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ABSTRACT 

Background: Early prediction of disease severity in COVID-19 patients is essential. Chest 

X-ray (CXR) is a faster, widely available, and less expensive imaging modality that may be 

useful in predicting mortality in COVID-19 patients. Artificial Intelligence (AI) may help 

expedite CXR reading times, and improve mortality prediction. We sought to develop and 

assess an artificial intelligence system that used chest X-rays and clinical parameters to 

predict mortality in COVID-19 patients. 

Methods: A retrospective study was conducted in Ruby Hall Clinic, Pune, India. The study 

included patients who had a positive real-time reverse transcriptase-polymerase chain 

reaction (RT-PCR) test for COVID-19 and at least one available chest X-ray at the time of 

their initial presentation or admission. Features from CXR images and clinical parameters 

were used to train the Random Forest model. 

Results: Clinical data from a total of 201 patients was assessed retrospectively. The average 

age of the cohort was 51.4±14.8 years, with 29.4% of the patients being over the age of 60. 

The model, which used CXRs and clinical parameters as inputs, had a sensitivity of 0.83 

[95% CI: 0.7, 0.95] and a specificity of 0.7 [95% CI: 0.64, 0.77]. The area under the curve 

(AUC) on receiver operating characteristics (ROC) was increased from 0.74 [95% CI: 0.67, 
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0.8] to 0.79 [95% CI: 0.72, 0.85] when the model included features of CXRs in addition to 

clinical parameters.  

Conclusion: An Artificial Intelligence (AI) model based on CXRs and clinical parameters 

demonstrated high sensitivity and can be used as a rapid and reliable tool for COVID-19 

mortality prediction.  

 

INTRODUCTION 

The novel human Coronavirus disease 2019 (COVID-19) was first reported in Wuhan, Hubei 

province of China on December 31, 2019, and has eventually spread worldwide (1). As of 14 

September 2021, more than 224 million confirmed cases of COVID-19 had been reported 

worldwide (2). India is one of the worst affected countries, with over 33 million positive 

cases and more than 4.41 lakh deaths reported till the first week of September 2021 (3). There 

has been an extraordinary global health response in an effort to reduce transmission and 

mortality due to COVID-19 (4). In order to optimize hospital resources, health-care providers 

must efficiently triage patients based on the severity of COVID-19 infection. An early 

prognostication of disease severity can facilitate timely allocation of resources to patients 

who are critically ill or are likely to advance to a critical stage and require intensive care. 

Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) is considered the gold 

standard for COVID-19 diagnosis. However, the high false negative rate and long turnaround 

time limit its effectiveness, allowing the infection to spread within communities (5). 

Additionally, the limited testing infrastructure for RT-PCR and long turnaround time are 

major concerns in confirming the COVID-19 diagnosis in early stages in India. 

Medical imaging is one of the most feasible methods for diagnosing and predicting the 

severity of COVID-19. Chest Computed Tomography (CT) is routinely used for early 

diagnosis and prognosis of COVID-19 in patients (6-7). Although CT has high sensitivity, its 

utility is constrained due to limited availability at primary care settings, high patient volumes, 

portability and the difficulty of transporting oxygen-dependent critically ill COVID-19 

patients. On the contrary, chest X-ray has relatively better availability, low cost, and 

portability, making it a potential first-line triage tool in resource poor settings (8). Chest X-

rays are being utilized in the context of COVID-19 to determine the likelihood of hospital 

admission, duration of hospital treatment, and risk of critical outcomes (9-11).  
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During the current COVID-19 pandemic, there was a sudden surge in demand for diagnostic 

tools, exposing the lacunae in diagnostic infrastructure and reporting methods. There have 

also been instances of discrepancies in radiologists’ interpretations and diagnostic errors (12). 

Deep learning, a popular research area of Artificial Intelligence (AI), may help accelerate 

CXR reading times, making it an excellent candidate in the clinical delivery of patient care. 

Utilizing artificial intelligence, Chest X-rays can strengthen clinical data in predicting the 

severity of COVID-19 in patients (13-14). 

A recent study by Murphy et al. reported that an AI system could detect COVID-19 

pneumonia on CXRs with the same accuracy as six independent radiologists (15). However, 

the role of AI as a prognostic tool using CXRs in COVID-19 patients has yet to be explored 

in detail. Only a few studies have integrated artificial intelligence into chest X-ray analysis to 

predict progression risk, demonstrating the advantage of chest X-rays over the clinical data-

only prediction models (16-17). 

Herein, we aimed to evaluate the association between CXR findings and clinical outcomes, as 

well as the use of an AI system as an early prognostic tool in detecting COVID-19. The study 

intends to introduce an AI based prognosis model that takes an X-Ray image and other 

clinical data as input and predicts the outcome to categorize the patient as high risk (death) or 

low-risk (discharge). This is significant because the outcome of COVID-19 is heavily 

influenced by patient demographics, as well as some key clinical factors. 

 

MATERIALS AND METHODS 

Clinical data 

The study was conducted at Ruby Hall clinic, a tertiary care centre in Pune, Maharashtra, 

India. The data used for AI modeling included radiological findings on Chest X-rays (CXRs), 

and clinical findings and observations such as symptoms and comorbidities. The details of all 

the clinical and radiological parameters of the patients diagnosed with COVID-19 along with 

the patients’ information have been provided in Supplementary Table 1. Out of all the 

different parameters shown in Supplementary table 1, only 10 significant parameters were 

used to build an AI model. The study was approved by the institutional ethics committee of 

the hospital and the patients’ identities were concealed throughout all the steps of data 

handling. 
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Participants 

The study was conducted at Ruby Hall Clinic, Pune, and no filters were used based on the 

demographic/geospatial or contact tracing information of the patient. In this retrospective 

investigation, only patients with a positive RT-PCR report and at least one X-ray imaging 

post-admission were included. The study did not include the patients’ past and current 

hospital treatment procedures. 

AI Model training 

Random Forest model was trained on the selected clinical and demographic parameters. 

Random forests are learning methods for classification tasks that operate by constructing a 

group of decision trees at training time, which helps in decision making. The end-to-end 

process involves pre-processing the data that involves converting raw data to data suitable for 

the machine learning model. For this study, the data was cleaned (details in the data pre-

processing section) and the clinical parameters were reduced to the significant ones. Hyper-

parameter grid search was used for optimization to find the right parameters to get the best 

model performance. Hyper-parameters are the parameters that are not directly learnt by the 

algorithm and are tuned manually. If an optimal combination of hyper-parameters is set for 

the model, it optimizes better for specific metrics. Grid search optimization essentially 

provides a range of hyper-parameters to the model, which then attempts to find the optimal 

set by cross-validating on the entire dataset by attempting all possible combinations in 

different iterations of the algorithm. The threshold of 0.4 was used to classify the patient as 

being at high risk of mortality using the optimization algorithm and cross-validation on the 

entire dataset.  

Data pre-processing 

This involves two steps: data cleaning and dimensionality reduction. Data was anonymized 

for any of the patient's personal or demographic details, apart from the patient’s age and 

gender, as well as the date of the scan that were used for modeling. Entries for patients with 

missing or null values were removed. Due to skewness and the sensitivity of medical data, 

statistical techniques were not applied to fill up the missing entries. After removing the 

entries, separate features for symptoms were created, and manually pre-processed for human 

errors. Every symptom was treated as a separate parameter. All the binary entries for 

presence/absence of symptoms were replaced with boolean values (0/1). The co-morbidity 

column was also converted to boolean values, which represent their presence or absence. The 
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absolute difference between the date of onset of symptoms and the scan date was calculated 

and added as a feature. Clinically, if the patient has COVID-19 pneumonia in the lungs, it is 

likely to worsen if not treated promptly. Hence, the number of days between the X-ray and 

the onset of symptoms would presumably be useful in determining the outcome.  

We further added two features from the X-ray COVID-19 detection model: probability of 

prediction and area of the predicted mask with respect to the image size. The probability of 

prediction indicates the confidence with which the model has predicted COVID-19 in the X-

rays. The area of the mask showed the severity of the COVID-19 pneumonia in the lungs. 

Both of these features were normalized to values in the range [0,100], where 0 = no lung 

involvement, and 100 = severe lung involvement. To avoid any discrepancies, we removed 

the patients with "admitted" as their outcome and kept a boolean output, where discharge was 

assigned 0 and death was assigned 1. The final data used for model building was that of 201 

patients, with the prevalence of death being 8.9%. The number of parameters was reduced 

from 66 to 32 features using the above filtering and pre-processing criteria. The parameters 

were then verified for accuracy before training the model. 

Random Forest Model 

We trained the Random Forest model on the dataset. Hyper-parameter grid search 

optimization was used on the whole set to finalize the algorithm's hyper-parameters. The 

algorithm was trained with Gini as the entropy, with a total of 100 estimators and a maximum 

depth of 2. Class weights were used to balance and penalize the classes based on the data 

skewness. We performed four-fold cross-validation on the entire set before calculating the 

aggregated results. 

The flowchart depicting the prediction of COVID-19 associated mortality by the model is 

represented in Figure 1. 
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Figure 1: Flowchart depicting the process of severity prediction by the AI model. 

 

Statistical analysis 

McNemar’s test was used to compute the p-value for each demographic feature between 

patient subgroups. McNemar’s test was also used to calculate the p value between survivors 

and non-survivors for each radiographic finding on the CXRs. p value < 0.05 was considered 

statistically significant. The 95% Confidence Interval (CI) was calculated using the Empirical 

Bootstrapping method. To assess the performance of the AI model, a receiver operating 

characteristic (ROC) curve was generated. The area under the ROC curve with 95% CI was 

calculated.  

 

 

RESULTS AND OBSERVATIONS 

Clinical data from 201 patients was analyzed retrospectively. There was a male 

preponderance (74.1% males vs. 25.9% females) among the patients, but there was no 

significant difference in the mortality rate between the two genders. The average age of the 

cohort was observed to be 51.4 ± 14.8 years, with 29.4 % of the patients being over the age of 

60. There was a highly significant difference in mortality proportion (78.8% vs. 22.2%) 

between age groups > 60 and ≤60 years, respectively (p<0.0001). The vast majority of 

patients (60.2%) had associated comorbidities, and the proportion of cases with comorbidities 

in the mortality group was significantly higher (88.9% vs. 11.1%) than their non-comorbid 
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counterparts (p=0.01). The demographic characteristics of the participants along with the 

clinical outcome are provided in Table 1. 

 

Table 1: Demographic characteristics of the study participants. 

Demographic 

Characteristics 
Subgroups Parameters 

Outcome 

Total p value Survivors 

(N=183) 

Deceased 

(N=18) 

Gender 

 Females 
Number 46 6 52 

0.414 
% 25.1% 33.3% 25.9% 

Males 
Number 137 12 149 

% 74.9% 66.7% 74.1% 

Age groups 

≤60 years 
Number 138 4 142 

<0.0001 
% 75.4% 22.2% 70.6% 

> 60 years 
Number 45 14 59 

% 24.6% 77.8% 29.4% 

Comorbidity 

Absent 
Number 78 2 80 

0.01 
% 42.6% 11.1% 39.8% 

present 
Number 105 16 121 

% 57.4% 88.9% 60.2% 

 

 

201 CXRs were acquired in the frontal position. According to the radiographic findings, 

septal thickening was observed in 81.5% of the CXRs, and consolidation was found in 61.7% 

of CXRs. Vascular thickening was present in 38% CXRs, whereas pleural effusion was found 

in only 5.5% CXRs. While the presence of these radiographic features was comparable 

between survivors and non-survivors, the proportion of pleural effusion in non-survivors was 

significantly higher than in survivors (27.8% versus 3.3%). Different radiographic findings 

among survivors and non-survivors are listed in Table 2. 
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Table 2: Comparison of radiographic findings among survivors and non-survivors. 

Radiographic Finding Parameter 

Outcome 

Total p value 

Survivors 

(N=183) 

Deceased 

(N=18) 

Pleural Effusion Absent Number 177 13 190 

0.001 
% 96.7% 72.2% 94.5% 

Present Number 6 5 11 

% 3.3% 27.8% 5.5% 

Vascular 

thickening 

Absent Number 114 10 124 

0.614 
% 62.6% 55.6% 62.0% 

Present Number 68 8 76 

% 37.4% 44.4% 38.0% 

Septal thickening Absent Number 33 4 37 

0.751 
% 18.1% 22.2% 18.5% 

Present Number 149 14 163 

% 81.9% 77.8% 81.5% 

Consolidation Absent Number 72 5 77 

0.242 
% 39.3% 27.8% 38.3% 

Present Number 111 13 124 

% 60.7% 72.2% 61.7% 

 

 

 

The clinical data-based severity prediction of the model had an F1 score of 0.26 [95% CI: 

0.18, 0.35] and a kappa score of 0.17 [95% CI: 0.1, 0.23]. The algorithm produced a 

sensitivity of 0.83 [95% CI: 0.7, 0.95] and a specificity of 0.61 [95% CI: 0.56, 0.66]. When 

CXRs were also included along with the clinical parameters, the specificity was increased to 

0.7 [95% CI: 0.64, 0.77] from 0.61 [95% CI: 0.56, 0.66]. The F1 score and the kappa score 

were increased from 0.26 [95% CI: 0.18, 0.35] and 0.17 [95% CI: 0.1, 0.23] to 0.34 [0.21, 

0.47] and 0.24 [0.12, 0.35], respectively. The specificity (discharge-recall) was also increased 

from 0.61 [0.56, 0.66] to 0.7 [0.64, 0.77]. The crucial features included the age, probability, 
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and area of infection predicted by the X-ray AI model. The performance of the AI model is 

depicted in Table 3. 

 

Table 3: Performance of the AI algorithm with and without X-rays. 

Metric 

Values for AI with X-rays 

[95% CI] 

Values for AI without X-rays 

[95% CI] 

Sensitivity (Death) 0.83 [0.7, 0.95] 0.83 [0.7, 0.95] 

Precision (Death) 0.22 [0.12, 0.32] 0.15 [0.1, 0.22] 

Specificity (Discharge-

Recall) 0.7 [0.64, 0.77] 0.61 [0.56, 0.66] 

F1-score(Death) 0.34 [0.21, 0.47] 0.26 [0.18,0.35] 

Kappa Score 0.24 [0.12, 0.35] 0.17 [0.1,0.23] 

 

 

 

Incorporation of CXRs in addition to the clinical parameters augmented the data in predicting 

mortality in COVID-19 patients. The receiver operating characteristic (ROC) curve that 

illustrates mortality prediction had an area under the curve (AUC) of 0.74 [0.67, 0.80], which 

was increased to 0.80 [0.72, 0.85] when the model also included features of CXRs (Figure 2). 
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Figure 2: Receiver operating characteristic (ROC) plots for COVID-19 mortality prediction 

with and without CXRs as a parameter. 

 

The Random forest model was trained as described in materials and methods. Each variable 

was given an importance rank according to the tree statistics of the training set. The age of 

the patient was ranked among the top predictors of mortality in the cohort. This was followed 

by the AI prediction of the CXRs and co-morbidities amongst the patients. Different 

presenting symptoms within the cohort, such as dyspnea, vomiting, cough, and diarrhoea, 

were given boolean values, i.e., 0 for the absence and 1 for the presence of a particular 

symptom. The top 10 independent clinical variables associated with mortality are listed in 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.09.22.21263956doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.22.21263956


11 
 

Table 4. These clinical parameters describe the feature importance or dominance necessary to 

understand the decision-making process. A graphical representation of these features along 

with their percentage of importance is shown in Supplementary Figure 1. 

 

Table 4: Features used in AI decision-making and their description 

Importance 

Rank 

Feature Name Feature Description 

1 Age Age of the Patient 

2 X-ray AI Prediction- 

Confidence 

Probability of prediction [0, 100] 

3 X-ray AI Prediction- 

Area of the mask  

Percentage area of the image covered by the 

predicted mask [0, 100] 

4 Comorbidities Includes Hypertension, Diabetes, 

Hypothyroidism, Vertigo, and Asthma amongst 

others. The column is Boolean: if any of these 

comorbidities exist, it's marked as 1 otherwise 0 

5 Days (Date of Scan- Date 

of Symptoms) 

Absolute Difference of the date of CXR and the 

date of onset of symptoms 

6 Clinical condition of 

patient at the time of 

admission (stable/serious) 

Condition of the patient at time of admission. 

The column is Boolean: if patient was stable, it's 

marked as 0 otherwise 1 

7 Dyspnea Presenting Symptom - Marked 0 for absence and 

1 for presence 

8 Vomiting Presenting Symptom - Marked 0 for absence and 

1 for presence 

9 Cough Presenting Symptom - Marked 0 for absence and 

1 for presence 

10 Diarrhoea Presenting Symptom - Marked 0 for absence and 

1 for presence 
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DISCUSSION 

The ongoing COVID-19 catastrophe has created an unprecedented burden on the Indian 

healthcare infrastructure (18). It is one of a kind situation that necessitates rapid detection of 

disease severity in order to reduce mortality rates through early interventions (19-20).  Chest 

X-rays are a useful imaging modality that has helped with diagnosis and prognosis of 

COVID-19. The value of including chest X-rays to clinical data for disease prognosis, on the 

other hand, needs to be thoroughly investigated. An artificial intelligence model based on the 

initial chest X-rays and clinical data of COVID-19 patients presented to a tertiary care 

hospital was used in this study and was shown to significantly improve prognostic ability. 

Additionally, the model based on deep-learning features extracted from chest X-rays, was 

found to be an effective tool for improving the utility of radiologist-interpreted X-rays in 

COVID-19 diagnosis and severity prediction. 

We observed that the radiographic features in our cohort were consistent with previous 

reports (9, 21-22). The distribution of lung opacities, consolidation (61.7%) and septal 

thickening were typically bilateral and very few cases of pleural effusion (5.5%) were 

observed. The findings are consistent with previous studies that have validated the use of 

initial CXR severity scores as independent outcome predictors (7–9). The study has reiterated 

the finding that COVID-19 severity, assessed on the CXRs at primary presentation, is a 

valuable prognostic factor that should be considered by medical practitioners when making 

triage decisions. Our AI model had a sensitivity of 83% [95% CI: 0.7, 0.95] and specificity of 

70% [95% CI: 0.64, 0.77] that was comparable to the AI model described by Mushtaque et 

al. (23), which had sensitivity of 79% and specificity of 58.8%. A recent study by Jiao et al. 

reported that when chest X-rays were added to clinical data for severity prediction, the area 

under the receiver operating characteristic (AUC-ROC) curve increased from 0.821 [95% CI: 

0.796, 0.828] to 0·846 [95% CI: 0.815, 0.852] on internal testing and 0·731 [95% CI: 0.712, 

0.738] to 0·792 [95% CI: 0.780, 0.803] on external testing (13). Similarly, in our study, it 

was observed that the area under the receiver operating characteristic (AUC-ROC) curve for 

mortality prediction increased from 0.74 [95% CI: 0.67, 0.8] to 0.79 [95% CI: 0.72, 0.85] 

when the model included features of X-rays in addition to clinical features. Additionally, the 

F1 score was increased from 0.26 [95% CI: 0.18, 0.35] to 0.34 [95% CI: 0.21, 0.47] when AI-

calculated X-ray parameters were added.  

According to an Ernst & Young Intelligent Privacy Automation (EY-IPA) study, the 

domestic telemedicine market is expected to reach USD 5.5 billion by 2025, and the Indian 
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healthcare industry will need to transition from traditional in-person doctor-patient interaction 

to digitized remote consultations (24). AI-enabled telehealth contributes to quality 

improvement and enhancement of existing processes, as well as the implementation of new 

models of care (25-26), which are desperately needed in the overburdened Indian healthcare 

system. 

This study established a substantial role of AI in diagnostic radiology, and further 

implementation of AI in clinical imaging is poised to transform the practice of radiology. 

 

CONCLUSION 

A relatively high sensitivity of our model makes it a rapid and reliable tool for COVID-19 

mortality prediction, particularly in resource-constrained environments. Such AI models have 

the potential to be used as an initial screening tool for triaging COVID-19 patients, as well as 

to increase vigilance for severe cases. The usefulness of the model was successfully 

demonstrated in a tertiary care centre in India for prediction of COVID-19 mortality and can 

be easily adopted by imaging experts and clinicians. 

However, since the study is retrospective, it may result in an observer's bias. Because this 

was a single-centre study conducted in one of the referral tertiary care centres in India, it’s 

likely that only moderate to severe cases were included. Further studies with multicentric data 

may reduce the selection bias and improve the sensitivity of the model with greater precision. 
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