposures include the *P. falciparum* infection rate in 2-10 year olds extracted from MAP, as well as the seroprevalence of antimalarial antibodies against pre-erythrocytic and blood-stage antigens. Clinical and methodological heterogeneity were explored using prespecified variables to minimize spurious findings. Variables considered for inclusion were study design (cohort, cross-sectional, repeated cross-sectional), DVS, study participants (adults only, children only, adults and children), preparation of salivary antigen (recombinant full-length protein, synthetic peptide), malaria detection methodology (light microscopy, RDT, PCR), and entomological vector collection methodology (human landing catch, light traps, and spray catches). ### Statistical analysis Where there were sufficient data to pool estimates of the same exposure and outcome measures, generalised linear mixed modelling (GLMM) was used to undertake analyses quantifying associations between the exposures of interest and salivary antibody seroprevalence measurements. Models were generalised through use of the logit link function and binomial distribution (statistical notation for HBR model shown below as equation one). Seroprevalence was modelled in binomial form as the number of individuals seropositive to the total sample size. A three-level random effects model with a nested framework was used to account for dependency in the data, with random intercepts for country (level-3) and study (level-2) and level-1 units representing multiple observations per study induced by the study design (*i.e.* multiple time points, sites, age categories). Additionally, random slopes for entomological and malariometric exposure parameters were included to permit the effect of the exposure of interest (HBR/EIR/malaria prevalence/etc.) to vary across studies. Model structure was determined empirically through likelihood ratio tests (*p*<0.05), with the exception of country at the 3rd level which was included in HBR and EIR analyses to estimate country-specific seroprevalence estimates of anti-salivary antibodies. The associations between the various exposures and the different salivary antigens were analysed separately, however estimates of IgG seroprevalence against the recombinant full-length protein (gSG6) and synthetic peptide (gSG6-P1, the one peptide determined in all studies utilising peptides) form of the gSG6 antigen were analysed together, with a fixed term for antigen construct considered for inclusion in the model. Of note, gSG6 peptide 2 (gSG6-P2) was excluded from being analysed with gSG6 and gSG6-P1 estimates, as the two studies that reported anti-gSG6-P2 IgG seroprevalence also reported the seroprevalence of anti-gSG6-P1 IgG, and only one could be included. Potential effect modification of the associations between the exposures of interest and the anti-*Anopheles* salivary antibody responses was explored was undertaken by estimating interaction terms for DVS (*An. gambiae sensu lato* (*s.l.*) only, *An. gambiae s.l.* and other DVS, or *An. gambiae s.l.* absent) and for vector collection method (human landing catch or other indirect measures *e.g.* light traps, spray catches, etc.). For the association between *Plasmodium* spp. prevalence and gSG6 IgG seropositivity interaction terms for malaria detection methodology (light microscopy or PCR), and malarial species type (*P. falciparum* only, or *P. falciparum* and *P. vivax*) were estimated. Other variables considered for inclusion in adjusted models were study design, participant, salivary antigen construct; however, these variables showed no association with anti-gSG6 IgG and were thus excluded. The natural log of HBR, EIR, malaria prevalence and antimalarial antibody seroprevalence were modelled to account for the non-linear functional form of the association between each measure and the log odds of anti-gSG6 IgG seroprevalence - supported empirically by superior model fit as indicated by Akaike’s information criterion (AIC) and Bayesian information criterion (BIC) fit indices. To aid interpretation, odds ratios are presented according to relative per cent increase in the exposures, such that odds ratios reflect relative changes in anti-gSG6 IgG seropositivity for 50% increases HBR and EIR, and 10% increases in malaria prevalence and antimalarial seroprevalence. Additional per cent changes in HBR and EIR are also presented. Empirical Bayes best linear unbiased predictions (BLUPs) were used to estimate the probability of gSG6 IgG seropositivity in the average study and country, which is equivalent to an estimated gSG6 IgG seroprevalence. In order to maximise the number of included studies in our modelling, we predicted anti-gSG6 seroprevalence according to endemicity class, derived by applying established endemicity cut-offs to *Pf*PR2-10 estimates [8] extracted from MAP using site year and geolocation (if MAP data unavailable endemicity as stated in study). Intraclass correlation coefficients (ICCs) and 95% reference ranges were estimated for country-, study- and slope-specific heterogeneity (where appropriate) using estimated model variance components. *Statistical notation for the generalised linear mixed model used to estimate the association between Anopheles gambiae gSG6 IgG seropositivity and human biting rate (HBR)*. The model can be formally written as: ![Formula][1] where ![Formula][2] Where xij is the vector of model covariates, β1 is the model constant and represents the log odds (probability) of gSG6 IgG seropositivity for a log HBR of zero, β2 the fixed effect for log HBR for country *j* and study *i*, ζ1j the random-effect (i.e. intercept) for between-country heterogeneity in probability of gSG6 IgG seropositivity, ζ2i, the random-effect (i.e. intercept) for between-study heterogeneity in probability of gSG6 IgG seropositivity, and ζ3i the random-effect (i.e. coefficient) for between-study heterogeneity in the effect of log HBR. ### Risk of bias in individual studies For cross-sectional, cohort or intervention studies, selection bias was assessed by reviewing the studies’ inclusion and exclusion criteria. Any case-control studies, or studies that presented salivary antibody data stratified by malaria infection status were included in narrative terms only. Risk of bias was assessed by one reviewer using the Risk of Bias in Prevalence Studies tool [9]. The risk of bias pertains to the reported seroprevalence estimates of anti-*Anopheles* salivary antibodies included in the multilevel modelling. ### Supplementary File 2. Risk of Bias assessment Risk of bias was assessed for each study by one independent reviewer using the *Risk of Bias in Prevalence Studies* tool [9]. This tool comprises 10 items and a summary assessment to assess the external validity (selection and non-response bias) and internal validity (measurement bias) of the study’s prevalence estimates. The risk of bias pertains to the reported seroprevalence estimates of anti-*Anopheles* salivary antibodies included in the multilevel modelling. With regard to external validity, seven of the studies included in the review were performed in specific populations (*i.e.* children only) that were not representative of the national population and were deemed to be at high risk of selection bias. Only 7 studies included some form of random sampling, and frequently insufficient detail was provided on the sampling frame; as such most studies were included as high risk of selection bias. Furthermore, no studies reported participant response-rate, and as such were indicated as high risk of nonresponse bias. In terms of internal validity, all studies had an acceptable case definition, with the same mode of data collection, a valid instrument and an acceptable prevalence period, so were all deemed to be of low risk. However, 12 studies did not include a denominator, instead only reporting the study sample size and prevalence estimate, and were included as high risk. Overall, due to the specific nature of some of the sample populations for which these prevalence estimates are given (*i.e.* children only) and as participant non-response rate is not given, we conclude that there is a moderate risk of study bias. According to the *Risk of Bias in Prevalence Studies* tool [9], this implies that future research is likely to have an impact on our confidence in the prevalence estimates. ### Supplementary File 3. Association between gSG6 IgG seropositivity and antimalarial antibody seroprevalence #### Antibodies against *P. falciparum* pre-erythrocytic stage antigens The pooled analysis of 159 meta-observations from eight studies showed that a 10% relative increase in PfCSP IgG seropositivity was associated with a 11% (OR: 1.11; 95%CI: 1.02-1.21%, *p*=0.013) increase in odds of anti-gSG6 IgG seropositivity [126–133]. Furthermore we observed that gSG6 IgG levels increased with increasing PfCSP IgG seroprevalence in four studies [127–129, 133], with another study contributing only a single estimate [132]. #### Antibodies against *P. falciparum* blood stage antigens Furthermore, we observed a 10% relative increase PfAMA1 IgG seroprevalence was associated with a 13% (OR: 1.13; 95%CI: 1.12-1.15%; *p<*0.001) increase in odds of gSG6 IgG seropositivity, based upon 62 meta-observations from eight studies [128–135]. A similar association was observed for PfMSP119 IgG, with 10% relative increase in seroprevalence associated with 13% (OR: 1.13; 95%CI: 1.03-1.25%; *p*=0.014) increase in odds of gSG6 IgG seropositivity. This association was derived from 163 meta-observations from ten studies [127-130, 132-136]. Analysis of 47 meta-observations from three studies indicated that a 10% relative increase in PfMSP2 IgG seroprevalence was associated with a 5% (OR: 1.05; 95%CI: 1.03-1.07%; *p*<0.001) increase in odds of gSG6 IgG seropositivity [130, 133, 135]. While 17 meta-observations from two studies showed a 10% relative increase in PfMSP3 IgG seroprevalence was associated with a 14% (OR: 1.14; 95%CI: 1.13-1.16%; *p*<0.001) increase in odds of gSG6 IgG seropositivity [132, 135]. The pooled analysis of 128 meta-observations from five studies showed that a 10% relative increase in PfGLURP IgG seroprevalence was associated with a 17% (OR: 1.17; 95%CI: 1.14-1.19%; *p*<0.001) increase in odds of gSG6 IgG seropositivity [126–130]. And 18 meta-observations from five studies indicated that 10% relative increase in *P. falciparum* schizont extract IgG seropositivity was associated with a 27% (OR: 1.27; 95%CI: 0.61-2.65%; *p*=0.523) increase in odds of gSG6 IgG seropositivity [128-130, 134, 137]. We observed that increasing seroprevalence of IgG antibodies against PfAMA1 saw increased levels of anti-gSG6 IgG in three studies [128, 129, 134], but no association in another [133]. The levels of gSG6 IgG increased with increasing PfMSP119 IgG seroprevalence in three studies [128, 134, 136], but showed no association in three other studies [127, 129, 133]. No association between gSG6 IgG levels and MSP2 IgG seroprevalence was observed in one study [133]. PfGLURP IgG seroprevalence and gSG6 IgG antibody levels were reported in three studies, with one study reporting increased levels [128], one study reporting no association [127], and one study reporting decreased levels of anti-gSG6 IgG with increasing anti-PfGLURP seroprevalence [129]. One study showed increasing gSG6 IgG levels with increasing *P. falciparum* schizont extract IgG, while three other studies showed no association [128, 129, 137]. Of note, one study provided a single seroprevalence estimate of antibodies against PfAMA1, PfMSP119 and PfMSP3 so no relationships can be drawn [132]. ### Antibodies against *P. vivax* antigens In pooled analyses of 115 meta-observations from two studies [127, 134], we observed that 10% relative increase in the seroprevalence of PvAMA1 was associated with a 20% (OR: 1.20; 95%CI: 1.19-1.22%; *p*<0.001) increase in the odds of anti-gSG6 IgG seropositivity. Furthermore, in 103 meta-observations from two studies [127, 134], 10% relative increase in PvMSP119 IgG seroprevalence was associated with a 13% (OR: 1.13; 95%CI: 1.12-1.13%; *p*<0.001) increase in the odds of anti-gSG6 IgG seropositivity. However, neither study showed an association between the levels of gSG6 IgG and the seroprevalence of PvAMA1 and PvMSP119 IgG [127, 134]. ### Supplementary File 4. Country and study-specific predicted probability of gSG6 IgG seropositivity In order to obtain estimates of gSG6 IgG seroprevalence for each country and study, an intercept only three-level random effects logistic regression was fitted to 301 meta-observations from 22 studies. The predicted probability of gSG6 IgG seropositivity was calculated at the country-level (Figure S1), indicating that the seroprevalence was lowest in the Pacific Region (Vanuatu (31%) and Solomon Islands (32%)) and highest in Benin (72%) and Burkina Faso (65%). Furthermore, the predicted probability of gSG6 IgG seropositivity was calculated at the study-level (Figure S2) indicating that the seroprevalence was lowest in Ambrosino *et al.* [126] (13%) and highest in Drame *et al.* [138] (91%). ### Supplementary File 5. Association between alternative salivary biomarkers and exposures of interest Our systematic review identified a paucity of studies that assessed the relationship between our exposures of interest and most alternate *Anopheles* salivary biomarkers (that is non-*An. gambiae* gSG6 IgG), thus preventing the estimation of a pooled association. The exceptions being that we observed that a 50% relative increase in HBR was associated with a 7% increase (OR: 1.07; 95%CI: 1.01-1.13%; *p*=0.017) in odds of anti-*An. funestus* fSG6 IgG seropositivity (six meta-observations from two studies [139, 140]; Table 1), as well as a 42% (OR: 1.42; 95%CI: 1.39-1.46%; *p*<0.001) and 21% (OR: 1.21; 95%CI: 1.19-1.23%; *p*<0.001) increase in odds of anti-gSG6-P2 IgG seropositivity associated with 10% relative increase in seroprevalence of PfCSP and PfGLURP IgG, respectively (115 and 116 meta-observations from two studies respectively [126, 127], Table 2-3). The associations between exposures of interest and the additional salivary biomarkers are further discussed in narrative terms in below. #### Human biting rate In addition to the increased odds of *An. funestus* fSG6 seropositivity with increasing HBR, the majority of studies reported a positive association between HBR and the seroprevalence and levels of anti-gSG6-P1 IgM [138], the levels of gSG6-P2 IgG [141], the seroprevalence and levels of anti-cE5 IgG [142], the levels of anti-fSG6 IgG [139, 140], the seroprevalence and levels of anti-f5’nuc IgG [139] and the median levels of anti-*An. gambiae* salivary gland extracts (SGE) SGE IgG and IgG4 [143–145]. One study reported similar median levels of anti-gSG6 IgG1 across populations and time points, whilst reporting that anti-gSG6 IgG4 titre increased with increasing HBR in one of the populations, but not in the other [146]. Similarly, there was no consistent association between HBR and the levels of anti-cE5 IgG [147], levels of anti-*An. gambiae* SGE IgE [145] and the seroprevalence and levels of anti-g5’nuc IgG [139]. ### Entomological inoculation rate Ali *et al.* [139] reported higher seroprevalence and levels anti-fSG6 IgG and anti-f5’nuc IgG with increasing EIR, while anti-g5’nuc IgG seroprevalence and levels were not associated with EIR. An additional study reported gSG6-P2 IgG seroprevalence estimates of 0% for three sites, irrespective of EIR [126]. ### Malaria prevalence Two studies showed that increased *Plasmodium* spp. prevalence was associated with higher median levels of anti-*An. gambiae* SGE IgG [143, 148], while another study showed different anti-*An. gambiae* SGE IgG levels for very similar prevalence of malaria and slightly lower levels of anti-*An. gambiae* SGE IgE and IgG4 for the time point with greater malaria prevalence [145]. Kerkhof *et al.* [127] showed increasing levels of anti-gSG6-P2 IgG for higher prevalence of any *Plasmodium* spp. infection, while Londono-Renteria *et al.* [149] showed lower levels of IgG antibodies against TRANS-P1, TRANS-P2, PEROX-P1, PEROX-P2 and PEROX-P3 in the site with higher PCR confirmed malaria prevalence. Additionally, several case-controlled studies, and two cross-sectional study, reported median antibody levels stratified by malaria infection status. These studies show higher levels of anti-*An. darlingi* SGE IgG [150], anti-*An. gambiae* SGE IgG [144], anti-*An. dirus* SGE IgG and IgM [151], and IgG antibodies against SGEs of two Colombian strains of *An. albimanus* in *Plasmodium* spp. infected individuals, compared to non-infected [152]. While Montiel *et al.* [152] observed no association between anti-*An. darlingi* SGE IgG levels and infection status. ### Antimalarial antibody seroprevalence Our multilevel modelling indicated that there were 42% (OR: 1.42; 95%CI: 1.39-1.46%; *p*<0.001) and 21% (OR: 1.21; 95%CI: 1.19-1.23%; *p*<0.001) increase in odds of anti-gSG6-P2 IgG seropositivity associated with a 10% relative increase in the seroprevalence of PfCSP and PfGLURP IgG, respectively [126, 127]. However, we observed weak positive associations between the levels of IgG antibodies against gSG6-P2 peptide and the seroprevalence of IgG antibodies against PfMSP119, PfGLURP and PvMSP119, but no association with PfCSP or PvAMA1 [127]. ![Figure S1:](http://medrxiv.org/http://medrxiv.stage.highwire.org/content/medrxiv/early/2021/09/17/2021.09.14.21263589/F6.medium.gif) [Figure S1:](http://medrxiv.org/content/early/2021/09/17/2021.09.14.21263589/F6) Figure S1: Risk of Bias assessment. Red – high risk, orange – moderate risk, green – low risk. Figure 1 - Supplement 1. Reasons for study exclusion. ![Figure S1:](http://medrxiv.org/http://medrxiv.stage.highwire.org/content/medrxiv/early/2021/09/17/2021.09.14.21263589/F7.medium.gif) [Figure S1:](http://medrxiv.org/content/early/2021/09/17/2021.09.14.21263589/F7) Figure S1: Predicted gSG6 IgG seroprevalence by country. Predicted probabilities of gSG6 IgG seropositivity including country-specific random effects with 95% confidence intervals. Estimated from intercept-only three-level random-effects logistic regression to account for the hierarchical nature of the data, with an anti-gSG6 IgG meta-observation nested within study nested within country. Based upon 301 meta-observations from 22 studies. ![Figure S2:](http://medrxiv.org/http://medrxiv.stage.highwire.org/content/medrxiv/early/2021/09/17/2021.09.14.21263589/F8.medium.gif) [Figure S2:](http://medrxiv.org/content/early/2021/09/17/2021.09.14.21263589/F8) Figure S2: Predicted gSG6 IgG seroprevalence by study. Predicted probabilities of gSG6 IgG seropositivity including study-specific random effects with 95% confidence intervals. Estimated from intercept-only three-level random-effects logistic regression to account for the hierarchical nature of the data, with an anti-gSG6 IgG meta-observation nested within study nested within country. Based upon 301 meta-observations from 22 studies. View this table: [Table S1:](http://medrxiv.org/content/early/2021/09/17/2021.09.14.21263589/T3) Table S1: Reasons for study exclusion Figure 2 **– Supplement 1: Association between gSG6 IgG seropositivity and human biting rate** View this table: [Table S1:](http://medrxiv.org/content/early/2021/09/17/2021.09.14.21263589/T4) Table S1: **Unadjusted association between gSG6 IgG seropositivity and log Human Biting Rate (HBR).** Figure 3 – Supplement 1: Association between gSG6 IgG seropositivity and entomological inoculation rate View this table: [Table S1:](http://medrxiv.org/content/early/2021/09/17/2021.09.14.21263589/T5) Table S1: Unadjusted association between gSG6 IgG seropositivity log Entomological Inoculation Rate (EIR). Figure 4 – Supplement 1: Association between gSG6 IgG seropositivity and Human Biting Rate (HBR), moderated by dominant vector species View this table: [Table S1:](http://medrxiv.org/content/early/2021/09/17/2021.09.14.21263589/T6) Table S1: Association between gSG6 IgG seropositivity and log Human Biting Rate (HBR), moderated by dominant vector species Figure 5 – Supplement 1. Association between gSG6 IgG seropositivity and malaria prevalence View this table: [Table S1:](http://medrxiv.org/content/early/2021/09/17/2021.09.14.21263589/T7) Table S1: Unadjusted association between gSG6 IgG seropositivity and log *Plasmodium* spp. prevalence. View this table: [Table S1:](http://medrxiv.org/content/early/2021/09/17/2021.09.14.21263589/T8) Table S1: Associations between anti-gSG6 IgG seropositivity and log of antimalarial antibody seroprevalence. View this table: [Table S1:](http://medrxiv.org/content/early/2021/09/17/2021.09.14.21263589/T9) Table S1: Association between fSG6 IgG seropositivity and human biting rate View this table: [Table S2:](http://medrxiv.org/content/early/2021/09/17/2021.09.14.21263589/T10) Table S2: Association between gSG6-P2 IgG seropositivity and log PfCSP IgG seroprevalence View this table: [Table S3:](http://medrxiv.org/content/early/2021/09/17/2021.09.14.21263589/T11) Table S3: Association between gSG6-P2 IgG seropositivity and log PfGLURP IgG seroprevalence ## Acknowledgements We wish to thank the authors of the original studies for responding to requests for further information/data for inclusion in the systematic review. This work was supported by the National Health and Medical Research Council of Australia (Australian Centre for Research Excellence in Malaria Elimination (ACREME) to FJIF and JAS (1134989); Career Development Fellowship to FJIF (1166753) and investigator award to JAS (1196068); and its Independent Research Institute Infrastructure Support Scheme), the Australian Commonwealth Government (Australian Government Research Training Program Scholarship awarded to EK) and a Victorian State Government Operational Infrastructure Support Program received by the Burnet Institute. This research was funded in part by the Wellcome Trust (220211). For the purpose of Open Access, the authors have applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. The funders had no role in the study design, data collection or analysis, decision to publish, or preparation of the manuscript. * Received September 14, 2021. * Revision received September 14, 2021. * Accepted September 17, 2021. * © 2021, Posted by Cold Spring Harbor Laboratory This pre-print is available under a Creative Commons License (Attribution 4.0 International), CC BY 4.0, as described at [http://creativecommons.org/licenses/by/4.0/](http://creativecommons.org/licenses/by/4.0/) ## References 1. 1.Monroe A, Moore S, Okumu F, Kiware S, Lobo NF, Koenker H, Sherrard-Smith E, Gimnig J, Killeen GF. Methods and indicators for measuring patterns of human exposure to malaria vectors. Malar J. 2020;19(1):207. doi: 10.1186/s12936-020-03271-z. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12936-020-03271-z&link_type=DOI) 2. 2.Mathenge EM, Misiani GO, Oulo DO, Irungu LW, Ndegwa PN, Smith TA, Killeen GF, Knols BGJ. Comparative performance of the Mbita trap, CDC light trap and the human landing catch in the sampling of *Anopheles arabiensis*, An. funestus and culicine species in a rice irrigation in western Kenya. Malar J. 2005;4. doi: 10.1186/1475-2875-4-7. PubMed PMID: 15667666. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1475-2875-4-7&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15667666&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 3. 3.Badu K, Siangla J, Larbi J, Lawson BW, Afrane Y, Ong’echa J, Remoue F, Zhou G, Githeko AK, Yan G. Variation in exposure to *Anopheles gambiae* salivary gland peptide (gSG6-P1) across different malaria transmission settings in the western Kenya highlands. Malar J. 2012;11:318. doi: 10.1186/1475-2875-11-318. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1475-2875-11-318&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22963464&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 4. 4.Drame PM, Diallo A, Poinsignon A, Boussari O, Dos Santos S, Machault V, Lalou R, Cornelie S, LeHesran JY, Remoue F. Evaluation of the effectiveness of malaria vector control measures in urban settings of Dakar by a specific *Anopheles* salivary biomarker. PLoS One. 2013;8(6):e66354. doi: 10.1371/journal.pone.0066354. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0066354&link_type=DOI) 5. 5.Drame PM, Poinsignon A, Besnard P, Cornelie S, Le Mire J, Toto JC, Foumane V, Dos-Santos MA, Sembène M, Fortes F, Simondon F, Carnevale P, Remoue F. Human antibody responses to the *Anopheles* salivary gSG6-P1 peptide: a novel tool for evaluating the efficacy of ITNs in malaria vector control. PLoS One. 2010;5(12):e15596. doi: 10.1371/journal.pone.0015596. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0015596&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21179476&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 6. 6.Drame PM, Poinsignon A, Besnard P, Le Mire J, Dos-Santos MA, Sow CS, Cornelie S, Foumane V, Toto JC, Sembene M, Boulanger D, Simondon F, Fortes F, Carnevale P, Remoue F. Human antibody response to *Anopheles gambiae* saliva: an immuno-epidemiological biomarker to evaluate the efficacy of insecticide-treated nets in malaria vector control. Am J Trop Med Hyg. 2010;83(1):115–21. doi: 10.4269/ajtmh.2010.09-0684. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoidHJvcG1lZCI7czo1OiJyZXNpZCI7czo4OiI4My8xLzExNSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzA5LzE3LzIwMjEuMDkuMTQuMjEyNjM1ODkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 7. 7.Drame PM, Poinsignon A, Dechavanne C, Cottrell G, Farce M, Ladekpo R, Massougbodji A, Cornélie S, Courtin D, Migot-Nabias F, Garcia A, Remoué F. Specific antibodies to *Anopheles* gSG6-P1 salivary peptide to assess early childhood exposure to malaria vector bites. Malar J. 2015;14:285. doi: 10.1186/s12936-015-0800-6. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12936-015-0800-6&link_type=DOI) 8. 8.Rizzo C, Ronca R, Fiorentino G, Mangano VD, Sirima SB, Nèbiè I, Petrarca V, Modiano D, Arcà B. Wide cross-reactivity between *Anopheles gambiae* and *Anopheles funestus* SG6 salivary proteins supports exploitation of gSG6 as a marker of human exposure to major malaria vectors in tropical Africa. Malar J. 2011;10:206. doi: 10.1186/1475-2875-10-206. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1475-2875-10-206&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21794142&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 9. 9.Rizzo C, Ronca R, Fiorentino G, Verra F, Mangano V, Poinsignon A, Sirima SB, Nèbiè I, Lombardo F, Remoue F, Coluzzi M, Petrarca V, Modiano D, Arcà B. Humoral response to the *Anopheles gambiae* salivary protein gSG6: a serological indicator of exposure to Afrotropical malaria vectors. PLoS One. 2011;6(3):e17980. doi: 10.1371/journal.pone.0017980. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0017980&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21437289&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 10. 10.Stone W, Bousema T, Jones S, Gesase S, Hashim R, Gosling R, Carneiro I, Chandramohan D, Theander T, Ronca R, Modiano D, Arcà B, Drakeley C. IgG responses to *Anopheles gambiae* salivary antigen gSG6 detect variation in exposure to malaria vectors and disease risk. PLoS One. 2012;7(6):e40170. doi: 10.1371/journal.pone.0040170. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0040170&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22768250&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 11. 11.Drame PM, Machault V, Diallo A, Cornélie S, Poinsignon A, Lalou R, Sembène M, Dos Santos S, Rogier C, Pagès F, Le Hesran JY, Remoué F. IgG responses to the gSG6-P1 salivary peptide for evaluating human exposure to *Anopheles* bites in urban areas of Dakar region, Sénégal. Malar J. 2012;11:72. doi: 10.1186/1475-2875-11-72. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1475-2875-11-72&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22424570&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 12. 12.Londono-Renteria B, Drame PM, Weitzel T, Rosas R, Gripping C, Cardenas JC, Alvares M, Wesson DM, Poinsignon A, Remoue F, Colpitts TM. *An. gambiae* gSG6-P1 evaluation as a proxy for human-vector contact in the Americas: a pilot study. Parasit Vectors. 2015;8:533. doi: 10.1186/s13071-015-1160-3. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s13071-015-1160-3&link_type=DOI) 13. 13.Ya-Umphan P, Cerqueira D, Parker DM, Cottrell G, Poinsignon A, Remoue F, Brengues C, Chareonviriyaphap T, Nosten F, Corbel V. Use of an *Anopheles* salivary biomarker to assess malaria transmission risk along the Thailand-Myanmar Border. J Infect Dis. 2017;215(3):396–404. doi: 10.1093/infdis/jiw543. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/infdis/jiw543&link_type=DOI) 14. 14.Noukpo MH, Damien GB, Elanga-N’Dille E, Sagna AB, Drame PM, Chaffa E, Boussari O, Corbel V, Akogbéto M, Remoue F. Operational assessment of long-lasting insecticidal nets by using an *Anopheles* salivary biomarker of human-vector contact. Am J Trop Med Hyg. 2016;95(6):1376–82. doi: 10.4269/ajtmh.15-0541. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoidHJvcG1lZCI7czo1OiJyZXNpZCI7czo5OiI5NS82LzEzNzYiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMS8wOS8xNy8yMDIxLjA5LjE0LjIxMjYzNTg5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 15. 15.Idris ZM, Chan CW, Mohammed M, Kalkoa M, Taleo G, Junker K, Arcà B, Drakeley C, Kaneko A. Serological measures to assess the efficacy of malaria control programme on Ambae Island, Vanuatu. Parasit Vectors. 2017;10(1):204. doi: 10.1186/s13071-017-2139-z. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s13071-017-2139-z&link_type=DOI) 16. 16.Moher D, Liberati A, Tetzlaff J, Altman DG, The PG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009;6(7):e1000097. doi: 10.1371/journal.pmed.1000097. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pmed.1000097&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19621072&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 17. 17.Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283(15):2008–12. Epub 2000/05/02. doi: 10.1001/jama.283.15.2008. PubMed PMID: 10789670. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jama.283.15.2008&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=10789670&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000086436600037&link_type=ISI) 18. 18.Yamba EI, Tompkins AM, Fink AH, Ermert V, Djouda A, Amekudzi LK, Briët OJT. Monthly entomological inoculation rates for studying malaria transmission seasonality in Africa. PANGAEA; 2018. 19. 19.The Malaria Atlas Project [Internet]. 2017. Available from: [https://malariaatlas.org/](https://malariaatlas.org/). 20. 20.Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, Battle K, Moyes CL, Henry A, Eckhoff PA, Wenger EA, Briët O, Penny MA, Smith TA, Bennett A, Yukich J, Eisele TP, Griffin JT, Fergus CA, Lynch M, Lindgren F, Cohen JM, Murray CLJ, Smith DL, Hay SI, Cibulskis RE, Gething PW. The effect of malaria control on *Plasmodium falciparum* in Africa between 2000 and 2015. Nature. 2015;526(7572):207-11. Epub 2015/09/16. doi: 10.1038/nature15535. PubMed PMID: 26375008. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/nature15535&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26375008&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 21. 21.Song P, Rudan D, Zhu Y, Fowkes FJI, Rahimi K, Fowkes FGR, Rudan I. Global, regional, and national prevalence and risk factors for peripheral artery disease in 2015: an updated systematic review and analysis. Lancet Glob Health. 2019;7(8):e1020–e30. doi: 10.1016/S2214-109X(19)30255-4. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S2214-109X(19)30255-4&link_type=DOI) 22. 22.Hoy D, Brooks P, Woolf A, Blyth F, March L, Bain C, Baker P, Smith E, Buchbinder R. Assessing risk of bias in prevalence studies: modification of an existing tool and evidence of interrater agreement. J Clin Epidemiol. 2012;65(9):934–9. doi: 10.1016/j.jclinepi.2011.11.014. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jclinepi.2011.11.014&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22742910&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 23. 23.Lawaly R, Konate L, Marrama L, Dia I, Diallo D, Sarr FD, Schneider BS, Casademont I, Diallo M, Brey PT, Sakuntabhai A, Mecheri S, Paul R. Impact of mosquito bites on asexual parasite density and gametocyte prevalence in asymptomatic chronic *Plasmodium falciparum* infections and correlation with IgE and IgG titers. Infect Immun. 2012;80(6):2240–6. doi: 10.1128/iai.06414-11. PubMed PMID: WOS:000304387700031. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiaWFpIjtzOjU6InJlc2lkIjtzOjk6IjgwLzYvMjI0MCI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzA5LzE3LzIwMjEuMDkuMTQuMjEyNjM1ODkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 24. 24.Rizzo C, Lombardo F, Ronca R, Mangano V, Sirima SB, Nèbiè I, Fiorentino G, Modiano D, Arcà B. Differential antibody response to the *Anopheles gambiae* gSG6 and cE5 salivary proteins in individuals naturally exposed to bites of malaria vectors. Parasit Vectors. 2014;7:549. doi: 10.1186/s13071-014-0549-8. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s13071-014-0549-8&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25428638&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 25. 25.Rizzo C, Ronca R, Lombardo F, Mangano V, Sirima SB, Nèbiè I, Fiorentino G, Troye-Blomberg M, Modiano D, Arcà B. IgG1 and IgG4 antibody responses to the *Anopheles gambiae* salivary protein gSG6 in the sympatric ethnic groups Mossi and Fulani in a malaria hyperhendemic area of Burkina Faso. PLoS One. 2014;9(4):e96130. doi: 10.1371/journal.pone.0096130. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0096130&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24760038&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 26. 26.Waitayakul A, Somsri S, Sattabongkot J, Looareesuwan S, Cui L, Udomsangpetch R. Natural human humoral response to salivary gland proteins of *Anopheles* mosquitoes in Thailand. Acta Trop. 2006;98(1):66–73. doi: 10.1016/j.actatropica.2006.02.004. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.actatropica.2006.02.004&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16530153&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000237010400009&link_type=ISI) 27. 27.Brosseau L, Drame PM, Besnard P, Toto JC, Foumane V, Le Mire J, Mouchet F, Remoue F, Allan R, Fortes F, Carnevale P, Manguin S. Human antibody response to *Anopheles* saliva for comparing the efficacy of three malaria vector control methods in Balombo, Angola. PLoS One. 2012;7(9):e44189. doi: 10.1371/journal.pone.0044189. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0044189&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23028499&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 28. 28.Marie A, Ronca R, Poinsignon A, Lombardo F, Drame PM, Cornelie S, Besnard P, Le Mire J, Fiorentino G, Fortes F, Carnevale P, Remoue F, Arcà B. The *Anopheles gambiae* cE5 salivary protein: a sensitive biomarker to evaluate the efficacy of insecticide-treated nets in malaria vector control. Microbes Infect. 2015;17(6):409–16. doi: 10.1016/j.micinf.2015.01.002. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.micinf.2015.01.002&link_type=DOI) 29. 29.Soma DD, Kassié D, Sanou S, Karama FB, Ouari A, Mamai W, Ouédraogo GA, Salem G, Dabiré RK, Fournet F. Uneven malaria transmission in geographically distinct districts of Bobo-Dioulasso, Burkina Faso. Parasit Vectors. 2018;11(1):296. doi: 10.1186/s13071-018-2857-x. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s13071-018-2857-x&link_type=DOI) 30. 30.Koffi D, Touré AO, Varela ML, Vigan-Womas I, Béourou S, Brou S, Ehouman MF, Gnamien L, Richard V, Djaman JA, Perraut R. Analysis of antibody profiles in symptomatic malaria in three sentinel sites of Ivory Coast by using multiplex, fluorescent, magnetic, bead-based serological assay (MAGPIX™). Malar J. 2015;14:509. doi: 10.1186/s12936-015-1043-2. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12936-015-1043-2&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26692284&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 31. 31.Koffi D, Varela ML, Loucoubar C, Beourou S, Vigan-Womas I, Touré A, Djaman JA, Touré AO, Perraut R. Longitudinal analysis of antibody responses in symptomatic malaria cases do not mirror parasite transmission in peri-urban area of Cote d’Ivoire between 2010 and 2013. PLoS One. 2017;12(2):e0172899. doi: 10.1371/journal.pone.0172899. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0172899&link_type=DOI) 32. 32.Traoré DF, Sagna AB, Adja AM, Zoh DD, Lingué KN, Coulibaly I, N’Cho Tchiekoi B, Assi SB, Poinsignon A, Dagnogo M, Remoue F. Evaluation of malaria urban risk using an immuno-epidemiological biomarker of human exposure to *Anopheles* bites. Am J Trop Med Hyg. 2018;98(5):1353–9. doi: 10.4269/ajtmh.17-0231. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.4269/ajtmh.17-0231&link_type=DOI) 33. 33.Traoré DF, Sagna AB, Adja AM, Zoh DD, Adou KA, Lingué KN, Coulibaly I, Tchiekoi NB, Assi SB, Poinsignon A, Dagnogo M, Remoue F. Exploring the heterogeneity of human exposure to malaria vectors in an urban setting, Bouaké, Côte d’Ivoire, using an immuno-epidemiological biomarker. Malar J. 2019;18(1):68. doi: 10.1186/s12936-019-2696-z. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12936-019-2696-z&link_type=DOI) 34. 34.Sadia-Kacou CAM, Yobo CM, Adja MA, Sagna AB, Ndille EE, Poinsignon A, Tano Y, Koudou BG, Remoue F. Use of *Anopheles* salivary biomarker to assess seasonal variation of human exposure to *Anopheles* bites in children living near rubber and oil palm cultivations in Côte d’Ivoire. Parasite Epidemiol Control. 2019;5:e00102. doi: 10.1016/j.parepi.2019.e00102. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.parepi.2019.e00102&link_type=DOI) 35. 35.Badu K, Gyan B, Appawu M, Mensah D, Dodoo D, Yan G, Drakeley C, Zhou G, Owusu-Dabo E, Koram KA. Serological evidence of vector and parasite exposure in Southern Ghana: the dynamics of malaria transmission intensity. Parasit Vectors. 2015;8:251. doi: 10.1186/s13071-015-0861-y. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s13071-015-0861-y&link_type=DOI) 36. 36.Sagna AB, Sarr JB, Gaayeb L, Drame PM, Ndiath MO, Senghor S, Sow CS, Poinsignon A, Seck M, Hermann E, Schacht A-M, Faye N, Sokhna C, Remoue F, Riveau G. gSG6-P1 salivary biomarker discriminates micro-geographical heterogeneity of human exposure to *Anopheles* bites in low and seasonal malaria areas. Parasit Vectors. 2013;6(1):68. doi: 10.1186/1756-3305-6-68. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1756-3305-6-68&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23497646&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 37. 37.Poinsignon A, Samb B, Doucoure S, Drame PM, Sarr JB, Sow C, Cornelie S, Maiga S, Thiam C, Rogerie F, Guindo S, Hermann E, Simondon F, Dia I, Riveau G, Konate L, Remoue F. First attempt to validate the gSG6-P1 salivary peptide as an immuno-epidemiological tool for evaluating human exposure to *Anopheles funestus* bites. Trop Med Int Health. 2010;15(10):1198–203. doi: 10.1111/j.1365-3156.2010.02611.x. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1365-3156.2010.02611.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20723184&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 38. 38.Sarr JB, Samb B, Sagna AB, Fortin S, Doucoure S, Sow C, Senghor S, Gaayeb L, Guindo S, Schacht AM, Rogerie F, Hermann E, Dia I, Konate L, Riveau G, Remoue F. Differential acquisition of human antibody responses to *Plasmodium falciparum* according to intensity of exposure to *Anopheles* bites. Trans R Soc Trop Med Hyg. 2012;106(8):460–7. doi: 10.1016/j.trstmh.2012.05.006. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.trstmh.2012.05.006&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22721883&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 39. 39.Ali ZM, Bakli M, Fontaine A, Bakkali N, Vu Hai V, Audebert S, Boublik Y, Pagès F, Remoué F, Rogier C, Fraisier C, Almeras L. Assessment of *Anopheles* salivary antigens as individual exposure biomarkers to species-specific malaria vector bites. Malar J. 2012;11:439. doi: 10.1186/1475-2875-11-439. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1475-2875-11-439&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23276246&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 40. 40.Ambrosino E, Dumoulin C, Orlandi-Pradines E, Remoue F, Toure-Baldé A, Tall A, Sarr JB, Poinsignon A, Sokhna C, Puget K, Trape JF, Pascual A, Druilhe P, Fusai T, Rogier C. A multiplex assay for the simultaneous detection of antibodies against 15 *Plasmodium falciparum* and *Anopheles gambiae* saliva antigens. Malar J. 2010;9:317. doi: 10.1186/1475-2875-9-317. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1475-2875-9-317&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21059211&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 41. 41.Perraut R, Varela ML, Loucoubar C, Niass O, Sidibé A, Tall A, Trape JF, Wotodjo AN, Mbengue B, Sokhna C, Vigan-Womas I, Touré A, Richard V, Mercereau-Puijalon O. Serological signatures of declining exposure following intensification of integrated malaria control in two rural Senegalese communities. PLoS One. 2017;12(6):e0179146. doi: 10.1371/journal.pone.0179146. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0179146&link_type=DOI) 42. 42.Poinsignon A, Cornelie S, Mestres-Simon M, Lanfrancotti A, Rossignol M, Boulanger D, Cisse B, Sokhna C, Arcà B, Simondon F, Remoue F. Novel peptide marker corresponding to salivary protein gSG6 potentially identifies exposure to *Anopheles* bites. PLoS One. 2008;3(6):e2472. doi: 10.1371/journal.pone.0002472. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0002472&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18575604&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 43. 43.Poinsignon A, Cornelie S, Ba F, Boulanger D, Sow C, Rossignol M, Sokhna C, Cisse B, Simondon F, Remoue F. Human IgG response to a salivary peptide, gSG6-PI, as a new immuno-epidemiological tool for evaluating low-level exposure to Anopheles bites. Malar J. 2009;8. doi: 10.1186/1475-2875-8-198. PubMed PMID: WOS:000269875000001. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1475-2875-8-198&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=WOS:00026987&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 44. 44.Remoue F, Cisse B, Ba F, Sokhna C, Herve JP, Boulanger D, Simondon F. Evaluation of the antibody response to *Anopheles* salivary antigens as a potential marker of risk of malaria. Trans R Soc Trop Med Hyg. 2006;100(4):363–70. doi: 10.1016/j.trstmh.2005.06.032. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.trstmh.2005.06.032&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16310235&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 45. 45.Sagna AB, Kassié D, Couvray A, Adja AM, Hermann E, Riveau G, Salem G, Fournet F, Remoue F. Spatial assessment of contact between humans and *Anopheles* and *Aedes* mosquitoes in a medium-sized African urban setting, using salivary antibody-based biomarkers. J Infect Dis. 2019;220(7):1199–208. doi: 10.1093/infdis/jiz289. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/infdis/jiz289&link_type=DOI) 46. 46.Yman V, White MT, Rono J, Arca B, Osier FH, Troye-Blomberg M, Bostrom S, Ronca R, Rooth I, Farnert A. Antibody acquisition models: A new tool for serological surveillance of malaria transmission intensity. Sci Rep. 2016;6. doi: 10.1038/srep19472. PubMed PMID: WOS:000369380100001. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/srep19472&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=WOS:00036938&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 47. 47.Proietti C, Verra F, Bretscher MT, Stone W, Kanoi BN, Balikagala B, Egwang TG, Corran P, Ronca R, Arcà B, Riley EM, Crisanti A, Drakeley C, Bousema T. Influence of infection on malaria-specific antibody dynamics in a cohort exposed to intense malaria transmission in northern Uganda. Parasite Immunol. 2013;35(5-6):164–73. doi: 10.1111/pim.12031. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/pim.12031&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23473542&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 48. 48.Andrade BB, Rocha BC, Reis-Filho A, Camargo LM, Tadei WP, Moreira LA, Barral A, Barral-Netto M. Anti-*Anopheles darlingi* saliva antibodies as marker of *Plasmodium vivax* infection and clinical immunity in the Brazilian Amazon. Malar J. 2009;8:121. doi: 10.1186/1475-2875-8-121. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1475-2875-8-121&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19500362&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 49. 49.Londono-Renteria B, Drame PM, Montiel J, Vasquez AM, Tobón-Castaño A, Taylor M, Vizcaino L, Lenhart AAE. Identification and pilot evaluation of salivary peptides from *Anopheles albimanus* as biomarkers for bite exposure and malaria infection in Colombia. Int J Mol Sci. 2020;21(3). doi: 10.3390/ijms21030691. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/ijms21030691&link_type=DOI) 50. 50.Montiel J, Carbal LF, Tobón-Castaño A, Vásquez GM, Fisher ML, Londono-Rentería B. IgG antibody response against *Anopheles* salivary gland proteins in asymptomatic *Plasmodium* infections in Narino, Colombia. Malar J. 2020;19(1):42. doi: 10.1186/s12936-020-3128-9. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12936-020-3128-9&link_type=DOI) 51. 51.Kerkhof K, Sluydts V, Willen L, Kim S, Canier L, Heng S, Tsuboi T, Sochantha T, Sovannaroth S, Ménard D, Coosemans M, Durnez L. Serological markers to measure recent changes in malaria at population level in Cambodia. Malar J. 2016;15(1):1–18. doi: 10.1186/s12936-016-1576-z. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12936-016-1291-9&link_type=DOI) 52. 52.Charlwood JD, Hall T, Nenhep S, Rippon E, Branca-Lopes A, Steen K, Arca B, Drakeley C. Spatial repellents and malaria transmission in an endemic area of Cambodia with high mosquito net usage. MalariaWorld J. 2017;8(11). 53. 53.Pollard EJM, Patterson C, Russell TL, Apairamo A, Oscar J, Arcà B, Drakeley C, Burkot TR. Human exposure to *Anopheles farauti* bites in the Solomon Islands is not associated with IgG antibody response to the gSG6 salivary protein of *Anopheles gambiae*. Malar J. 2019;18(1):334. doi: 10.1186/s12936-019-2975-8. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12936-019-2975-8&link_type=DOI) 54. 54.Plasmodium falciparum Paratsite Rate 2-10 year olds [Internet]. MAP. 2020. Available from: [https://malariaatlas.org/](https://malariaatlas.org/). 55. 55.Arcà B, Lombardo F, Struchiner CJ, Ribeiro JM. Anopheline salivary protein genes and gene families: an evolutionary overview after the whole genome sequence of sixteen *Anopheles* species. BMC Genomics. 2017;18(1):153. doi: 10.1186/s12864-017-3579-8. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12864-017-3579-8&link_type=DOI) 56. 56.Londono-Renteria B, Montiel J, Calvo E, Tobón-Castaño A, Valdivia HO, Escobedo-Vargas K, Romero L, Bosantes M, Fisher ML, Conway MJ, Vásquez GM, Lenhart AE. Antibody responses against *Anopheles darlingi* immunogenic peptides in *Plasmodium* infected humans. Front Cell Infect Microbiol. 2020;10(455). doi: 10.3389/fcimb.2020.00455. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fcimb.2020.00455&link_type=DOI) 57. 57.Trung HD, Bortel WV, Sochantha T, Keokenchanh K, Briët OJ, Coosemans M. Behavioural heterogeneity of Anopheles species in ecologically different localities in Southeast Asia: a challenge for vector control. Trop Med Int Health. 2005;10(3):251–62. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1365-3156.2004.01378.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15730510&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000227188500009&link_type=ISI) 58. 58.Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, Mbogo CM, Hemingway J, Patil AP, Temperley WH. A global map of dominant malaria vectors. Parasit Vectors. 2012;5(1):69. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1756-3305-5-69&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22475528&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 59. 59.Sinka ME, Rubio-Palis Y, Manguin S, Patil AP, Temperley WH, Gething PW, Van Boeckel T, Kabaria CW, Harbach RE, Hay SI. The dominant *Anopheles* vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic précis. Parasit Vectors. 2010;3(1):72. doi: 10.1186/1756-3305-3-72. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1756-3305-3-72&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20712879&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 60. 60.Herrera S, Ochoa-Orozco SA, González IJ, Peinado L, Quiñones ML, Arévalo-Herrera M. Prospects for malaria elimination in Mesoamerica and Hispaniola. PLoS Negl Trop Dis. 2015;9(5):e0003700. Epub 2015/05/15. doi: 10.1371/journal.pntd.0003700. PubMed PMID: 25973753; PubMed Central PMCID: PMCPMC4431857. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pntd.0003700&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25973753&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 61. 61.Chaumeau V, Fustec B, Nay Hsel S, Montazeau C, Naw Nyo S, Metaane S, Sawasdichai S, Kittiphanakun P, Phatharakokordbun P, Kwansomboon N, Andolina C, Cerqueira D, Chareonviriyaphap T, Nosten FH, Corbel V. Entomological determinants of malaria transmission in Kayin state, Eastern Myanmar: A 24-month longitudinal study in four villages. Wellcome Open Res. 2018;3:109. Epub 2019/06/27. doi: 10.12688/wellcomeopenres.14761.4. PubMed PMID: 31206035; PubMed Central PMCID: PMCPMC6544137. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.12688/wellcomeopenres.14761.4&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31206035&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 62. 62.Takken W, Lindsay S. Increased threat of urban malaria from *Anopheles stephensi* mosquitoes, Africa. Emerg Infect Dis. 2019;25(7):1431–3. Epub 2019/07/17. doi: 10.3201/eid2507.190301. PubMed PMID: 31063455. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3201/eid2507.190301&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31063455&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 63. 63.Sinka ME, Pironon S, Massey NC, Longbottom J, Hemingway J, Moyes CL, Willis KJ. A new malaria vector in Africa: Predicting the expansion range of *Anopheles stephensi* and identifying the urban populations at risk. Proc Natl Acad Sci USA. 2020;117(40):24900. doi: 10.1073/pnas.2003976117. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMjoiMTE3LzQwLzI0OTAwIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDkvMTcvMjAyMS4wOS4xNC4yMTI2MzU4OS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 64. 64.Sandfort M, Vantaux A, Kim S, Obadia T, Pepey A, Gardais S, Khim N, Lek D, White M, Robinson LJ, Witkowski B, Mueller I. Forest malaria in Cambodia: the occupational and spatial clustering of *Plasmodium vivax* and *Plasmodium falciparum* infection risk in a cross-sectional survey in Mondulkiri province, Cambodia. Malar J. 2020;19(1):413. doi: 10.1186/s12936-020-03482-4. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12936-020-03482-4&link_type=DOI) 65. 65. World Health Organization. Global vector control response 2017–2030. Geneva: WHO, 2017. ## Supplementary References 1. 66.Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283(15):2008–12. Epub 2000/05/02. doi: 10.1001/jama.283.15.2008. PubMed PMID: 10789670. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jama.283.15.2008&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=10789670&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000086436600037&link_type=ISI) 2. 67.Moher D, Liberati A, Tetzlaff J, Altman DG, The PG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009;6(7):e1000097. doi: 10.1371/journal.pmed.1000097. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pmed.1000097&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19621072&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 3. 68.Yamba EI, Tompkins AM, Fink AH, Ermert V, Djouda A, Amekudzi LK, Briët OJT. Monthly entomological inoculation rates for studying malaria transmission seasonality in Africa. PANGAEA; 2018. 4. 69.The Malaria Atlas Project [Internet]. 2017. Available from: [https://malariaatlas.org/](https://malariaatlas.org/). 5. 70.Cutts JC, Agius PA, Zaw L, Powell R, Moore K, Draper B, Simpson JA, Fowkes FJI. Pregnancy-specific malarial immunity and risk of malaria in pregnancy and adverse birth outcomes: a systematic review. BMC Med. 2020;18(1):14. Epub 2020/01/17. doi: 10.1186/s12916-019-1467-6. PubMed PMID: 31941488; PubMed Central PMCID: PMCPMC6964062. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12916-019-1467-6&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31941488&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 6. 71.Cutts JC, Powell R, Agius PA, Beeson JG, Simpson JA, Fowkes FJ. Immunological markers of *Plasmodium vivax* exposure and immunity: a systematic review and meta-analysis. BMC Med. 2014;12:150. Epub 2014/09/10. doi: 10.1186/s12916-014-0150-1. PubMed PMID: 25199532; PubMed Central PMCID: PMCPMC4172944. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12916-014-0150-1&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25199532&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 7. 72.Fowkes FJI, Richards JS, Simpson JA, Beeson JG. The relationship between anti-merozoite antibodies and incidence of *Plasmodium falciparum* malaria: A systematic review and meta-analysis. PLoS Med. 2010;7(1):e1000218-e. doi: 10.1371/journal.pmed.1000218. PubMed PMID: 20098724. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pmed.1000218&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20098724&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 8. 73.Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, Battle K, Moyes CL, Henry A, Eckhoff PA, Wenger EA, Briët O, Penny MA, Smith TA, Bennett A, Yukich J, Eisele TP, Griffin JT, Fergus CA, Lynch M, Lindgren F, Cohen JM, Murray CLJ, Smith DL, Hay SI, Cibulskis RE, Gething PW. The effect of malaria control on *Plasmodium falciparum* in Africa between 2000 and 2015. Nature. 2015;526(7572):207-11. Epub 2015/09/16. doi: 10.1038/nature15535. PubMed PMID: 26375008. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/nature15535&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26375008&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 9. 74.Hoy D, Brooks P, Woolf A, Blyth F, March L, Bain C, Baker P, Smith E, Buchbinder R. Assessing risk of bias in prevalence studies: modification of an existing tool and evidence of interrater agreement. J Clin Epidemiol. 2012;65(9):934–9. doi: 10.1016/j.jclinepi.2011.11.014. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jclinepi.2011.11.014&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22742910&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 10. 75.Alvarenga PH, Francischetti IMB, Calvo E, Sa-Nunes A, Ribeiro JMC, Andersen JF. The Function and Three-Dimensional Structure of a Thromboxane A(2)/Cysteinyl Leukotriene-Binding Protein from the Saliva of a Mosquito Vector of the Malaria Parasite. PLoS Biol. 2010;8(11). doi: 10.1371/journal.pbio.1000547. PubMed PMID: WOS:000284762300019. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pbio.1000547&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21152418&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 11. 76.Arcà B, Lombardo F, Struchiner CJ, Ribeiro JM. Anopheline salivary protein genes and gene families: an evolutionary overview after the whole genome sequence of sixteen *Anopheles* species. BMC Genomics. 2017;18(1):153. doi: 10.1186/s12864-017-3579-8. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12864-017-3579-8&link_type=DOI) 12. 77.Arcà B, Lombardo F, Valenzuela JG, Francischetti IMB, Marinotti O, Coluzzi M, Ribeiro JMC. An updated catalogue of salivary gland transcripts in the adult female mosquito, Anopheles gambiae. J Exp Biol. 2005;208(20):3971–86. doi: 10.1242/jeb.01849. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiamV4YmlvIjtzOjU6InJlc2lkIjtzOjExOiIyMDgvMjAvMzk3MSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzA5LzE3LzIwMjEuMDkuMTQuMjEyNjM1ODkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 13. 78.Calvo E, Dao A, Pham VM, Ribeiro JM. An insight into the sialome of Anopheles funestus reveals an emerging pattern in anopheline salivary protein families. Insect Biochem Mol Biol. 2007;37(2):164–75. doi: 10.1016/j.ibmb.2006.11.005. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ibmb.2006.11.005&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17244545&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000244239700007&link_type=ISI) 14. 79.Calvo E, Mans BJ, Andersen JF, Ribeiro JMC. Function and evolution of a mosquito salivary protein family. J Biol Chem. 2006;281(4):1935–42. doi: 10.1074/jbc.M510359200. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjEwOiIyODEvNC8xOTM1IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjEvMDkvMTcvMjAyMS4wOS4xNC4yMTI2MzU4OS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 15. 80.Choumet V, Carmi-Leroy A, Laurent C, Lenormand P, Rousselle JC, Namane A, Roth C, Brey PT. The salivary glands and saliva of Anopheles gambiae as an essential step in the Plasmodium life cycle: A global proteomic study. Proteomics. 2007;7(18):3384–94. doi: 10.1002/pmic.200700334. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/pmic.200700334&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17849406&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000249903900015&link_type=ISI) 16. 81.Das S, Radtke A, Choi Y, Mendes AM, Valenzuela JG, Dimopoulos G. Transcriptomic and functional analysis of the Anopheles gambiae salivary gland in relation to blood feeding. BMC Genomics. 2010;11(1). doi: 10.1186/1471-2164-11-566. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1471-2164-11-566&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20946652&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 17. 82.Di Gaetano S, Del Gatto A, Pirone L, Comegna D, Zaccaro L, Saviano M, Arca B, Capasso D, Pedone E. A selective alpha(v)beta(5) integrin antagonist hidden into the anophelin family protein cE5 from the malaria vector Anopheles gambiae. Peptide Science. 2018;110(5). doi: 10.1002/pep2.24054. PubMed PMID: WOS:000450664700016. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/pep2.24054&link_type=DOI) 18. 83.Dixit R, Sharma A, Mourya DT, Kamaraju R, Patole MS, Shouche YS. Salivary gland transcriptome analysis during Plasmodium infection in malaria vector Anopheles stephensi. Int J Infect Dis. 2009;13(5):636–46. doi: 10.1016/j.ijid.2008.07.027. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijid.2008.07.027&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19128996&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 19. 84.Francischetti IM, Ma D, Andersen JF, Ribeiro JM. Evidence for a lectin specific for sulfated glycans in the salivary gland of the malaria vector, Anopheles gambiae. PLoS One. 2014;9(9):e107295. doi: 10.1371/journal.pone.0107295. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0107295&link_type=DOI) 20. 85.Francischetti IM, Valenzuela JG, Pham VM, Garfield MK, Ribeiro JM. Toward a catalog for the transcripts and proteins (sialome) from the salivary gland of the malaria vector Anopheles gambiae. J Exp Biol. 2002;205(Pt 16):2429–51. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiamV4YmlvIjtzOjU6InJlc2lkIjtzOjExOiIyMDUvMTYvMjQyOSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzA5LzE3LzIwMjEuMDkuMTQuMjEyNjM1ODkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 21. 86.Ghosh AK, Devenport M, Jethwaney D, Kalume DE, Pandey A, Anderson VE, Sultan AA, Kumar N, Jacobs-Lorena M. Malaria parasite invasion of the mosquito salivary gland requires interaction between the Plasmodium TRAP and the Anopheles saglin proteins. PLoS Pathog. 2009;5(1):e1000265. doi: 10.1371/journal.ppat.1000265. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.ppat.1000265&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19148273&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 22. 87.Isaacs AT, Mawejje HD, Tomlinson S, Rigden DJ, Donnelly MJ. Genome-wide transcriptional analyses in Anopheles mosquitoes reveal an unexpected association between salivary gland gene expression and insecticide resistance. BMC Genomics. 2018;19(1). doi: 10.1186/s12864-018-4605-1. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12864-018-4605-1&link_type=DOI) 23. 88.Jariyapan N, Baimai V, Poovorawan Y, Roytrakul S, Saeung A, Thongsahuan S, Suwannamit S, Otsuka Y, Choochote W. Analysis of female salivary gland proteins of the Anopheles barbirostris complex (Diptera: Culicidae) in Thailand. Parasitol Res. 2010;107(3):509–16. doi: 10.1007/s00436-010-1883-1. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00436-010-1883-1&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20428888&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 24. 89.Jariyapan N, Choochote W, Jitpakdi A, Harnnoi T, Siriyasatein P, Wilkinson MC, Bates PA. A glycine- and glutamate-rich protein is female salivary gland-specific and abundant in the malaria vector Anopheles dirus B (Diptera: Culicidae). J Med Entomol. 2006;43(5):867–74. doi: 10.1603/0022-2585(2006)43[867:AGAGPI]2.0.CO;2. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1603/0022-2585(2006)43[867:AGAGPI]2.0.CO;2&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17017221&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 25. 90.Jariyapan N, Roytrakul S, Paemanee A, Junkum A, Saeung A, Thongsahuan S, Sor-suwan S, Phattanawiboon B, Poovorawan Y, Choochote W. Proteomic analysis of salivary glands of female Anopheles barbirostris species A2 (Diptera: Culicidae) by two-dimensional gel electrophoresis and mass spectrometry. Parasitol Res. 2012;111(3):1239–49. doi: 10.1007/s00436-012-2958-y. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00436-012-2958-y&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22584379&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 26. 91.Kamiya T, Greischar MA, Mideo N. Epidemiological consequences of immune sensitisation by pre-exposure to vector saliva. PLoS Negl Trop Dis. 2017;11(10). doi: 10.1371/journal.pntd.0005956. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pntd.0005956&link_type=DOI) 27. 92.Khaireh BA, Briolant S, Pascual A, Mokrane M, MacHault V, Travaillé C, Khaireh MA, Farah IH, Ali HM, Abdi AIA, Ayeh SN, Darar HY, Ollivier L, Waiss MK, Bogreau H, Rogier C, Pradines B. Plasmodium vivax and Plasmodium falciparum infections in the Republic of Djibouti: Evaluation of their prevalence and potential determinants. Malar J. 2012;11. doi: 10.1186/1475-2875-11-395. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1475-2875-11-395&link_type=DOI) 28. 93.Korochkina S, Barreau C, Pradel G, Jeffery E, Li J, Natarajan R, Shabanowitz J, Hunt D, Frevert U, Vernick KD. A mosquito-specific protein family includes candidate receptors for malaria sporozoite invasion of salivary glands. Cell Microbiol. 2006;8(1):163–75. doi: 10.1111/j.1462-5822.2005.00611.x. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1462-5822.2005.00611.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16367875&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000233817900015&link_type=ISI) 29. 94.Lombardo F, Ronca R, Rizzo C, Mestres-Simòn M, Lanfrancotti A, Currà C, Fiorentino G, Bourgouin C, Ribeiro JM, Petrarca V, Ponzi M, Coluzzi M, Arcà B. The Anopheles gambiae salivary protein gSG6: an anopheline-specific protein with a blood-feeding role. Insect Biochem Mol Biol. 2009;39(7):457–66. doi: 10.1016/j.ibmb.2009.04.006. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ibmb.2009.04.006&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19442731&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 30. 95.Pandey RK, Bhatt TK, Prajapati VK. Novel Immunoinformatics Approaches to Design Multi-epitope Subunit Vaccine for Malaria by Investigating Anopheles Salivary Protein. Sci Rep. 2018;8(1):1125. doi: 10.1038/s41598-018-19456-1. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41598-018-19456-1&link_type=DOI) 31. 96.Pedro PM, Sallum MAM. Spatial expansion and population structure of the neotropical malaria vector, Anopheles darlingi (Diptera: Culicidae). Biol J Linn Soc. 2009;97(4):854–66. doi: 10.1111/j.1095-8312.2009.01226.x. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1095-8312.2009.01226.x&link_type=DOI) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000268260700014&link_type=ISI) 32. 97.Phattanawiboon B, Jariyapan N, Mano C, Roytrakul S, Paemanee A, Sor-Suwan S, Sriwichai P, Saeung A, Bates PA. Salivary Gland Proteome during Adult Development and after Blood Feeding of Female Anopheles dissidens Mosquitoes (Diptera: Culicidae). PLoS One. 11(9):e0163810. doi: 10.1371/journal.pone.0163810. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0163810&link_type=DOI) 33. 98.Pirone L, Ripoll-Rozada J, Leone M, Ronca R, Lombardo F, Fiorentino G, Andersen JF, Pereira PJB, Arcà B, Pedone E. Functional analyses yield detailed insight into the mechanism of thrombin inhibition by the antihemostatic salivary protein cE5 from Anopheles gambiae. J Biol Chem. 2017;292(30):12632–42. doi: 10.1074/jbc.M117.788042. PubMed PMID: PDB/3U69PDB/4E05PDB/5NHU. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjEyOiIyOTIvMzAvMTI2MzIiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMS8wOS8xNy8yMDIxLjA5LjE0LjIxMjYzNTg5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 34. 99.Rawal R, Vijay S, Kadian K, Singh J, Pande V, Sharma A. Towards a Proteomic Catalogue and Differential Annotation of Salivary Gland Proteins in Blood Fed Malaria Vector Anopheles culicifacies by Mass Spectrometry. PLoS One. 2016;11(9):e0161870. doi: 10.1371/journal.pone.0161870. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0161870&link_type=DOI) 35. 100.Ronca R, Kotsyfakis M, Lombardo F, Rizzo C, Currà C, Ponzi M, Fiorentino G, Ribeiro JM, Arcà B. The Anopheles gambiae cE5, a tight- and fast-binding thrombin inhibitor with post-transcriptionally regulated salivary-restricted expression. Insect Biochem Mol Biol. 2012;42(9):610–20. doi: 10.1016/j.ibmb.2012.04.008. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ibmb.2012.04.008&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22617725&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 36. 101.Sarr JB, Remoue F, Samb B, Dia I, Guindo S, Sow C, Maiga S, Tine S, Thiam C, Schacht AM, Simondon F, Konate L, Riveau G. Evaluation of antibody response to Plasmodium falciparum in children according to exposure of Anopheles gambiae s.l or Anopheles funestus vectors. Malar J. 2007;6. doi: 10.1186/1475-2875-6-117. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1475-2875-6-117&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17764568&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 37. 102.Scarpassa VM, Debat HJ, Alencar RB, Saraiva JF, Calvo E, Arcà B, Ribeiro JMC. An insight into the sialotranscriptome and virome of Amazonian anophelines. BMC Genomics. 2019;20(1):166. doi: 10.1186/s12864-019-5545-0. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12864-019-5545-0&link_type=DOI) 38. 103.Wells MB, Andrew DJ. Salivary gland cellular architecture in the Asian malaria vector mosquito *Anopheles stephensi*. Parasit Vectors. 2015;8:617-. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s13071-015-1229-z&link_type=DOI) 39. 104.Zocevic A, Carmi-Leroy A, Sautereau J, d’Alayer J, Lenormand P, Rousselle JC, Namane A, Choumet V. New markers in Anopheles gambiae salivary glands after Plasmodium berghei infection. Vector Borne Zoonotic Dis. 2013;13(2):119–27. doi: 10.1089/vbz.2012.0964. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1089/vbz.2012.0964&link_type=DOI) 40. 105.The mal ERARCPoTfME. malERA: An updated research agenda for diagnostics, drugs, vaccines, and vector control in malaria elimination and eradication. PLoS Med. 2017;14(11). doi: 10.1371/journal.pmed.1002455. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pmed.1002455&link_type=DOI) 41. 106.The mal ERARCPoBS, Enabling T. malERA: An updated research agenda for basic science and enabling technologies in malaria elimination and eradication. PLoS Med. 2017;14(11). doi: 10.1371/journal.pmed.1002451. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pmed.1002451&link_type=DOI) 42. 107.The mal ERARCPoCtR, Measuring T. malERA: An updated research agenda for characterising the reservoir and measuring transmission in malaria elimination and eradication. PLoS Med. 2017;14(11). doi: 10.1371/journal.pmed.1002452. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pmed.1002452&link_type=DOI) 43. 108.Andrade BB, Barral-Netto M. Biomarkers for susceptibility to infection and disease severity in human malaria. Mem Inst Oswaldo Cruz. 2011;106:70–8. doi: 10.1590/s0074-02762011000900009. PubMed PMID: WOS:000294440600009. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1590/s0074-02762011000900009&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21340359&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 44. 109.Andrade BB, Teixeira CR, Barral A, Barral-Netto M. Haematophagous arthropod saliva and host defense system: A tale of tear and blood. An Acad Bras Cienc. 2005;77(4):665–93. doi: 10.1590/S0001-37652005000400008. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1590/S0001-37652005000400008&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16341443&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000234143200008&link_type=ISI) 45. 110.Billingsley PF, Baird J, Mitchell JA, Drakeley C. Immune interactions between mosquitoes and their hosts. Parasite Immunol. 2006;28(4):143–53. doi: 10.1111/j.1365-3024.2006.00805.x. PubMed PMID: WOS:000236064500004. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1365-3024.2006.00805.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16542316&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000236064500004&link_type=ISI) 46. 111.Cantillo JF, Fernández-Caldas E, Puerta L. Immunological aspects of the immune response induced by mosquito allergens. Int Arch Allergy Immunol. 2014;165(4):271–82. doi: 10.1159/000371349. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1159/000371349&link_type=DOI) 47. 112.Coutinho-Abreu IV, Guimaraes-Costa AB, Valenzuela JG. Impact of insect salivary proteins in blood feeding, host immunity, disease, and in the development of biomarkers for vector exposure. Curr Opin Insect. 2015;10:98–103. doi: 10.1016/j.cois.2015.04.014. PubMed PMID: WOS:000369017500015. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.cois.2015.04.014&link_type=DOI) 48. 113.Domingos A, Pinheiro-Silva R, Couto J, do Rosário V, de la Fuente J. The Anopheles gambiae transcriptome – a turning point for malaria control. Insect Mol Biol. 2017;26(2):140–51. doi: 10.1111/imb.12289. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/imb.12289&link_type=DOI) 49. 114.Doucoure S, Cornelie S, Drame PM, Marie A, Ndille EE, Mathieu-Daudé F, Mouchet F, Poinsignon A, Remoue F. Biomarkers of vector bites: Arthropod immunogenic salivary proteins in vector-borne diseases control. In: Preedy VR, Patel VB, editors. General Methods in Biomarker Research and their Applications. 2-22015. p. 1177-205. 50. 115.Doucoure S, Drame PM. Salivary Biomarkers in the Control of Mosquito-Borne Diseases. Insects. 2015;6(4):961–76. doi: 10.3390/insects6040961. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/insects6040961&link_type=DOI) 51. 116.Drame PM, Poinsignon A, Marie A, Noukpo H, Doucoure S, Cornelie S, Remoue F, Manguin S. New Salivary Biomarkers of Human Exposure to Malaria Vector Bites. In: Manguin S, editor. Anopheles mosquitoes: New insights into malaria vectors2013. p. 755-95. 52. 117.Fontaine A, Diouf I, Bakkali N, Missé D, Pagès F, Fusai T, Rogier C, Almeras L. Implication of haematophagous arthropod salivary proteins in host-vector interactions. Parasit Vectors. 2011;4(1). doi: 10.1186/1756-3305-4-187. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1756-3305-4-187&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21951834&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 53. 118.Foy BD, Killeen GF, Magalhaes T, Beier JC. Immunological targeting of critical insect antigens. Am Entomol. 2002;48(3):150–62. doi: 10.1093/ae/48.3.150. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/ae/48.3.150&link_type=DOI) 54. 119.Gillespie RD, Mbow ML, Titus RG. The immunomodulatory factors of bloodfeeding arthropod saliva. Parasite Immunol. 2000;22(7):319–31. doi: 10.1046/j.1365-3024.2000.00309.x. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1046/j.1365-3024.2000.00309.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=10886716&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000087912400001&link_type=ISI) 55. 120.Hopp CS, Sinnis P. The innate and adaptive response to mosquito saliva and Plasmodium sporozoites in the skin. Ann N Y Acad Sci. 2015;1342:37–43. doi: 10.1111/nyas.12661. PubMed PMID: WOS:000353102900005. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/nyas.12661&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25694058&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 56. 121.Hugo RLE, Birrell GW. Proteomics of Anopheles Vectors of Malaria. Trends Parasitol. 2018;34(11):961–81. doi: 10.1016/j.pt.2018.08.009. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.pt.2018.08.009&link_type=DOI) 57. 122.Leitner WW, Denis ACS, Wali T. Immunological consequences of arthropod vector-derived salivary factors. Eur J Immunol. 2011;41(12):3396–400. doi: 10.1002/eji.201190075. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/eji.201190075&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22125007&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 58. 123.Lombardo F, Lanfrancotti A, Mestres-Simón M, Rizzo C, Coluzzi M, Arcà B. At the interface between parasite and host: The salivary glands of the African malaria vector Anopheles gambiae. Parassitologia. 2006;48(4):573–80. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17688179&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 59. 124.Mathema VB, Na-Bangchang K. A brief review on biomarkers and proteomic approach for malaria research. Asian Pac J Trop Med. 2015;8(4):253–62. doi: 10.1016/S1995-7645(14)60327-8. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S1995-7645(14)60327-8&link_type=DOI) 60. 125.Peng Z, Estelle F, Simons R. Mosquito allergy and mosquito salivary allergens. Protein Peptide Lett. 2007;14(10):975–81. doi: 10.2174/092986607782541088. PubMed PMID: WOS:000253577700007. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2174/092986607782541088&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18220995&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 61. 126.Ribeiro JMC, Francischetti IMB. Role of Arthropod Saliva in Blood Feeding: Sialome and Post-Sialome Perspectives. Annu Rev Entomol. 2003;48:73–88. doi: 10.1146/annurev.ento.48.060402.102812. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1146/annurev.ento.48.060402.102812&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12194906&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000180709200005&link_type=ISI) 62. 127.Sagna A, Poinsignon A, Remoue F, Wikel SK, Aksoy S, Dimopoulos G. Epidemiological Applications of Assessing Mosquito Exposure in a Malaria-Endemic Area. In: Wikel SK, Dimopoulos G, Aksoy S, editors. Arthropod Vector: Controller of Disease Transmission, Volume 2: Vector Saliva-Host Pathogen Interactions2017. p. 209-29. 63. 128.Sá-Nunes A, De Oliveira CJF. Sialogenins and immunomodulators derived from blood feeding parasites. In: Kini R, Clemetson K, Markland F, McLane M, Morita T, editors. Toxins and Hemostasis2011. p. 131-52. 64. 129.Miot HA, Lima HC. Allergy to Hematophagous Arthropods Bites. Current Dermatology Reports. 2014;3(1):6–12. 65. 130.Peng Z, Simons FER. Mosquito allergy: immune mechanisms and recombinant salivary allergens. Int Arch Allergy Appl Immunol. 2004;133(2):198–209. 66. 131.Pingen M, Schmid MA, Harris E, McKimmie CS. Mosquito biting modulates skin response to virus infection. Trends Parasitol. 2017;33(8):645–57. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.pt.2017.04.003&link_type=DOI) 67. 132.Sinden RE, Blagborough AM, Churcher T, Ramakrishnan C, Biswas S, Delves MJ. The design and interpretation of laboratory assays measuring mosquito transmission of Plasmodium. Trends Parasitol. 2012;28(11):457–65. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.pt.2012.07.005&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22980759&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 68. 133.Abonuusum A, Owusu-Daako K, Tannich E, May J, Garms R, Kruppa T. Malaria transmission in two rural communities in the forest zone of Ghana. Parasitol Res. 2011;108(6):1465–71. doi: 10.1007/s00436-010-2195-1. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00436-010-2195-1&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21153839&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 69. 134.Badu K, Afrane YA, Larbi J, Stewart VA, Waitumbi J, Angov E, Ong’echa JM, Perkins DJ, Zhou G, Githeko A, Yan G. Marked variation in MSP-1 19antibody responses to malaria in western Kenyan highlands. BMC Infect Dis. 2012;12. doi: 10.1186/1471-2334-12-50. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1471-2334-12-50&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22380785&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 70. 135.Chaccour CJ, Kobylinski KC, Bassat Q, Bousema T, Drakeley C, Alonso P, Foy BD. Ivermectin to reduce malaria transmission: A research agenda for a promising new tool for elimination. Malar J. 2013;12(1). doi: 10.1186/1475-2875-12-153. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1475-2875-12-153&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23647969&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 71. 136.Coulibaly D, Travassos MA, Tolo Y, Laurens MB, Kone AK, Traore K, Sissoko M, Niangaly A, Diarra I, Daou M, Guindo B, Rebaudet S, Kouriba B, Dessay N, Piarroux R, Plowe CV, Doumbo OK, Thera MA, Gaudart J. Spatio-temporal dynamics of asymptomatic malaria: Bridging the gap between annual Malaria resurgences in a Sahelian environment. Am J Trop Med Hyg. 2017;97(6):1761–9. doi: 10.4269/ajtmh.17-0074. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.4269/ajtmh.17-0074&link_type=DOI) 72. 137.Dhawan R, Kumar M, Mohanty AK, Dey G, Advani J, Prasad TSK, Kumar A. Mosquito-borne diseases and omics: Salivary gland proteome of the female aedes aegypti mosquito. OMICS: J Integrative Biol. 2017;21(1):45–54. doi: 10.1089/omi.2016.0160. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1089/omi.2016.0160&link_type=DOI) 73. 138.Fontaine A, Pascual A, Diouf I, Bakkali N, Bourdon S, Fusai T, Rogier C, Almeras L. Mosquito salivary gland protein preservation in the field for immunological and biochemical analysis. Parasit Vectors. 2011;4:33. doi: 10.1186/1756-3305-4-33. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1756-3305-4-33&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21385450&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 74. 139.Fontaine A, Pascual A, Orlandi-Pradines E, Diouf I, Remoue F, Pages F, Fusai T, Rogier C, Almeras L. Relationship between Exposure to Vector Bites and Antibody Responses to Mosquito Salivary Gland Extracts. PLoS One. 2011;6(12). doi: 10.1371/journal.pone.0029107. PubMed PMID: WOS:000298369100156. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0029107&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22195000&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 75. 140.Jeon SH, Park JW, Lee BH. Characterization of human IgE and mouse IgG1 responses to allergens in three mosquito species by immunoblotting and ELISA. Int Arch Allergy Immunol. 2001;126(3):206–12. doi: 10.1159/000049515. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1159/000049515&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11752877&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 76. 141.Kelly-Hope LA, McKenzie FE. The multiplicity of malaria transmission: A review of entomological inoculation rate measurements and methods across sub-Saharan Africa. Malar J. 2009;8(1). doi: 10.1186/1475-2875-8-19. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1475-2875-8-19&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19166589&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 77. 142.Kusi KA, Bosomprah S, Dodoo D, Kyei-Baafour E, Dickson EK, Mensah D, Angov E, Dutta S, Sedegah M, Koram KA. Anti-sporozoite antibodies as alternative markers for malaria transmission intensity estimation. Malar J. 2014;13(1). doi: 10.1186/1475-2875-13-103. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1475-2875-13-103&link_type=DOI) 78. 143.Li B, Calvo E, Marinotti O, James AA, Paskewitz SM. Characterization of the c-type lysozyme gene family in Anopheles gambiae. Gene. 2005;360(2):131–9. doi: 10.1016/j.gene.2005.07.001. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.gene.2005.07.001&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16137842&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000233058400006&link_type=ISI) 79. 144.Londono-Renteria B, Patel JC, Vaughn M, Funkhauser S, Ponnusamy L, Grippin C, Jameson SB, Apperson C, Mores CN, Wesson DM, Colpitts TM, Meshnick SR. Long-lasting permethrin-impregnated clothing protects against mosquito bites in outdoor workers. Am J Trop Med Hyg. 2015;93(4):869–74. doi: 10.4269/ajtmh.15-0130. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoidHJvcG1lZCI7czo1OiJyZXNpZCI7czo4OiI5My80Lzg2OSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzA5LzE3LzIwMjEuMDkuMTQuMjEyNjM1ODkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 80. 145.Mwanziva C, Manjurano A, Mbugi E, Mweya C, Mkali H, Kivuyo MP, Sanga A, Ndaro A, Chambo W, Mkwizu A, Kitau J, Kavishe R, Dolmans W, Chilongola J, Mosha FW. Defining malaria burden from morbidity and mortality records, self treatment practices and serological data in Magugu, Babati district, northern Tanzania. Tanzan J Health Res. 2011;13(2). doi: 10.4314/thrb.v13i2.62980. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.4314/thrb.v13i2.62980&link_type=DOI) 81. 146.Sarr J, Orlandi-Pradines E, Fortin S, Sow C, Cornelie S, Rogerie F, Guindo S, Konate L, Fusa T, Riveau G, Rogier C, Remoue F. Assessment of exposure to Plasmodium falciparum transmission in a low endemicity area by using multiplex fluorescent microsphere-based serological assays. Parasit Vectors. 2011;4(1). doi: 10.1186/1756-3305-4-212. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1756-3305-4-212&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22059951&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 82. 147.Satoguina J, Walther B, Drakeley C, Nwakanma D, Oriero EC, Correa S, Corran P, Conway DJ, Walther M. Comparison of surveillance methods applied to a situation of low malaria prevalence at rural sites in the Gambia and Guinea Bissau. Malar J. 2009;8(1). doi: 10.1186/1475-2875-8-274. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1475-2875-8-274&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19954532&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 83. 148.Smithuis FM, Kyaw MK, Phe UO, Van Der Broek I, Katterman N, Rogers C, Almeida P, Kager PA, Stepniewska K, Lubell Y, Simpson JA, White NJ. Entomological determinants of insecticide-treated bed net effectiveness in Western Myanmar. Malar J. 2013;12(1). doi: 10.1186/1475-2875-12-364. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1475-2875-12-364&link_type=DOI) 84. 149.Ubillos I, Campo JJ, Jiménez A, Dobaño C. Development of a high-throughput flexible quantitative suspension array assay for IgG against multiple Plasmodium falciparum antigens. Malar J. 2018;17(1). doi: 10.1186/s12936-018-2365-7. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12936-018-2365-7&link_type=DOI) 85. 150.van den Hoogen LL, Présumé J, Romilus I, Mondélus G, Elismé T, Sepúlveda N, Stresman G, Druetz T, Ashton RA, Joseph V, Eisele TP, Hamre KES, Chang MA, Lemoine JF, Tetteh KKA, Boncy J, Existe A, Drakeley C, Rogier E. Quality control of multiplex antibody detection in samples from large-scale surveys: the example of malaria in Haiti. Sci Rep. 2020;10(1). doi: 10.1038/s41598-020-57876-0. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41598-020-57876-0&link_type=DOI) 86. 151.Varela ML, Koffi D, White M, Niang M, Mbengue B, Diene Sarr F, Touré AO, Perraut R. Practical example of multiple antibody screening for evaluation of malaria control strategies. Malar J. 2020;19(1). doi: 10.1186/s12936-020-03186-9. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12936-020-03186-9&link_type=DOI) 87. 152.Wanjala CL, Kweka EJ. Impact of highland topography changes on exposure to malaria vectors and immunity in Western Kenya. Front Public Health. 2016;4(OCT). doi: 10.3389/FPUBH.2016.00227. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/FPUBH.2016.00227&link_type=DOI) 88. 153.Armiyanti Y, Arifianto RP, Riana EN, Senjarini K, Widodo W, Fitri LE, Sardjono TW. Identification of antigenic proteins from salivary glands of female Anopheles maculatus by proteomic analysis. Asian Pac J Trop Biomed. 2016;6(11):924–30. doi: 10.1016/j.apjtb.2016.08.012. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.apjtb.2016.08.012&link_type=DOI) 89. 154.Brummer-Korvenkontio H, Palosuo T, François G, Reunala T. Characterization of Aedes communis, Aedes aegypti and Anopheles stephensi mosquito saliva antigens by immunoblotting. Int Arch Allergy Immunol. 1997;112(2):169–74. doi: 10.1159/000237450. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1159/000237450&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9030098&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1997WF99200010&link_type=ISI) 90. 155.Cornelie S, Remoue F, Doucoure S, Ndiaye T, Sauvage FX, Boulanger D, Simondon F. An insight into immunogenic salivary proteins of Anopheles gambiae in African children. Malar J. 2007;6:75. doi: 10.1186/1475-2875-6-75. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1475-2875-6-75&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17550586&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 91. 156.Fontaine A, Fusaï T, Briolant S, Buffet S, Villard C, Baudelet E, Pophillat M, Granjeaud S, Rogier C, Almeras L. Anopheles salivary gland proteomes from major malaria vectors. BMC Genomics. 2012;13:614. doi: 10.1186/1471-2164-13-614. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1471-2164-13-614&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23148599&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 92. 157.Marie A, Holzmuller P, Tchioffo MT, Rossignol M, Demettre E, Seveno M, Corbel V, Awono-Ambéné P, Morlais I, Remoue F, Cornelie S. Anopheles gambiae salivary protein expression modulated by wild Plasmodium falciparum infection: highlighting of new antigenic peptides as candidates of An. gambiae bites. Parasit Vectors. 2014;7:599. doi: 10.1186/s13071-014-0599-y. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s13071-014-0599-y&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25526764&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 93. 158.Owhashi M, Harada M, Suguri S, Omae H, Ishii A. Identification of an eosinophil chemotactic factor from anopheline mosquitoes as a chitinase family protein. Parasitol Res. 2008;102(3):357–63. doi: 10.1007/s00436-007-0769-3. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00436-007-0769-3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17940798&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 94. 159.Penneys NS, Nayar JK, Bernstein H, Knight JW, Leonardi C. Mosquito Salivary Gland Antigens Identified by Circulating Human Antibodies. Arch Dermatol. 1989;125(2):219–22. doi: 10.1001/archderm.1989.01670140071012. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/archderm.1989.01670140071012&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=2563325&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 95. 160.Sor-suwan S, Jariyapan N, Roytrakul S, Paemanee A, Phumee A, Phattanawiboon B, Intakhan N, Chanmol W, Bates PA, Saeung A, Choochote W. Identification of salivary gland proteins depleted after blood feeding in the malaria vector Anopheles campestris-like mosquitoes (Diptera: Culicidae). PLoS One. 2014;9(3):e90809. doi: 10.1371/journal.pone.0090809. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0090809&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24599352&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 96. 161.Sor-Suwan S, Jariyapan N, Roytrakul S, Paemanee A, Saeung A, Thongsahuan S, Phattanawiboon B, Bates PA, Poovorawan Y, Choochote W. Salivary gland proteome of the human malaria vector, Anopheles campestris-like (Diptera: Culicidae). Parasitol Res. 2013;112(3):1065–75. doi: 10.1007/s00436-012-3233-y. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00436-012-3233-y&link_type=DOI) 97. 162.Peng ZK, Li HB, Simons FER. Immunoblot analysis of salivary allergens in 10 mosquito species with worldwide distribution and the human IgE responses as these allergens. J Allergy Clin Immunol. 1998;101(4):498–505. doi: 10.1016/s0091-6749(98)70357-4. PubMed PMID: WOS:000073113500012. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0091-6749(98)70357-4&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9564803&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000073113500012&link_type=ISI) 98. 163.Cornelie S, Senglat M, Doucoure S, Demettre E, Remoue F. Characterization of immunogenic proteins in *Anopheles gambiae* salivary glands and their potential use as a marker of exposure to malaria. Am J Trop Med Hyg. 2008;79(6):320-. PubMed PMID: WOS:000261644601456. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoidHJvcG1lZCI7czo1OiJyZXNpZCI7czo4OiI3OS8zLzMyMCI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzA5LzE3LzIwMjEuMDkuMTQuMjEyNjM1ODkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 99. 164.Drame PM, Poinsignon A, Besnard P, Cornelie S, Foumane V, Sow CS, Le Mire J, Fortes F, Boulanger D, Carnevale P, Simondon F, Remoue F. Human antibody response to *Anopheles gambiae* saliva: A new immuno-epidemiological marker to evaluate the effectiveness of insecticides treated nets (ITNs)? Am J Trop Med Hyg. 2008;79(6):358-. PubMed PMID: WOS:000261644601582. 100.165.Drame PM, Poinsignon A, Besnard P, Cornelie S, Le Mire J, Fortes F, Toto JC, Sembene M, Simondon F, Carnevale P, Remoue F. Human antibody response to *Anopheles* salivary gSG6-P1 peptide: New immuno-epidemiological tool for evaluating the efficacy of insecticides treated nets (ITNs) in malaria vector control. Am J Trop Med Hyg. 2010;83(5):260-. PubMed PMID: WOS:000295819701240. 101.166.Poinsignon A, Cornelie S, Mestres-Simon M, Lanfrancotti A, Rossignol M, Boulanger D, Cisse B, Sokhna C, Arca B, Simondon F, Remoue F. Human IgG response to *Anopheles gambiae* salivary proteins as an immuno-epidemiological marker of exposure to malaria vector bites. Am J Trop Med Hyg. 2008;79(6):218-. PubMed PMID: WOS:000261644601102. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoidHJvcG1lZCI7czo1OiJyZXNpZCI7czo4OiI3OS8yLzIxOCI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzA5LzE3LzIwMjEuMDkuMTQuMjEyNjM1ODkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 102.167.Poinsignon A, Drame PM, Marie A, Noukpo H, Cornelie S, Remoue F. Development of a biomarker of exposure to *Anopheles* bites based on human antibody response to salivary proteins: From concept to application in the field. Pathog Glob Health. 2013;107(8):455-. PubMed PMID: WOS:000335056200147. 103.168.Poinsignon A, Drame PM, Samb B, Cornelie S, Sow C, Dia I, Riveau G, Konate L, Sokhna C, Remoue FJ. Development of a new biomarker of exposure to *Anopheles* bites based on human antibody responses to salivary proteins: From the concept to the applications. Am J Trop Med Hyg. 2010;83(5):184-. PubMed PMID: WOS:000295819700617. 104.169.Sagna AB, Kassie D, Couvray A, Hermann E, Riveau G, Salem G, Fournet F, Remoue F. Spatial risk of urban exposure to *Anopheles* and *Aedes* mosquito bites in africa using salivary antibody-based biomarkers. Am J Trop Med Hyg. 2018;99(4):47-. PubMed PMID: WOS:000461386602150. 105.170.Dragovic SM, Agunbiade TA, Freudzon M, Yang J, Hastings AK, Schleicher TR, Zhou X, Craft S, Chuang YM, Gonzalez F, Li Y, Hrebikova G, Tripathi A, Mlambo G, Almeras L, Ploss A, Dimopoulos G, Fikrig E. Immunization with AgTRIO, a Protein in Anopheles Saliva, Contributes to Protection against Plasmodium Infection in Mice. Cell Host Microbe. 2018;23(4):523–35.e5. doi: 10.1016/j.chom.2018.03.008. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.chom.2018.03.008&link_type=DOI) 106.171.King JG, Vernicks KD, Hillyer JF. Members of the salivary gland surface protein (SGS) family are major immunogenic components of mosquito saliva. J Biol Chem. 2011;286(47):40824–34. doi: 10.1074/jbc.M111.280552. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjEyOiIyODYvNDcvNDA4MjQiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMS8wOS8xNy8yMDIxLjA5LjE0LjIxMjYzNTg5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 107.172.Vogt MB, Lahon A, Arya RP, Kneubehl AR, Spencer Clinton JL, Paust S, Rico-Hesse R. Mosquito saliva alone has profound effects on the human immune system. PLoS Negl Trop Dis. 2018;12(5). doi: 10.1371/journal.pntd.0006439. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pntd.0006439&link_type=DOI) 108.173.Wang J, Zhang Y, Zhao YO, Li MW, Zhang L, Dragovic S, Abraham NM, Fikrig E. Anopheles gambiae circumsporozoite protein-binding protein facilitates plasmodium infection of mosquito salivary glands. J Infect Dis. 2013;208(7):1161–9. doi: 10.1093/infdis/jit284. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/infdis/jit284&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23801601&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 109.174.Almeida AP, Billingsley PF. Induced immunity against the mosquito Anopheles stephensi: reactivity characteristics of immune sera. Med Vet Entomol. 1999;13(1):53–64. doi: 10.1046/j.1365-2915.1999.00143.x. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1046/j.1365-2915.1999.00143.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=10194750&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 110.175.Boulanger D, Doucoure S, Grout L, Ngom A, Rogerie F, Cornelie S, Sokhna C, Mouchet F, Riveau G, Simondon F, Remoue FJ. Immunoglobulin G antibody profiles against Anopheles salivary proteins in domestic animals in Senegal. J Med Entomol. 2011;48(3):691–3. doi: 10.1603/me10183. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1603/ME10183&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21661332&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 111.176.Kerkhof K, Canier L, Kim S, Heng S, Sochantha T, Sovannaroth S, Vigan-Womas I, Coosemans M, Sluydts V, Ménard D, Durnez L. Implementation and application of a multiplex assay to detect malaria-specific antibodies: a promising tool for assessing malaria transmission in Southeast Asian pre-elimination areas. Malar J. 2015;14:338. doi: 10.1186/s12936-015-0868-z. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12936-015-0868-z&link_type=DOI) 112.177.Sagna AB, Gaayeb L, Sarr JB, Senghor S, Poinsignon A, Boutouaba-Combe S, Schacht AM, Hermann E, Faye N, Remoue F, Riveau G. Plasmodium falciparum infection during dry season: IgG responses to Anopheles gambiae salivary gSG6-P1 peptide as sensitive biomarker for malaria risk in Northern Senegal. Malar J. 2013;12:301. doi: 10.1186/1475-2875-12-301. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1475-2875-12-301&link_type=DOI) 113.178.Ya-Umphan P, Cerqueira D, Cottrell G, Parker DM, Fowkes FJI, Nosten F, Corbel V. *Anopheles* salivary biomarker as a proxy for estimating *Plasmodium falciparum* malaria exposure on the Thailand-Myanmar Border. Am J Trop Med Hyg. 2018;99(2):350–6. 114.179.Aka KG, Traoré DF, Sagna AB, Zoh DD, Assi SB, Tchiekoi BN, Adja AM, Remoue F, Poinsignon A. Pattern of antibody responses to Plasmodium falciparum antigens in individuals differentially exposed to Anopheles bites. Malar J. 2020;19(1):83. doi: 10.1186/s12936-020-03160-5. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12936-020-03160-5&link_type=DOI) 115.180.Drame PM, Diallo A, Poinsignon A, Boussari O, Dos Santos S, Machault V, Lalou R, Cornelie S, LeHesran JY, Remoue F. Evaluation of the effectiveness of malaria vector control measures in urban settings of Dakar by a specific *Anopheles* salivary biomarker. PLoS One. 2013;8(6):e66354. doi: 10.1371/journal.pone.0066354. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0066354&link_type=DOI) 116.181.Londono-Renteria BL, Eisele TP, Keating J, James MA, Wesson DM. Antibody response against Anopheles albimanus (Diptera: Culicidae) salivary protein as a measure of mosquito bite exposure in Haiti. J Med Entomol. 2010;47(6):1156–63. doi: 10.1603/me09240. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1603/ME09240&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21175067&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 117.182.Noukpo MH, Damien GB, Elanga-N’Dille E, Sagna AB, Drame PM, Chaffa E, Boussari O, Corbel V, Akogbéto M, Remoue F. Operational assessment of long-lasting insecticidal nets by using an *Anopheles* salivary biomarker of human-vector contact. Am J Trop Med Hyg. 2016;95(6):1376–82. doi: 10.4269/ajtmh.15-0541. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoidHJvcG1lZCI7czo1OiJyZXNpZCI7czo5OiI5NS82LzEzNzYiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMS8wOS8xNy8yMDIxLjA5LjE0LjIxMjYzNTg5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 118.183.Manning JE, Oliveira F, Coutinho-Abreu IV, Herbert S, Meneses C, Kamhawi S, Baus HA, Han A, Czajkowski L, Rosas LA, Cervantes-Medina A, Athota R, Reed S, Mateja A, Hunsberger S, James E, Pleguezuelos O, Stoloff G, Valenzuela JG, Memoli MJ. Safety and immunogenicity of a mosquito saliva peptide-based vaccine: a randomised, placebo-controlled, double-blind, phase 1 trial. Lancet. 2020;395(10242):1998–2007. doi: 10.1016/S0140-6736(20)31048-5. PubMed PMID: ClinicalTrials.gov/[NCT03055000](http://medrxiv.org/lookup/external-ref?link_type=CLINTRIALGOV&access_num=NCT03055000&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom). [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0140-6736(20)31048-5&link_type=DOI) 119.184.Mendes-Sousa AF, Vale VF, Queiroz DC, Pereira-Filho AA, da Silva NCS, Koerich LB, Moreira LA, Pereira MH, Sant’Anna MR, Araújo RN, Andersen J, Valenzuela JG, Gontijo NF. Inhibition of the complement system by saliva of Anopheles (Nyssorhynchus) aquasalis. Insect Biochem Mol Biol. 2018;92:12–20. doi: 10.1016/j.ibmb.2017.11.004. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ibmb.2017.11.004&link_type=DOI) 120.185.Peng Z, Beckett AN, Engler RJ, Hoffman DR, Ott NL, Simons FE. Immune responses to mosquito saliva in 14 individuals with acute systemic allergic reactions to mosquito bites. J Allergy Clin Immunol. 2004;114(5):1189–94. doi: 10.1016/j.jaci.2004.08.014. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jaci.2004.08.014&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15536430&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000225047800030&link_type=ISI) 121.186.Londono-Renteria B, Cardenas JC, Troupin A, Colpitts TM. Natural mosquito-pathogen hybrid IgG4 antibodies in vector-borne diseases: A hypothesis. Front Immunol. 2016;7(SEP). doi: 10.3389/fimmu.2016.00380. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fimmu.2016.00380&link_type=DOI) 122.187.Owhashi M, Harada M, Suguri S, Ohmae H, Ishii A. The role of saliva of Anopheles stephensi in inflammatory response: identification of a high molecular weight neutrophil chemotactic factor. Parasitol Res. 2001;87(5):376–82. doi: 10.1007/s004360000355. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s004360000355&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11403380&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 123.188.Armiyanti Y, Nuryady MM, Arifianto RP, Nurmariana E, Senjarini K, Fitri LE, Sardjono TW. Detection of immunogenic proteins from Anopheles sundaicus salivary glands. Revista da Sociedade Brasileira de Medicina Tropical. 2015;48(4):410–6. doi: 10.1590/0037-8682-0185-2015. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1590/0037-8682-0185-2015&link_type=DOI) 124.189.Opasawatchai A, Yolwong W, Thuncharoen W, Inrueangsri N, Itsaradisaikul S, Sasisakulporn C, Jotikasthira W, Matangkasombut O, Reamtong O, Manuyakorn W, Songnuan W, Matangkasombut P. Novel salivary gland allergens from tropical mosquito species and IgE reactivity in allergic patients. World Allergy Organ J. 2020;13(2). doi: 10.1016/j.waojou.2020.100099. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.waojou.2020.100099&link_type=DOI) 125.190.Orlandi-Pradines E, Almeras L, Denis de Senneville L, Barbe S, Remoué F, Villard C, Cornelie S, Penhoat K, Pascual A, Bourgouin C, Fontenille D, Bonnet J, Corre-Catelin N, Reiter P, Pagés F, Laffite D, Boulanger D, Simondon F, Pradines B, Fusaï T, Rogier C. Antibody response against saliva antigens of Anopheles gambiae and Aedes aegypti in travellers in tropical Africa. Microbes Infect. 2007;9(12-13):1454–62. doi: 10.1016/j.micinf.2007.07.012. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.micinf.2007.07.012&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17913537&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000251479900009&link_type=ISI) 126.191.Ambrosino E, Dumoulin C, Orlandi-Pradines E, Remoue F, Toure-Baldé A, Tall A, Sarr JB, Poinsignon A, Sokhna C, Puget K, Trape JF, Pascual A, Druilhe P, Fusai T, Rogier C. A multiplex assay for the simultaneous detection of antibodies against 15 *Plasmodium falciparum* and *Anopheles gambiae* saliva antigens. Malar J. 2010;9:317. doi: 10.1186/1475-2875-9-317. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1475-2875-9-317&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21059211&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 127.192.Kerkhof K, Sluydts V, Willen L, Kim S, Canier L, Heng S, Tsuboi T, Sochantha T, Sovannaroth S, Ménard D, Coosemans M, Durnez L. Serological markers to measure recent changes in malaria at population level in Cambodia. Malar J. 2016;15(1):1–18. doi: 10.1186/s12936-016-1576-z. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12936-016-1291-9&link_type=DOI) 128.193.Koffi D, Touré AO, Varela ML, Vigan-Womas I, Béourou S, Brou S, Ehouman MF, Gnamien L, Richard V, Djaman JA, Perraut R. Analysis of antibody profiles in symptomatic malaria in three sentinel sites of Ivory Coast by using multiplex, fluorescent, magnetic, bead-based serological assay (MAGPIX™). Malar J. 2015;14:509. doi: 10.1186/s12936-015-1043-2. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12936-015-1043-2&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26692284&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 129.194.Koffi D, Varela ML, Loucoubar C, Beourou S, Vigan-Womas I, Touré A, Djaman JA, Touré AO, PerrautR. Longitudinal analysis of antibody responses in symptomatic malaria cases do not mirror parasite transmission in peri-urban area of Cote d’Ivoire between 2010 and 2013. PLoS One. 2017;12(2):e0172899. doi: 10.1371/journal.pone.0172899. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0172899&link_type=DOI) 130.195.Perraut R, Varela ML, Loucoubar C, Niass O, Sidibé A, Tall A, Trape JF, Wotodjo AN, Mbengue B, Sokhna C, Vigan-Womas I, Touré A, Richard V, Mercereau-Puijalon O. Serological signatures of declining exposure following intensification of integrated malaria control in two rural Senegalese communities. PLoS One. 2017;12(6):e0179146. doi: 10.1371/journal.pone.0179146. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0179146&link_type=DOI) 131.196.Proietti C, Verra F, Bretscher MT, Stone W, Kanoi BN, Balikagala B, Egwang TG, Corran P, Ronca R, Arcà B, Riley EM, Crisanti A, Drakeley C, Bousema T. Influence of infection on malaria-specific antibody dynamics in a cohort exposed to intense malaria transmission in northern Uganda. Parasite Immunol. 2013;35(5-6):164–73. doi: 10.1111/pim.12031. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/pim.12031&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23473542&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 132.197.Stone W, Bousema T, Jones S, Gesase S, Hashim R, Gosling R, Carneiro I, Chandramohan D, Theander T, Ronca R, Modiano D, Arcà B, Drakeley C. IgG responses to *Anopheles gambiae* salivary antigen gSG6 detect variation in exposure to malaria vectors and disease risk. PLoS One. 2012;7(6):e40170. doi: 10.1371/journal.pone.0040170. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0040170&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22768250&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 133.198.Ya-Umphan P, Cerqueira D, Parker DM, Cottrell G, Poinsignon A, Remoue F, Brengues C, Chareonviriyaphap T, Nosten F, Corbel V. Use of an *Anopheles* salivary biomarker to assess malaria transmission risk along the Thailand-Myanmar Border. J Infect Dis. 2017;215(3):396–404. doi: 10.1093/infdis/jiw543. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/infdis/jiw543&link_type=DOI) 134.199.Idris ZM, Chan CW, Mohammed M, Kalkoa M, Taleo G, Junker K, Arcà B, Drakeley C, Kaneko A. Serological measures to assess the efficacy of malaria control programme on Ambae Island, Vanuatu. Parasit Vectors. 2017;10(1):204. doi: 10.1186/s13071-017-2139-z. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s13071-017-2139-z&link_type=DOI) 135.200.Yman V, White MT, Rono J, Arca B, Osier FH, Troye-Blomberg M, Bostrom S, Ronca R, Rooth I, Farnert A. Antibody acquisition models: A new tool for serological surveillance of malaria transmission intensity. Sci Rep. 2016;6. doi: 10.1038/srep19472. PubMed PMID: WOS:000369380100001. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/srep19472&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=WOS:00036938&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 136.201.Badu K, Gyan B, Appawu M, Mensah D, Dodoo D, Yan G, Drakeley C, Zhou G, Owusu-Dabo E, Koram KA. Serological evidence of vector and parasite exposure in Southern Ghana: the dynamics of malaria transmission intensity. Parasit Vectors. 2015;8:251. doi: 10.1186/s13071-015-0861-y. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s13071-015-0861-y&link_type=DOI) 137.202.Sarr JB, Samb B, Sagna AB, Fortin S, Doucoure S, Sow C, Senghor S, Gaayeb L, Guindo S, Schacht AM, Rogerie F, Hermann E, Dia I, Konate L, Riveau G, Remoue F. Differential acquisition of human antibody responses to *Plasmodium falciparum* according to intensity of exposure to *Anopheles* bites. Trans R Soc Trop Med Hyg. 2012;106(8):460–7. doi: 10.1016/j.trstmh.2012.05.006. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.trstmh.2012.05.006&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22721883&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 138.203.Drame PM, Poinsignon A, Dechavanne C, Cottrell G, Farce M, Ladekpo R, Massougbodji A, Cornélie S, Courtin D, Migot-Nabias F, Garcia A, Remoué F. Specific antibodies to *Anopheles* gSG6-P1 salivary peptide to assess early childhood exposure to malaria vector bites. Malar J. 2015;14:285. doi: 10.1186/s12936-015-0800-6. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12936-015-0800-6&link_type=DOI) 139.204.Ali ZM, Bakli M, Fontaine A, Bakkali N, Vu Hai V, Audebert S, Boublik Y, Pagès F, Remoué F, Rogier C, Fraisier C, Almeras L. Assessment of *Anopheles* salivary antigens as individual exposure biomarkers to species-specific malaria vector bites. Malar J. 2012;11:439. doi: 10.1186/1475-2875-11-439. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1475-2875-11-439&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23276246&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 140.205.Rizzo C, Ronca R, Fiorentino G, Mangano VD, Sirima SB, Nèbiè I, Petrarca V, Modiano D, Arcà B. Wide cross-reactivity between *Anopheles gambiae* and *Anopheles funestus* SG6 salivary proteins supports exploitation of gSG6 as a marker of human exposure to major malaria vectors in tropical Africa. Malar J. 2011;10:206. doi: 10.1186/1475-2875-10-206. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1475-2875-10-206&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21794142&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 141.206.Poinsignon A, Cornelie S, Mestres-Simon M, Lanfrancotti A, Rossignol M, Boulanger D, Cisse B, Sokhna C, Arcà B, Simondon F, Remoue F. Novel peptide marker corresponding to salivary protein gSG6 potentially identifies exposure to *Anopheles* bites. PLoS One. 2008;3(6):e2472. doi: 10.1371/journal.pone.0002472. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0002472&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18575604&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 142.207.Rizzo C, Lombardo F, Ronca R, Mangano V, Sirima SB, Nèbiè I, Fiorentino G, Modiano D, Arcà B. Differential antibody response to the *Anopheles gambiae* gSG6 and cE5 salivary proteins in individuals naturally exposed to bites of malaria vectors. Parasit Vectors. 2014;7:549. doi: 10.1186/s13071-014-0549-8. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s13071-014-0549-8&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25428638&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 143.208.Drame PM, Poinsignon A, Besnard P, Le Mire J, Dos-Santos MA, Sow CS, Cornelie S, Foumane V, Toto JC, Sembene M, Boulanger D, Simondon F, Fortes F, Carnevale P, Remoue F. Human antibody response to *Anopheles gambiae* saliva: an immuno-epidemiological biomarker to evaluate the efficacy of insecticide-treated nets in malaria vector control. Am J Trop Med Hyg. 2010;83(1):115–21. doi: 10.4269/ajtmh.2010.09-0684. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoidHJvcG1lZCI7czo1OiJyZXNpZCI7czo4OiI4My8xLzExNSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzA5LzE3LzIwMjEuMDkuMTQuMjEyNjM1ODkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 144.209.Remoue F, Cisse B, Ba F, Sokhna C, Herve JP, Boulanger D, Simondon F. Evaluation of the antibody response to *Anopheles* salivary antigens as a potential marker of risk of malaria. Trans R Soc Trop Med Hyg. 2006;100(4):363–70. doi: 10.1016/j.trstmh.2005.06.032. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.trstmh.2005.06.032&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16310235&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 145.210.Lawaly R, Konate L, Marrama L, Dia I, Diallo D, Sarr FD, Schneider BS, Casademont I, Diallo M, Brey PT, Sakuntabhai A, Mecheri S, Paul R. Impact of mosquito bites on asexual parasite density and gametocyte prevalence in asymptomatic chronic *Plasmodium falciparum* infections and correlation with IgE and IgG titers. Infect Immun. 2012;80(6):2240–6. doi: 10.1128/iai.06414-11. PubMed PMID: WOS:000304387700031. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiaWFpIjtzOjU6InJlc2lkIjtzOjk6IjgwLzYvMjI0MCI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIxLzA5LzE3LzIwMjEuMDkuMTQuMjEyNjM1ODkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 146.211.Rizzo C, Ronca R, Lombardo F, Mangano V, Sirima SB, Nèbiè I, Fiorentino G, Troye-Blomberg M, Modiano D, Arcà B. IgG1 and IgG4 antibody responses to the *Anopheles gambiae* salivary protein gSG6 in the sympatric ethnic groups Mossi and Fulani in a malaria hyperhendemic area of Burkina Faso. PLoS One. 2014;9(4):e96130. doi: 10.1371/journal.pone.0096130. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0096130&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24760038&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 147.212.Marie A, Ronca R, Poinsignon A, Lombardo F, Drame PM, Cornelie S, Besnard P, Le Mire J, Fiorentino G, Fortes F, Carnevale P, Remoue F, Arcà B. The *Anopheles gambiae* cE5 salivary protein: a sensitive biomarker to evaluate the efficacy of insecticide-treated nets in malaria vector control. Microbes Infect. 2015;17(6):409–16. doi: 10.1016/j.micinf.2015.01.002. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.micinf.2015.01.002&link_type=DOI) 148.213.Brosseau L, Drame PM, Besnard P, Toto JC, Foumane V, Le Mire J, Mouchet F, Remoue F, Allan R, Fortes F, Carnevale P, Manguin S. Human antibody response to *Anopheles* saliva for comparing the efficacy of three malaria vector control methods in Balombo, Angola. PLoS One. 2012;7(9):e44189. doi: 10.1371/journal.pone.0044189. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0044189&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23028499&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 149.214.Londono-Renteria B, Drame PM, Montiel J, Vasquez AM, Tobón-Castaño A, Taylor M, Vizcaino L, Lenhart AAE. Identification and pilot evaluation of salivary peptides from *Anopheles albimanus* as biomarkers for bite exposure and malaria infection in Colombia. Int J Mol Sci. 2020;21(3). doi: 10.3390/ijms21030691. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/ijms21030691&link_type=DOI) 150.215.Andrade BB, Rocha BC, Reis-Filho A, Camargo LM, Tadei WP, Moreira LA, Barral A, Barral-Netto M. Anti-*Anopheles darlingi* saliva antibodies as marker of *Plasmodium vivax* infection and clinical immunity in the Brazilian Amazon. Malar J. 2009;8:121. doi: 10.1186/1475-2875-8-121. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1475-2875-8-121&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19500362&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) 151.216.Waitayakul A, Somsri S, Sattabongkot J, Looareesuwan S, Cui L, Udomsangpetch R. Natural human humoral response to salivary gland proteins of *Anopheles* mosquitoes in Thailand. Acta Trop. 2006;98(1):66–73. doi: 10.1016/j.actatropica.2006.02.004. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.actatropica.2006.02.004&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16530153&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2021%2F09%2F17%2F2021.09.14.21263589.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000237010400009&link_type=ISI) 152.217.Montiel J, Carbal LF, Tobón-Castaño A, Vásquez GM, Fisher ML, Londono-Rentería B. IgG antibody response against *Anopheles* salivary gland proteins in asymptomatic *Plasmodium* infections in Narino, Colombia. Malar J. 2020;19(1):42. doi: 10.1186/s12936-020-3128-9. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12936-020-3128-9&link_type=DOI) [1]: /embed/graphic-10.gif [2]: /embed/graphic-11.gif