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List of abbreviations: 49 

C1 or C2  Timepoint before cycle 1 or cycle 2 of treatment 50 

C-index  Harrell’s Concordance Index 51 

CT   Computed Tomography 52 

CyTOF  Mass Cytometry 53 

ddPCR  Digital Droplet Polymerase Chain Reaction  54 

DN  Double-Negative 55 

EGFR  Epidermal Growth Factor Receptor 56 

FLIM   Fluorescence Lifetime Imaging Microscopy 57 

FRET   Förster Resonance Energy Transfer 58 

HPV  Human Papilloma Virus 59 

HNSCC  Head and Neck Squamous Cell Cancer 60 

HR  Hazard Ratio 61 

KM   Kaplan-Meier 62 

LFC  Log Fold Change  63 

miRNA  Micro-RNA  64 

PBMC  Peripheral Blood Mononuclear Cells  65 

PCR  Polymerase Chain Reaction 66 

PFS   Progression Free Survival 67 

Tregs  Regulatory T cells  68 
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ABSTRACT  69 

Background: 70 

Advanced Head and Neck Squamous Cell Cancer (HNSCC) is associated with a poor 71 

prognosis, and biomarkers that predict response to treatment are highly desirable. The primary 72 

aim was to predict Progression Free Survival (PFS) with a multivariate risk prediction model. 73 

Methods: 74 

Blood samples from 56 HNSCC patients were prospectively obtained within a Phase 2 clinical 75 

trial (NCT02633800), before and after the first treatment cycle of platinum-based chemotherapy, 76 

to identify biological covariates predictive of outcome. A total of 42 baseline covariates were 77 

derived pre-treatment, which were combined with 29 covariates after one cycle of treatment. 78 

These covariates were ranked and selected by Bayesian multivariate regression to form risk 79 

scores to predict PFS, producing “baseline” and “combined” risk prediction models respectively.  80 

Results: 81 

The baseline model comprised of CD33+CD14+ monocytes, Double Negative B cells and age, 82 

in a weighted risk signature which predicted PFS with a concordance index (C-index) of 0.661. 83 

The combined model composed of baseline CD33+CD14+ monocytes, baseline Tregs, after-84 

treatment changes in CD8 effector memory T cells, CD8 Central memory T cells and CD3 T 85 

Cells, along with the hypopharyngeal primary tumor subsite. This weighted risk signature 86 

exhibited an improved C-index of 0.757. There was concordance between levels of 87 

CD33+CD14+ myeloid cells in tumor tissue, as demonstrated by imaging mass cytometry, and 88 

peripheral blood in the same patients. This monocyte subpopulation also had univariate 89 

predictive value (log-rank p value = 0.03) but the C-index was inferior to the combined 90 

signature. 91 

Conclusions: 92 
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This immune-based combined multimodality signature, obtained through longitudinal peripheral 93 

blood monitoring, presents a novel means of predicting response early on during the treatment 94 

course.  95 

Funding: 96 

Daiichi Sankyo Inc, Cancer Research UK, EU IMI2 IMMUCAN, UK Medical Research 97 

Council, European Research Council (335326), National Institute for Health Research and The 98 

Institute of Cancer Research.  99 

 100 

 101 

 102 

INTRODUCTION  103 

Recurrent (R) or metastatic (M) Head and Neck Squamous Cell Carcinoma (HNSCC) is 104 

associated with a poor prognosis. Until the KEYNOTE-048 study was published in 2019(1), the 105 

standard-of-care, first line systemic treatment was the EXTREME regimen, consisting of a 106 

platinum-based chemotherapy regimen and cetuximab, an anti-EGFR monoclonal antibody(2). 107 

Even now, for patients with programmed death ligand 1 (PD-L1) negative tumors or those with 108 

contraindications to the use of anti-PD1 immunotherapy, the EXTREME regimen remains a first 109 

line standard-of-care.   110 

While effective, this regimen is associated with toxicities. One of the key challenges for the 111 

treating physician is to identify the patients who would benefit from this treatment regimen. A 112 

predictive biomarker signature for patients with advanced HNSCC will help individualize 113 

discussions with patients regarding the risk-benefit balance of this treatment regimen and may 114 

guide patients who are likely to perform poorly towards alternative therapy regimens or clinical 115 

trials.  116 
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The absence of predictive biomarkers in this patient cohort represents a significant clinical 117 

unmet need. Until the development of PD-L1 as a biomarker for immunotherapy, efforts to 118 

generate biomarkers in HNSCC have focused on gene-expression profiles, which are 119 

dependent on the availability of tumor tissue and are only performed on pre-treatment 120 

samples(3, 4). Signatures based on a single biological modality and taken at a single timepoint 121 

may be insufficient to predict outcomes, as response to therapy relies on a dynamic interplay 122 

between cancer genomics, immune profile, tumor microenvironment, and clinicopathological 123 

characteristics of the patient receiving treatment(5, 6).  124 

Efforts to develop a machine learning model to stratify survival risk by combining genetic 125 

and clinicopathological characteristics have revealed some success in advanced oral squamous 126 

cell carcinoma(7). We hypothesize that a multimodal analysis, taking into account both 127 

clinicopathological and laboratory-based biological covariates at different timepoints, would 128 

provide better predictive value.  129 

We prospectively collected peripheral blood samples from a Phase 2 trial in R/M HNSCC 130 

(NTC02633800)(8), which utilized a modified EXTREME regimen as a backbone, and 131 

conducted a parallel exploratory analysis with the aim of generating a biomarker signature 132 

which would predict outcomes to treatment. We hypothesized that the detailed definition of a 133 

broad immune cell signature could contribute to the development of assays employing liquid 134 

biopsies to predict clinical outcomes. We also incorporated the analysis of two circulating 135 

microRNAs (miRNAs); miR-21-5p and miR-142-3p, which have previously demonstrated 136 

prognostic and predictive utility(9, 10). As the trial investigated the efficacy of an anti-ErbB3 137 

antibody, patritumab, administered alongside an anti-EGFR antibody, we simultaneously 138 

analyzed EGFR-ErbB3 dimerization using Förster Resonance Energy Transfer (FRET) and 139 

included it in our analysis.  140 
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 By extracting information from patient samples at baseline and after the first cycle of 141 

treatment within this trial, we aimed to develop a multimodal predictive signature for the 142 

EXTREME regimen based on a novel Bayesian multivariate model. This can serve as a non-143 

invasive risk stratification for patients with R/M HNSCC using only peripheral blood, guiding the 144 

clinician towards the likelihood of success early during the treatment course.   145 

 146 

MATERIALS AND METHODS  147 

Study Design 148 

The clinical study design of the Phase 2 study (NCT02633800) and its associated 149 

exploratory analysis are shown in Figure 1A. 87 patients were enrolled in the clinical trial. 150 

Peripheral blood samples were collected before initiation of treatment (C1) and immediately 151 

before the second cycle of treatment (C2). 31 patients were excluded due to incomplete paired 152 

biological datasets, leaving 56 patients for analysis. Amongst these patients, there was no 153 

difference in PFS as demonstrated by Kaplan-Meier survival curve analysis (Supplementary 154 

Figure 1) regardless of whether the patients received patritumab, which reflected the results 155 

published in the clinical trial. The baseline clinical characteristics of these 56 patients are shown 156 

in Supplementary Table 1.  157 

PBMC samples were analyzed using Flow Cytometry to generate unique immunological 158 

subpopulations. Exosomes were extracted from the serum and analyzed for EGFR-ErbB3 159 

dimerization and miRNA-21-5p and miRNA-142-3p (Figure 1B). These analyses yielded a total 160 

of 29 unique biological covariates. Each covariate was obtained in pairs (C1 and C2), 161 

generating a total of 58 laboratory-based covariates for the multivariate analysis (Figure 1B). To 162 

mitigate individual baseline variations between patients, we evaluated changes between C1 and 163 
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C2 (in the form of log-fold change, LFC, of the variable of interest) instead of absolute values of 164 

those parameters. A list of the laboratory-based and clinical covariates is provided in 165 

Supplementary Table 2.  166 

The baseline clinical characteristics, as well as value of the laboratory-based covariates at 167 

baseline and after one cycle of treatment, did not significantly differ between the placebo and 168 

patritumab cohorts (Supplementary Table 3). Therefore, in this exploratory analysis, samples 169 

from both the control and investigational arms were analyzed together. The effect of adding the 170 

investigational product, patritumab on Progression-Free Survival (PFS) was evaluated by 171 

including it as an independent clinical covariate, denoted as ‘Drug’, in our multivariate analysis.  172 

Written informed consent was obtained. Approval was obtained from ethics committees 173 

(Research Ethics Committee reference: 15/LO/1670).  174 

 175 
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 176 

 177 

Figure 1: Peripheral blood samples from the clinical trial were prospectively analyzed using a 178 

multimodality platform (A) Schematic of clinical trial design and timepoints at which peripheral blood was obtained. 179 

(B) Fifty-six (n=56) paired blood samples, obtained pre-treatment (C1) and after one cycle of treatment (C2) were 180 

subjected to Flow Cytometry, FRET-FLIM imaging and ddPCR analysis.  181 

 182 
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Statistical Analysis 183 

To examine whether the various features and distribution of survival indices indicated 184 

different prognostic outcomes, we built a model for predicting Progression-Free Survival (PFS). 185 

Covariates were ranked by importance and selected by Bayesian multivariate proportional 186 

hazards regression with backward elimination(11). We derived two models using separate 187 

datasets: firstly, a baseline predictive model containing a dataset of 42 baseline covariates (29 188 

laboratory parameters at baseline, C1, and 13 clinical characteristics). The second, a combined 189 

predictive model, consists of 71 covariates, i.e. the 42 baseline covariates and a further 29 190 

derived from the change in lab-based parameters between C1 and C2, measured by log fold 191 

change (LFC) of the variable of interest.   192 

The relative efficiency of the predictive model was assessed by using C-index (a metric 193 

proposed by Harrell(12) to evaluate the accuracy of predictions made by an algorithm) and rank 194 

correlation of the signature-generated risk scores with survival time. The number of significant 195 

covariates in each prediction signature was determined with the aim of avoiding overfitting of the 196 

signature to the study data using the “batch regression” option of the Saddle Point Signature 197 

software (Saddle Point Science Ltd., London, UK), according to methods that were previously 198 

published(13, 14). This is particularly important with small number of patients where an 199 

independent test set is not possible. Systematic iterative covariate rejection and cross-validation 200 

(5000 iterations) allowed for the selection of an optimal covariate set to avoid overfitting though 201 

inclusion of too many covariates. The optimal set can be chosen in two ways, either based on 202 

the peak prediction performance of cross-validation, or the more stringent method that equally 203 

penalizes validation performance and overfitting (defined as the deviation between training and 204 

validation performance). All signatures presented were chosen using the more stringent criterion 205 

and data for all covariates is also presented for the purposes of identifying covariates that may 206 
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be important but do not quite meet the criterion. The regression included covariates 207 

representing the missingness of data to account for the possibility that patient or sample 208 

selection/rejection (for any reason) is biased with respect to outcome and therefore could be 209 

informative. The missing data was imputed with the mean for that covariate. The importance 210 

and significance of covariates can be judged by their assigned beta value (β) in the proportional 211 

hazards model, and corresponding hazard ratio (HR) equal to e2β. A negative beta value reflects 212 

a lower risk of developing an event. The Signature software additionally judges the performance 213 

of similar randomized data, which most often has beta values around zero and within a critical 214 

range, such that any real covariate that has a beta value outside this critical range can be 215 

judged to be performing significantly better than randomized data. This adds additional 216 

confidence in the absence of an independent validation test set.  217 

Flow Cytometry 218 

Frozen PBMC samples were thawed and stained with Fixable viability dye (Yellow 219 

Live/DeadTM, Fisher Scientific) followed by two different panels of membrane markers. A panel 220 

for T cells included CD3, CD4, CD8, CD25, CD45RO, CD127, CCR7, and HLA-DR.  A panel for 221 

B cells and monocytes included CD3, CD19, CD24, CD38, CD27, IgD, CD33, CD11b, CD14 222 

and CD16 (full list of both antibody panels in Supplementary Table 4). These two panels allow 223 

definition of immune cell populations as described in Supplementary Figure 2. Patients’ samples 224 

and corresponding Fluorescence Minus One (FMO) Controls were acquired in a Fortessa II flow 225 

cytometer (BD, Berkshire, UK) and analyzed with FlowJo software (Tree Star). Populations 226 

were quantified as proportions of their respective parent population. 227 

Isolation of Serum exosomes 228 
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Exosomes were prepared using an optimized centrifugation method(15). Diluted serum 229 

was centrifuged at 300xg for 10 min to remove cell debris, 5000xg for 20 min to remove large 230 

vesicles and membrane fragments, and 12,200xg for 30 min to deplete microvesicles. This was 231 

followed by 100,000xg ultracentrifugation for 120 min at 4 °C to pellet exosomes with a TLA-55 232 

rotor (Beckman Coulter). After a second 100,000xg ultracentrifugation for 60 minutes, the 233 

resulting pellets were washed and resuspended in PBS. Purified exosomal fractions were 234 

diluted and used for nanoparticle tracking analysis (NTA) using a Nanosight LM-14 system.   235 

RNA Extraction and miRNA Expression Analysis 236 

RNA from cancer patients’ serum exosomes was extracted using the TRIzol™ Plus 237 

RNA Purification Kit (Thermo Fisher, UK) according to the manufacturer’ instructions. 238 

Quantification of gene expression in circulating exosomes was performed by ddPCR (Bio-Rad 239 

QX100 system). Normalization of the RNA, between cycle 1 and cycle 2 therapy of each patient, 240 

was performed using the expression levels of the housekeeping gene 18S (Assay ID, 241 

Hs99999901_s1). For each sample, equal volume of RNA was used as template and cDNA 242 

synthesis performed using the SuperScript® VILO™ MasterMix (Thermo Fisher, UK) according 243 

to the manufacturer’ instructions. MicroRNAs were reverse-transcribed individually using the 244 

TaqMan™ MicroRNA Reverse Transcription Kit (Thermo Fisher, UK). For each sample, 245 

the normalized amount of RNA was reverse transcribed in a 15 l reaction using the standard 246 

protocol and primers specific for each miRNA: miR-21-5p (assay ID, 000397), miR-142-3p 247 

(assay ID, 000464). Then 7.5 l of cDNA was added to a 20 l reaction containing 12.5 l 2X 248 

ddPCR Supermix for Probes (Bio-Rad) and 1 l 20X TaqMan miRNA PCR primer probe set; 249 

each reaction was carried out in duplicate. Thermo cycling conditions were as it follows: 95 C 250 

for 10 min, then 50 cycles of 95 C for 10 sec and 61 C for 30 sec and a final inactivation step 251 

at 98 C for 12 min. PCR products were analyzed using the QuantaSoft™ Software (Bio-Rad). 252 
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ErbB3-EGFR Dimer Quantification in Exosomes 253 

Exosomes were imaged on an ‘Open’ Fluorescence Lifetime Imaging Microscopy (FLIM) 254 

system (16). Analysis was performed with the TRI2 software (v2.7.8.9, CRUK/MRC Oxford 255 

Institute for Radiation Oncology, Oxford) as described previously (17, 18). Interfering effects of 256 

autofluorescence were minimized with a lifetime filtering algorithm and the FRET efficiency 257 

value for each patient calculated by: 𝐹𝑅𝐸𝑇=1−
τDA

τD
, where tD and tDA are the average lifetime of 258 

Alexa Fluor546 in the matching donor (D) and donor-acceptor (DA) images.   259 

 260 

Imaging Mass Cytometry 261 

FFPE histological slides were stained with a panel of metal conjugated antibodies (full list of 262 

antibodies listed in Supplementary Table 5). 263 

In brief, antigen retrieval was performed on a Ventana Bench Mark Ultra with CC1 buffer 264 

(Roche, 950-224). Slides were blocked for 1 hour at RT in 5% BSA, 5mg/ml human IgG in PBS 265 

and stained overnight at 4°C in 4% BSA, PBS. DNA counterstain was performed with Iridium 266 

(Fluidigm, 201192B) 125nM in PBS for 30 minutes at room temperature. 267 

 Ablation and data acquisition were performed on a Fluidigm Hyperion located within our 268 

Biomedical Research Centre. Imaging analysis was performed using the RUNIMC R package: 269 

RandomForest for classification and regression, Raster and SF for image manipulation and 270 

segmentation (see https://www.biorxiv.org/content/10.1101/2021.09.14.460258v1, with code 271 

available here: https://github.com/luigidolcetti/RUNIMC).  272 

RESULTS 273 

The Model with Baseline Covariates Reveal Immune Subpopulations and Age Predict 274 

PFS  275 
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 Bayesian multivariate proportional hazards regression was performed on the 42 276 

covariates derived at baseline (C1) and PFS outcome. We utilized the stringent selection criteria 277 

based on a proportional hazards regression model to minimize overfitting based on the cross-278 

validation performance (Figure 2A). This revealed two baseline immune subpopulations with a 279 

beta value which exceeded the critical beta-value threshold, ie CD14+CD16+CD33+CD11b+ 280 

monocytes (thereafter referred to as CD33+CD14+ monocytes according to previous 281 

nomenclature(19)) and double negative (CD27-IgD-) B cells (DN B cells), as well as one clinical 282 

covariate – age (Figure 2B). Missingness covariates were included in this analysis and did not 283 

affect the outcome of the signature. 284 

 Evaluation of the individual beta values reveal that baseline CD33+CD14+ monocytes 285 

and double negative B cells have a beta, β value of -1.05 and -0.53 respectively, and hence a 286 

higher baseline value of both populations is predictive of better PFS. Age, with a β value of 0.47, 287 

is associated with poorer PFS. The hazard ratios (HR) of the individual covariates are depicted 288 

in Figure 2C.  289 

 The risk scores generated from this signature were split at the median value to generate 290 

low-risk and high-risk cohorts (Figure 2D). The median overall survival of the low-risk and high-291 

risk cohorts in this baseline predictive signature are 8.3 and 3.6 months respectively (log rank p-292 

value = 6.0 e-5) with a rank correlation of -0.29. The C-index of the predictive signature based 293 

completely on baseline parameters is 0.661. The risk score equation is given in Supplementary 294 

Figure 4. 295 
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 296 

Figure 2 High baseline CD33+CD14+ monocytes and Double Negative B cells Predict Overall Survival 297 

Covariates were ranked for importance and selected by a proportional hazards regression model with cross-validation and backward 298 

elimination. (A) Signature performance (defined as the classifier accuracy for predicting patient survival < or > median) as a function 299 

of the number of active covariates as covariates are eliminated based on cross validation performance. (B) Heatmap of covariate 300 

strength (beta value in the proportional hazards model) for the active covariates. Covariate elimination revealed three covariates in 301 

the optimal signature – CD33+CD14+ monocytes, Double Negative B Cells, and Age. (C) Forest plot of the three covariates within 302 

Progression Free Survival risk score with dotted line indicating the range, around 1, of typical random covariates. (D) Progression 303 

Free Survival Risk Signature Performance, low risk score (n=27) and high risk score (n=26). Log rank P-value = 6.0 e-5, with 304 

numbers at risk demonstrated under Kaplan-Meier curve. The multivariate analysis resulted in risk signatures that are linear 305 

combinations of weighted covariates. Their ability to predict outcome is demonstrated with data split by signature value.  306 

 307 

 308 

 309 

 310 
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Incorporating laboratory-based covariates after one cycle of treatment improves ability to 311 

predict PFS benefit 312 

We subsequently evaluated if the incorporation of early laboratory-based changes into the 313 

signature improves its predictive ability. A separate predictive model incorporating 29 new 314 

covariates, ie changes in laboratory-based parameters between cycle 1 and cycle 2 was 315 

generated.  316 

As before, we used a proportional hazards regression to determine a set of variables which 317 

predict PFS. A total of six covariates were identified – three immune subpopulations with 318 

negative beta values and hence are associated with better survival, ie baseline CD33+CD14+ 319 

monocytes, baseline CD4 memory regulatory T cells (HLA-DR-CD45RO+Tregs) and an increase 320 

in CD8 effector memory T cells (CD45RO+CCR7-).  An increase in two subpopulations, CD8 321 

Central Memory T Cells (CD45RO+CCR7+) and CD3 T cells, was associated with inferior PFS. 322 

The hypopharyngeal primary tumor site was also associated with a poorer PFS (Figure 3A and 323 

B). 324 

A multivariate analysis employing linear combinations of these six weighted covariates 325 

generated a risk signature. Their ability to predict outcome is demonstrated with data split by 326 

risk score, shown in Figure 3C. In this combined predictive signature, the median overall 327 

survival of the low-risk and high-risk cohorts are 6.8 and 3.6 months respectively (log rank p-328 

value 0.004) with a rank correlation of -0.38 (Figure D). The C-index of the predictive signature, 329 

which incorporates baseline variables with changes in laboratory parameters after one cycle of 330 

treatment, is 0.757. Both values are greater in the combined signature when compared to the 331 

signature which only accounts for baseline values. The risk score equation is given in 332 

Supplementary Figure 4.    333 
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 334 

Figure 3 Model Incorporating Laboratory Changes After One Cycle of Treatment Exhibit Improved Predictive Value (A) 335 

Heatmap of covariate strength (beta value in the proportional hazards model) for the active covariates. Proportional hazards 336 

regression revealed five immune subpopulations in the optimal model – Baseline CD33+CD14+ monocytes, Baseline CD4 Memory 337 

Regulatory T Cells, LFC of CD8 effector memory T cells, LFC of CD8 central memory T cells and LFC of CD3 T cells. The primary 338 

tumor site of hypopharynx also featured in the signature. A negative beta value is associated with lower risk score and hence better 339 

progression free survival. LFC = Log Fold Change (B) Forest plot of the three covariates within Progression Free Survival risk score 340 

(C) Progression Free Survival Risk Signature Performance, low risk score (n=29) and high risk score (n=24). Log rank P-value = 341 

0.004, with numbers at risk demonstrated under Kaplan-Meier curve.  342 

 343 

 344 
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EGFR-ErbB3 FRET may contribute to predictive signature 345 

While the combined predictive signature comprised predominantly of immunological 346 

parameters, there is a suggestion that FRET difference may carry a degree of predictive value. 347 

In Figure 3A (4th covariate from the bottom), the difference in EGFR-ErbB3 FRET (FRET.delta) 348 

was associated with a negative beta value which suggests a better PFS. However, the 349 

stringency that we have applied to optimal covariate selection means that this covariate fell 350 

marginally short of featuring in the eventual predictive signature. Nonetheless, this is the first 351 

time that this assay has been used within the context of a randomized controlled trial in 352 

exosomes and the suggested predictive value of the dimer warrants some discussion.  353 

Figure 4A displays intensity images and donor lifetime map of exosomes labelled with anti-354 

EGFR and anti-ErbB3 antibodies, along with an accompanying schematic (Figure 4B).  355 

By dividing the patients with available FRET values by the median FRET.delta (n=43), there 356 

was a suggestion that patients with a high FRET.delta exhibited a better PFS than patients with 357 

a low FRET.delta. This difference was not statistically significant (p=0.2), and the predictive 358 

capacity of this univariate is limited (Rank Correlation = -0.132, C-index = 0.561, Figure 4C). 359 

Nonetheless, these results suggest a trend within a small patient cohort and can be explored in 360 

future prospective studies.  361 
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 362 

Figure 4 FRET/FLIM fluorescence assay of circulating exosomes extracted from patients (A) Time-resolved fluorescence 363 

intensity images and donor lifetime map of exosomes labelled with Anti-EGFR-IgG-Alexa 546 and Anti-ErbB3-IgG-Cy5 extracellular 364 

antibodies (B) Schematic illustration of the fluorescent labelling geometry on exosomes and distance dependence of FRET 365 

efficiency (C) Progression Free Survival of subpopulations divided by median FRET difference, FRET.delta low (n=21) and 366 

FRET.delta  high (n=22).  Log rank P-value = 0.2, with numbers at risk demonstrated under Kaplan-Meier curve. 367 

 368 

Imaging Mass Cytometry of Tissue Reveals Correlation of CD33+CD14+ Myeloid Cell 369 

Subpopulation Between Tissue and Peripheral Blood  370 
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Having established that immune subsets in peripheral blood predict therapeutic response within 371 

a multivariate signature, we subsequently explored the relationship between the immune 372 

findings in peripheral blood with tumor infiltrating leukocytes (TILs). We obtained sufficient 373 

tissue from the biopsy at trial enrolment for in-depth profiling by imaging mass cytometry from 374 

four patients.   375 

Standard FFPE samples from these four patients were processed as described previously, and 376 

the results clustered in an unsupervised fashion. The range of PFS for these patients was 377 

between 1.6-11.2 months (Figure 5A). Representative images of nuclear staining, overlaid with 378 

pixel-level classification, are shown for the four patients in Figure 5B. Heatmaps representing 379 

the distribution of cell phenotypes for each patient, as expressed by a two-phase classification 380 

conducted at pixel and cell level, are illustrated in Figure 5C. The list of cell populations 381 

characterized by imaging mass cytometry, alongside their detailed signature, is shown in 382 

Supplementary Table 6.  383 

A total of 7 cell clusters identified on tissue mass cytometry were significantly different between 384 

the four patients. CD33+CD14+ monocytes (cluster B-37) which featured in both baseline and 385 

combined signatures, exhibited a diminishing trend of abundance across patients 1 to 4. Having 386 

observed this trend, we subsequently correlated the levels of this population in tissue with 387 

blood. The proportion of CD33+CD14+ monocytes in the blood was 17.4%, 5.39%, 2.0% and 388 

2.47% for patients 1-4 respectively, suggesting a meaningful concordance between the levels of 389 

this subpopulation in the patient tissue and peripheral blood.   390 
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Figure 5 Image Mass Cytometry of Four Patient Samples Using a 29 Marker Panel Analysis (A) Waterfall plot of 394 

Progression Free Survival showing the four patients used for imaging mass cytometry analysis (B) Representative 395 

image of the nuclear staining overlaid with pixel-level classification (C) Heatmaps representing the distribution of cell 396 

phenotypes for each patient, as expressed by a two-phase clustering conducted at pixel level (columns) and at cell 397 

level (rows). Data represent row-normalized areas. Red tiles, which represent hot spots of classification concordance, 398 

are further described in panel D (D) Differential analysis of the classification hotspots presented in panel C, 399 

highlighting cell populations which were significantly different between patients. Data are presented as sum of areas 400 

of positive cells normalized to the total area of the ROI and expressed as µm
2
 (x1000) per mm

2
. Statistics: *adj-401 

p<0.05, **adj-p<0.01, ****adj-p<0.001, Pairwise Wilcoxon Rank Sum Tests with Benjamini correction, n≥3. 402 

CD33+CD14+ Monocyte Population have high HLA-DR expression and univariate 403 

predictive value 404 

Due to the consistency with which the CD33+CD14+ monocyte population appeared across our 405 

study, we wanted to further characterize this population to determine its phenotype. During the 406 

process of drafting this manuscript, our lab was concurrently processing PBMCs from a cohort 407 

of patients at risk of developing lung cancer. Using a second flow cytometry staining panel 408 

which incorporates an alternative set of markers on these samples, we further characterized this 409 

monocyte subpopulation, affirming that these CD14+CD16+CD33+CD11b monocytes also 410 

express high levels of HLA-DR and CD11c (Supplementary Figure 3). This affirms that our 411 

population of interest closely resembles the previously described CD33+CD14+ monocytes(19). 412 

MiRNA signatures have been implicated as a useful classifier for myeloid cell subsets(20). By 413 

correlating the miRNA changes in our study with this monocytic subpopulation, a significant 414 

correlation was identified between the log fold changes of miR-21-5p with the corresponding log 415 

fold changes of CD33+CD14+ monocytes (Pearson’s r=0.4343, p=0.02092, Figure 6A). We also 416 

investigated the potential of baseline CD33+CD14+ monocyte levels at predicting PFS. Figure 417 

6B illustrates a Kaplan-Meier curve of PFS by median CD33+CD14+ monocyte level, generating 418 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.09.22.21263942doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.22.21263942
http://creativecommons.org/licenses/by/4.0/


23 

 

a modest split which surpassed conventional statistical significance (log rank p-value = 0.03. 419 

However, the predictive capacity of CD33+CD14+ monocytes as a covariate was limited (C-420 

index 0.593, rank-correlation 0.22). These values were inferior in predictive capacity compared 421 

to the baseline signature, which employed three covariates, and the combined predictive 422 

signature which employed six covariates (Figure 6C).  423 

 424 

Figure 6 CD33+CD14+ Monocytes have some predictive value but predictive ability of signature is maximized with 425 

longitudinal sampling of peripheral blood (A) (B) Correlation between miRNA 21 fold change and CD33+ monocyte fold change 426 

after one cycle of treatment. Correlation efficient of 0.4343, p value 0.02092. miR21: microRNA-21-5p, lfc: log-fold change (B) 427 

Kaplan-Meier Curve of PFS split by median CD33+CD14+ value, log rank p-value 0.03 (C) Table summarises C-index, rank 428 

correlation and log-rank p value based on type and number of covariates. There is an increasing C-index and rank correlation upon 429 

the strict selection of additional covariates into the predictive signature, with the strongest signature incorporating six covariates 430 

combining values from baseline and after one cycle of treatment.  431 
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DISCUSSION  432 

There is a clinical unmet need to identify predictive biomarkers for treatment in head and 433 

neck cancer. Gene expression profiling has revealed promising initial results in this domain but 434 

have been limited to HPV positive HNSCC, which inherently have better prognoses. Recent 435 

developments in the field of immunotherapy in HNSCC have focused on tissue-based 436 

biomarkers, such as PD-L1, but when used in isolation these have not been sufficiently 437 

predictive at identifying patients who would benefit(1).    438 

While uni-modal biomarkers may offer some predictive value, the biology of HNSCC and 439 

likelihood of response to treatment is likely to be dictated by an interplay between tumor 440 

immunity, genomic signatures and a host of clinicopathological characteristics. There is an 441 

increased interest in peripheral blood biopsies in recent years, particularly in the context of 442 

peripheral blood mononuclear cells(21). The use of peripheral blood in deriving biomarkers 443 

mitigates a few limitations posed by tissue biopsies – particularly the accessibility and amount of 444 

tissue required. The ease of obtaining liquid biopsies also facilitates longitudinal monitoring of 445 

response to treatment.  446 

To our knowledge, ours is the first piece of work integrating multiple biological covariates 447 

derived from peripheral blood to generate a signature which predicts treatment response. We 448 

also demonstrate the effectiveness of sequential monitoring of peripheral blood variables and 449 

the advantage of longitudinal monitoring at enhancing prediction of response, as shown by the 450 

combined predictive signature.  By employing cross validation iterations to estimate training and 451 

validation errors, implementing advanced overfitting correlation protocols, using built-in 452 

corrections for informative data missingness, and probabilistic covariate removal, we were able 453 

to derive a robust optimal covariate set which correlates with PFS. This combination of analyses 454 

has been shown to produce robust signatures that do generalize to unseen data(13). 455 
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 The biological components of the predicted model warrant discussion. The only clinical 456 

covariate to feature in the combined risk signature is the hypopharyngeal SCC sub-site, which 457 

was adversely correlated with PFS. This corroborates previous findings that the 5-year relative 458 

survival of patients with hypopharyngeal SCC is consistently the worst amongst different 459 

anatomical HNSCC sub-sites (22, 23). The propensity of hypopharyngeal tumors to present at 460 

the de novo advanced stage(24) and the density of submucosal lymphatics in this anatomical 461 

region translates into these patients inherently performing worse – lending support to the robust 462 

nature of our predictive signature. The notable absence of patritumab (denoted as ‘Drug’) in our 463 

predictive signatures is also consistent with the outcome of the Phase 2 Clinical Trial where the 464 

addition of this investigational medicinal product did not produce any benefit to PFS(8).  465 

 CD33+CD14+ monocytes demonstrated predictive capacity both as a univariate and as 466 

a prominent feature in both baseline and combined signatures. Monocytes are a heterogenous 467 

cell population, and phenotypic and functional characterization of monocyte subsets is a rapidly 468 

emerging field(25).  Our identified population of interest, 469 

CD14+CD16+CD33+CD11b+CD11c+HLA-DR+ monocytes, resemble an intermediate 470 

monocyte phenotype. This subset remains one of the most poorly characterized monocytic 471 

subpopulations so far but have previously been linked to diverse immunological functions 472 

including antigen processing and presentation, angiogenesis, and monocyte activation(26). 473 

Interestingly, a significant correlation between the changes in miRNA-21-5p with changes in this 474 

monocytic subpopulation was detected, supporting previous suggestions that miRNA signatures 475 

can be a useful indicator of the functional state of myeloid cell subsets in cancer (20).  The 476 

predictive capacity of this subpopulation warrants investigation and further characterization in 477 

future studies.  478 

 Beyond the interest in individual covariates, our study also reveals the potential of using 479 

liquid-based biological outcomes to predict outcome to therapy. It has been widely recognized 480 
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that even the most utilized biomarkers, such as tumor PD-L1, have limited predictive value 481 

when used in isolation. Our study reveals that a targeted multimodality signature, obtained 482 

through longitudinal sampling of peripheral blood, is able to augment this predictive capacity 483 

and better identify patients who would benefit from a particular treatment regimen.  484 

 There are a few limitations to the study. The absence of overall survival (OS) within our 485 

current dataset represents one of the shortcomings of the study and it would have been 486 

interesting to assess whether the immune markers, particularly the CD33+CD14+ monocytic 487 

population, predict survival in the longer term. However, the accuracy of the predictive signature 488 

for OS would have been diluted by a variety of subsequent treatment regimens. Secondly, due 489 

to tissue scarcity, we only managed to obtain sufficient biopsy tissue from four patients for in-490 

depth profiling by mass cytometry to investigate the correlation of the monocytic population 491 

between tissue and blood.   492 

The present study shows that the combination of biomarkers established prospectively 493 

by liquid biopsies early in the treatment course offers potential for the provision of personalized 494 

treatments to patients (27). The post-stratification survival curves in our study demonstrate 495 

markedly different progression free survivals as a testament to this robust statistical model, and 496 

could represent an invaluable guide to clinicians during the initial stages of treatment.   497 
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Supplementary Figure 1. Kaplan Meier Curve of Progression-Free Survival in Study Cohort 

Progression-Free Survival data was obtained from 53 patients, and stratified according to patients who 

received patritumab and the cohort which received placebo.  
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Supplementary Table 1. Demographic and Laboratory-Based Values of patients Group of 56 

patients with HNSCC was analyzed and their characteristics indicated as above.   

 

Overall

n 56

Age (mean (SD)) 58.46 (8.78)

Drug = Placebo (%)    27 (48.2) 

Sex = M (%)    46 (82.1) 

Site (%)    

   Aryepiglottis     1 ( 1.8) 

   Hypopharynx    12 (21.4) 

   Larynx     8 (14.3) 

   Oral Cavity    20 (35.7) 

   Oropharynx    10 (17.9) 

   Other     5 ( 8.9) 

Prev.Cetux = Yes (%)     1 ( 1.8) 

HPV.Status = Pos (%)     8 (14.3) 

Hereg.Status = Low (%)    27 (48.2) 

Smoking (%)    

   Current    18 (32.1) 

   Ex    34 (60.7) 

   Never     3 ( 5.4) 

   Other     1 ( 1.8) 

Dendritic.CD33.c1 (mean (SD))  4.49 (4.46)

T.cell.CD3.c1 (mean (SD)) 44.74 (20.79)

T.cell.CD4.c1 (mean (SD)) 50.07 (18.43)

T.cell.CD4.Cent.Mem.c1 (mean (SD)) 27.99 (9.58)

T.cell.CD4.Effector.c1 (mean (SD))  9.15 (18.07)

T.cell.CD4.Effect.Mem.c1 (mean (SD)) 31.77 (17.04)

CD4.Naive.c1 (mean (SD)) 30.07 (20.86)

CD4.Tregs.c1 (mean (SD))  8.97 (5.24)

CD4.Memory.Tregs.c1 (mean (SD)) 62.15 (12.50)

CD4.Mem.Act.Tregs.c1 (mean (SD)) 22.45 (12.25)

CD4.Naive.Tregs.c1 (mean (SD)) 14.69 (14.08)

T.cell.CD8.c1 (mean (SD)) 35.27 (12.98)

CD8.Cent.Mem.c1 (mean (SD))  9.34 (4.87)

CD8.Effector.c1 (mean (SD)) 38.74 (15.99)

CD8.Effect.Mem.c1 (mean (SD)) 33.38 (12.13)

CD8.Naive.c1 (mean (SD)) 18.54 (13.92)

CD4.CD8.ratio.c1 (mean (SD))  1.85 (1.23)

B.cell.CD19..c1 (mean (SD)) 17.15 (8.62)

B.cell.mature.c1 (mean (SD)) 58.50 (13.45)

B.cell.memory.c1 (mean (SD)) 21.18 (12.04)

B.cell.Transitional.c1 (mean (SD))  7.30 (8.30)

B.cell.plasma.c1 (mean (SD))  0.36 (0.62)

B.cell.DN.c1 (mean (SD)) 13.84 (9.01)

B.cell.naive.c1 (mean (SD)) 68.07 (14.55)

B.cell.pre.switch.c1 (mean (SD))  4.82 (5.52)

B.cell.post.switch.c1 (mean (SD)) 13.26 (8.83)

FRET.c1 (mean (SD))  0.00 (0.05)

normalised.miR.21.5.c1 (mean (SD))  0.00 (0.01)

normalised.miR.142.3p.c1 (mean (SD))  0.00 (0.00)

FRET.c1.missing (mean (SD))  0.14 (0.35)

miR.c1.missing (mean (SD))  0.11 (0.31)

immune.c1.missing (mean (SD))  0.38 (0.49)

Dendritic.CD33.lfc (mean (SD))  0.31 (1.29)

T.cell.CD3.lfc (mean (SD))  0.28 (0.57)

T.cell.CD4.lfc (mean (SD))  0.12 (0.63)

T.cell.CD4.Cent.Mem.lfc (mean (SD))  0.01 (0.62)

T.cell.CD4.Effector.lfc (mean (SD)) -0.37 (1.00)

T.cell.CD4.Effect.Mem.lfc (mean (SD))  0.01 (0.84)

CD4.Naive.lfc (mean (SD))  0.08 (0.98)

CD4.Tregs.lfc (mean (SD)) -0.21 (0.72)

CD4.Memory.Tregs.lfc (mean (SD)) -0.02 (0.30)

CD4.Mem.Act.Tregs.lfc (mean (SD))  0.19 (0.77)

CD4.Naive.Tregs.lfc (mean (SD)) -0.10 (0.97)

T.cell.CD8.lfc (mean (SD))  0.11 (0.41)

CD8.Cent.Mem.lfc (mean (SD))  0.12 (0.74)

CD8.Effector.lfc (mean (SD)) -0.17 (0.62)

CD8.Effect.Mem.lfc (mean (SD))  0.03 (0.33)

CD8.Naive.lfc (mean (SD)) -0.15 (0.85)

CD4.CD8.ratio.lfc (mean (SD)) -0.12 (0.79)

B.cell.CD19..lfc (mean (SD)) -0.07 (0.89)

B.cell.mature.lfc (mean (SD))  0.03 (0.45)

B.cell.memory.lfc (mean (SD))  0.10 (0.45)

B.cell.Transitional.lfc (mean (SD)) -0.26 (0.77)

B.cell.plasma.lfc (mean (SD))  0.12 (2.03)

B.cell.DN.lfc (mean (SD)) -0.18 (0.61)

B.cell.naive.lfc (mean (SD)) -0.01 (0.21)

B.cell.pre.switch.lfc (mean (SD))  0.14 (0.66)

B.cell.post.switch.lfc (mean (SD))  0.01 (0.62)

normalised.miR.21.5.lfc (mean (SD))  0.25 (2.12)

normalised.miR.142.3p.lfc (mean (SD))  0.13 (1.98)

FRET.delta (mean (SD))  0.00 (0.05)

FRET.delta.missing (mean (SD))  0.18 (0.39)

miR.lfc.missing (mean (SD))  0.11 (0.31)

immune.lfc.missing (mean (SD))  0.46 (0.50)

BOR.RECIST (mean (SD))  2.74 (0.68)

event.PFS (mean (SD))  0.74 (0.45)

t.PFS (mean (SD))  5.48 (3.48)
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Lab-Based Covariates (n=58) Baseline Clinical 
Covariates (n=13) PBMC-Based Exosome-Based 

Panel A Panel B FRET value miRNA 

CD3 T cells 
CD4 T cells 
CD8 T cells 

CD4 Central 
Memory 

CD4 Effector 
Memory 

CD4 Naïve 
CD4 Tregs 

CD4 Memory 
Tregs 

CD4 Mem Act 
Tregs 

CD4 Naïve Tregs 
CD8 Central 

Memory 
CD8 Effector 
CD8 Effector 

Memory 
CD8 Naïve 

CD4.CD8 ratio 

CD19 B cells 
Mature B cells 

Transitional B cells 
Plasma B cells 

Double Negative B 
cells 

Naïve B cells 
Pre switch B cells 
Post switch B cells 

CD33+CD14+ 
Monocytes 

 

FRET-FLIM 
EGFR-ErbB3 

miR 21.5 
miR 142.3p 

Patritumab (Drug) 
Age 
Sex 

Smoking Status 
Site: 

-Oral Cavity 
-Oropharynx 

-Hypopharynx 
-Aryepiglottis 

-Larynx 
-Other 

Previous Cetuximab 
HPV Status: +ve/-ve 

Heregulin Status 
 

 

Supplementary Table 2: List of covariates entered into Bayesian multivariate analysis. 29 

laboratory-based covariates were used (obtained at baseline and after one cycle of treatment), and 

combined with 13 baseline clinical covariates.  
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Supplementary Table 3. Demographic and Laboratory-Based Values of patients separated by arm of 

treatment on trial (placebo vs patritumab)    

 

 

 

 

Patritumab Placebo p

n 29 27

Age (mean (SD)) 58.17 (8.59) 58.78 (9.14) 0.799

Drug = Placebo (%)     0 ( 0.0)    27 (100.0) <0.001

Sex = M (%)    22 (75.9)    24 ( 88.9) 0.356

Site (%)       0.498

   Aryepiglottis     1 ( 3.4)     0 (  0.0) 

   Hypopharynx     7 (24.1)     5 ( 18.5) 

   Larynx     3 (10.3)     5 ( 18.5) 

   Oral Cavity    12 (41.4)     8 ( 29.6) 

   Oropharynx     3 (10.3)     7 ( 25.9) 

   Other     3 (10.3)     2 (  7.4) 

Prev.Cetux = Yes (%)     0 ( 0.0)     1 (  3.7) 0.971

HPV.Status = Pos (%)     4 (13.8)     4 ( 14.8) 1

Hereg.Status = Low (%)    14 (48.3)    13 ( 48.1) 1

Smoking (%)       0.36

   Current     7 (24.1)    11 ( 40.7) 

   Ex    20 (69.0)    14 ( 51.9) 

   Never     1 ( 3.4)     2 (  7.4) 

   Other     1 ( 3.4)     0 (  0.0) 

Dendritic.CD33.c1 (mean (SD))  4.17 (4.71)  4.73 (4.38) 0.716

T.cell.CD3.c1 (mean (SD)) 45.64 (21.50) 44.08 (20.82) 0.836

T.cell.CD4.c1 (mean (SD)) 49.68 (17.43) 50.36 (19.60) 0.919

T.cell.CD4.Cent.Mem.c1 (mean (SD)) 29.86 (10.13) 26.61 (9.18) 0.343

T.cell.CD4.Effector.c1 (mean (SD)) 17.41 (25.54)  3.07 (4.19) 0.022

T.cell.CD4.Effect.Mem.c1 (mean (SD)) 31.04 (17.90) 32.32 (16.85) 0.834

CD4.Naive.c1 (mean (SD)) 21.39 (16.57) 36.46 (21.76) 0.038

CD4.Tregs.c1 (mean (SD))  8.79 (4.05)  9.11 (6.07) 0.864

CD4.Memory.Tregs.c1 (mean (SD)) 60.04 (14.54) 63.69 (10.91) 0.415

CD4.Mem.Act.Tregs.c1 (mean (SD)) 20.58 (11.36) 23.83 (12.99) 0.46

CD4.Naive.Tregs.c1 (mean (SD)) 18.84 (19.33) 11.62 (7.69) 0.148

T.cell.CD8.c1 (mean (SD)) 37.41 (13.69) 33.64 (12.59) 0.44

CD8.Cent.Mem.c1 (mean (SD))  8.83 (3.60)  9.74 (5.73) 0.619

CD8.Effector.c1 (mean (SD)) 42.45 (18.41) 35.90 (13.76) 0.273

CD8.Effect.Mem.c1 (mean (SD)) 30.91 (15.34) 35.26 (9.02) 0.338

CD8.Naive.c1 (mean (SD)) 17.81 (13.23) 19.10 (14.80) 0.807

CD4.CD8.ratio.c1 (mean (SD))  1.83 (1.42)  1.88 (1.11) 0.913

B.cell.CD19..c1 (mean (SD)) 16.69 (8.88) 17.50 (8.63) 0.789

B.cell.mature.c1 (mean (SD)) 55.65 (16.19) 60.64 (10.92) 0.284

B.cell.memory.c1 (mean (SD)) 22.00 (15.59) 20.56 (8.90) 0.731

B.cell.Transitional.c1 (mean (SD))  8.55 (12.20)  6.37 (3.37) 0.448

B.cell.plasma.c1 (mean (SD))  0.27 (0.30)  0.42 (0.77) 0.467

B.cell.DN.c1 (mean (SD)) 12.40 (7.87) 14.92 (9.83) 0.421

B.cell.naive.c1 (mean (SD)) 70.15 (15.33) 66.51 (14.13) 0.472

B.cell.pre.switch.c1 (mean (SD))  5.71 (7.51)  4.16 (3.46) 0.421

B.cell.post.switch.c1 (mean (SD)) 11.73 (8.45) 14.40 (9.14) 0.384

FRET.c1 (mean (SD)) -0.01 (0.05)  0.00 (0.06) 0.679

normalised.miR.21.5.c1 (mean (SD))  0.00 (0.00)  0.01 (0.02) 0.531

normalised.miR.142.3p.c1 (mean (SD))  0.00 (0.00)  0.00 (0.00) 0.687

FRET.c1.missing (mean (SD))  0.07 (0.26)  0.22 (0.42) 0.105

miR.c1.missing (mean (SD))  0.10 (0.31)  0.11 (0.32) 0.928

immune.c1.missing (mean (SD))  0.48 (0.51)  0.26 (0.45) 0.087

Dendritic.CD33.lfc (mean (SD))  0.14 (1.02)  0.42 (1.47) 0.569

T.cell.CD3.lfc (mean (SD))  0.25 (0.61)  0.30 (0.56) 0.833

T.cell.CD4.lfc (mean (SD))  0.08 (0.54)  0.15 (0.70) 0.796

T.cell.CD4.Cent.Mem.lfc (mean (SD)) -0.27 (0.70)  0.20 (0.48) 0.038

T.cell.CD4.Effector.lfc (mean (SD)) -0.53 (0.96) -0.25 (1.03) 0.459

T.cell.CD4.Effect.Mem.lfc (mean (SD)) -0.02 (0.86)  0.04 (0.86) 0.855

CD4.Naive.lfc (mean (SD))  0.19 (1.07)  0.01 (0.94) 0.639

CD4.Tregs.lfc (mean (SD)) -0.23 (0.91) -0.19 (0.58) 0.891

CD4.Memory.Tregs.lfc (mean (SD)) -0.14 (0.35)  0.06 (0.25) 0.086

CD4.Mem.Act.Tregs.lfc (mean (SD))  0.39 (0.83)  0.06 (0.71) 0.255

CD4.Naive.Tregs.lfc (mean (SD)) -0.28 (0.76)  0.02 (1.08) 0.432

T.cell.CD8.lfc (mean (SD))  0.14 (0.38)  0.09 (0.44) 0.756

CD8.Cent.Mem.lfc (mean (SD))  0.05 (0.59)  0.17 (0.85) 0.698

CD8.Effector.lfc (mean (SD)) -0.34 (0.64) -0.06 (0.60) 0.263

CD8.Effect.Mem.lfc (mean (SD))  0.15 (0.33) -0.05 (0.31) 0.125

CD8.Naive.lfc (mean (SD))  0.02 (0.56) -0.27 (1.00) 0.39

CD4.CD8.ratio.lfc (mean (SD)) -0.19 (0.66) -0.08 (0.89) 0.734

B.cell.CD19..lfc (mean (SD))  0.00 (1.06) -0.12 (0.78) 0.707

B.cell.mature.lfc (mean (SD))  0.21 (0.38) -0.08 (0.46) 0.078

B.cell.memory.lfc (mean (SD))  0.01 (0.46)  0.15 (0.45) 0.411

B.cell.Transitional.lfc (mean (SD)) -0.21 (0.74) -0.29 (0.80) 0.775

B.cell.plasma.lfc (mean (SD))  0.43 (1.97) -0.04 (2.10) 0.564

B.cell.DN.lfc (mean (SD)) -0.43 (0.68) -0.02 (0.52) 0.066

B.cell.naive.lfc (mean (SD))  0.06 (0.23) -0.06 (0.19) 0.126

B.cell.pre.switch.lfc (mean (SD))  0.19 (0.82)  0.10 (0.56) 0.729

B.cell.post.switch.lfc (mean (SD)) -0.09 (0.57)  0.08 (0.65) 0.459

normalised.miR.21.5.lfc (mean (SD))  0.34 (2.13)  0.13 (2.16) 0.734

normalised.miR.142.3p.lfc (mean (SD))  0.51 (1.93) -0.28 (1.99) 0.161

FRET.delta (mean (SD))  0.00 (0.05)  0.00 (0.05) 0.631

FRET.delta.missing (mean (SD))  0.14 (0.35)  0.22 (0.42) 0.42

miR.lfc.missing (mean (SD))  0.10 (0.31)  0.11 (0.32) 0.928

immune.lfc.missing (mean (SD))  0.59 (0.50)  0.33 (0.48) 0.06

BOR.RECIST (mean (SD))  2.64 (0.68)  2.85 (0.67) 0.275

event.PFS (mean (SD))  0.71 (0.46)  0.76 (0.44) 0.713

t.PFS (mean (SD))  4.94 (2.83)  6.08 (4.06) 0.237
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Supplementary Figure 2. Gating strategies for definition of peripheral blood immune 

populations. Peripheral immune cell populations analysed in this study are indicated in corresponding 

gates A) Subpopulations of CD3
+

CD4
+

 and CD3
+

CD8
+

 T cells were further identified by the use of 

markers CCR7 and CD45RO as effector (Eff., CD45RO
-

CCR7
-

), naïve (CD45RO
-

 CCR7
+

), central 

memory (CM, CD45RO
+

CCR7
+

) and effector memory (EM, CD45RO
+

CCR7
-

). The activation status 

of CD4
+

 regulatory T cells (Tregs, CD127
-/lo 

CD25
hi

) was defined by markers CD45RO and HLA-DR 

as indicated: naïve Tregs (HLA-DR
-

CD45RO
-

), activated Tregs (Act. Tregs, HLA-DR
+

CD45RO
+

), 

and memory Tregs (Mem. Tregs, HLA-DR
-

CD45RO
+

). B) CD19
+

 B cell subpopulations were 

identified with markers CD24, CD38 and CD27: plasma cells (CD38+CD27
+

); mature 

(CD24
lo

CD38
lo

), memory (CD24
hi

CD38
-

), transitional (TBC, CD24
hi

CD38
hi

); or a combination of IgD 

and CD27:naïve (IgD
+

CD27
-

), memory pre-switch (IgD
+

CD27
+

), memory post-switch (IgD
-

CD27
+

), 
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or double-negative B cells (DN, IgD
-

CD27
-

). CD33+ CD14+ Monocytes were defined as CD3
-

CD19
-

CD33
+

CD16
+

CD14
+

. 

 

T cell Panel B cell-Monocyte Panel 

Target Clone Company Target Clone Company 

CD3 UCHT1 BD Biosciences CD3 UCHT1 BD Biosciences 

CD4 SK3 BD Biosciences CD11b ICRF44 Biolegend 

CD8 RPA-T8 BD Biosciences CD14 HCD14 Biolegend 

CD25 M-A251 BD Biosciences CD16 3G8 BD Biosciences 

CD45RO UCHL1 BD Biosciences CD19 HIB19 Biolegend 

CD127 HIL-7R-M21 BD Biosciences CD24 ML5 Biolegend 

CCR7 GO43H7 Biolegend CD27 LI28 Biolegend 

HLA-DR G46-6 BD Biosciences CD33 P67.6 Biolegend 

   CD38 HB7 Biolegend 

   IgD IA6.2 Biolegend 

 

Supplementary Table 4 List of antibodies used in T cell panel and B cell-monocyte panel for 

analyses of immune cell populations by flow cytometry. Antibodies were purchased from BD 

Biosciences and Biolegend as indicated.  

 

 

Channel Target CLONE Company Code Custom Conjugation 

142Nd SMA 1A4 Fluidigm 3141017D No 

144Nd CD14 EPR3653 Fluidigm 3144025D No 

149Sm CD11b EPR1344 Fluidigm 3149028D No 

150Nd CD15 W6D3 Fluidigm 3149026D No 

151Eu IgD IgD26 NovusBio NBP2-50437 Yes 

153Eu CD24 ALB9 abcam ab31622 Yes 
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154Sm CD11c EP1347Y abcam ab216655 Yes 

160Gd CD68 KP1 Fluidigm 3159035D No 

164Dy ARGINASE-1 D4E3M Fluidigm 3164027D No 

165Ho CD45RA HI100 BioLegend 304102 Yes 

166Er CD74 LN2 Fluidigm 3166025D No 

175Lu CD25 EPR6452 Fluidigm 3175036D No 

141Pr CD38 EPR4106 Fluidigm 3141018D No 

143Nd VIMENTIN RV202 Fluidigm 3143029D No 

145Nd CD33 POLY Fluidigm 3145017D No 

146Nd CD16 EPR16784 Fluidigm 3146020D No 

148Nd Pan-Keratin C11 Fluidigm 3148020D No 

152Sm CD45 CD45-2B11 Fluidigm 3152016D No 

155Gd FOXP3 236A/E7 Fluidigm 3155016D No 

156Gd CD4 EPR6855 Fluidigm 3156033D No 

158Gd E-CAD 24 E10 Fluidigm 3158029D No 

161Dy CD20 H1 Fluidigm 3161029D No 

162Dy CD8a D8A8Y Fluidigm 3162035D No 

168Er CD127 EPR2955(2) Fluidigm 3168026D No 

169Tm COLLAGEN-I POLY Fluidigm 3169023D No 

170Er CD3 POLY Fluidigm 3170019D No 

171Yb CD27 EPR8569 Fluidigm 3171024D No 

173Yb CD45RO UCHL1 Fluidigm 3173016D No 

 

Supplementary Table 5 List of antibodies used in mass cytometry (CyToF) analyses for definition of 

immune cell subpopulations in tissue.  
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Supplementary Table 6 List of populations in imaging mass cytometry of tissue and corresponding 

signature. ILC = Innate Lymphoid Cells, T-reg = Regulatory T cells, SMA = Smooth Muscle Actin, 

MO-MDSC = Monocytic Myeloid Derived Suppressor Cells, G-MDSC = Granulocytic Myeloid 

Derived Suppressor Cells   

 

 

 

 

 

 

 

 

 

 

 

 

Pixel-level Cell-level Signature Populations

A 0 e-Cadherin+/ Pan-Keratinin+/-/ Vimentin- Epithelium/ tumor

B 26 CD11bint/ CD33neg/ CD14int/ CD15neg/ CD68hi/CD11cint/ CD74hi Macrophages CD74hi

37 CD11bint/ CD33pos/ CD14hi/ CD15neg/ CD68int/CD11cint/ CD74int CD33+ CD14+ Monocytes

48 CD11bint/ CD33neg/ CD14hi/ CD15neg/ CD68hi/CD11cint/ CD74int Mono/ Macro

60 CD11bint/ CD33pos/ CD14hi/ CD15neg/ CD68neg/CD11cneg/ CD74int MO-MDSC

61 CD11bint/ CD33neg/ CD14int/ CD15neg/ CD68neg/CD11cneg/ CD74int ILC-1

64 CD11bhi/ CD33neg/ CD14int/ CD15hi/ CD68int/CD11cneg/ CD74neg G-MDSC

9 CD11bint/ CD33pos/ CD14int/ CD15neg/ CD68neg/CD11cneg/ CD74neg Monocyte

0 --- Myeloid

C 0 SMA+ Fibroblast

D 33 CD3hi/ CD8hi/ CD27neg/ CD45RAneg/ CD45ROint/ CD127neg CD8+ Effector

41 CD3hi/ CD8hi/ CD27int/ CD45RAhi/ CD45ROint CD8+ Central memory

42 CD3hi/ CD8hi/ CD27neg/ CD45RAneg/ CD45ROhi CD8+ Effector memory

0 --- CD8+ T-Cells

E 28 CD3low/ CD4hi/ CD27neg/ CD45RAneg/ CD45ROint/ foxP3neg/ CD25neg/ CD127int/ CD74hi CD4+ Effector memory

34 CD3hi/ CD4hi/ CD27neg/ CD45RAneg/ CD45ROhi/ foxP3neg/ CD25neg/ CD127int/ CD74int CD4+ Effector memory

49 CD3hi/ CD4hi/ CD27neg/ CD45RAneg/ CD45ROint/ foxP3neg/ CD25neg/ CD127low/ CD74int CD4+ Central memory

50 CD3hi/ CD4hi/ CD27int/ CD45RAneg/ CD45ROint/ foxP3int/ CD25low/ CD127low/ CD74int CD4+ activated 

51 CD3hi/ CD4hi/ CD27hi/ CD45RAhi/ CD45ROint/ foxP3neg/ CD25low/ CD127int/ CD74int CD4+ Naïve

57 CD3hi/ CD4hi/ CD27int/ CD45RAneg/ CD45ROint/ foxP3hi/ CD25int/ CD127low/ CD74int T-reg CD45RO+

58 CD3hi/ CD4hi/ CD27int/ CD45RAint/ CD45ROint/ foxP3neg/ CD25low/ CD127lint/ CD74int CD4+ Effector

0 --- CD4+ T-Cells

F 59 CD3neg/ CD20hi B-Cell

0 --- B-Cell
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Supplementary Figure 3 Gating strategy for further characterisation of CD33+CD14+ 

monocytic population using new patient cohort CD14+CD16lowCD33+CD11b monocytes also 

express high levels of HLADR and CD11c.  

 

Supplementary Figure 4 Risk score signatures for use with raw covariate values, with missing data 

imputed with the study mean from Supplementary Table 1. Use these equations to calculate the risk 

score for each patient. 

Baseline Risk Score 

S=(-0.278426819992)*MDSC.of.CD33..c1 

+ (-0.060298841476)*B.cell.DN.c1 

+ (0.053313459288)*Age 

- (1.142256112742) 

Combined Risk Score 

S=(1.615133865474)*Site.Hypopharynx 

+ (-0.224319089905)*MDSC.of.CD33..c1 

+ (-0.057227235933)*CD4.Memory.Tregs.c1 

+ (0.561268824195)*T.cell.CD3.lfc 

+ (1.290959733907)*CD8.Cent.Mem.lfc 

+ (-1.498015339199)*CD8.Effect.Mem.lfc 

- (-3.790127113280) 
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