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Abstract 

Large medical centers located in urban areas such as Los Angeles care for a diverse patient population and 

offer the potential to study the interplay between genomic ancestry and social determinants of health within 

a single medical system. Here, we introduce the UCLA ATLAS Community Health Initiative – a biobank 

of genomic data linked with de-identified electronic health records (EHRs) of UCLA Health patients. We 

leverage the unique genomic diversity of the patient population in ATLAS to explore the interplay between 

self-reported race/ethnicity and genetic ancestry within a disease context using phenotypes extracted from 

the EHR. First, we identify an extensive amount of continental and subcontinental genomic diversity within 

the ATLAS data that is consistent with the global diversity of Los Angeles; this includes clusters of ATLAS 

individuals corresponding to individuals with Korean, Japanese, Filipino, and Middle Eastern genomic 

ancestries. Most importantly, we find that common diseases and traits stratify across genomic ancestry 

clusters, thus suggesting their utility in understanding disease biology across diverse individuals. Next, we 

showcase the power of genetic data linked with EHR to perform ancestry-specific genome and phenome-

wide scans to identify genetic factors for a variety of EHR-derived phenotypes (phecodes). For example, 

we find ancestry-specific associations for liver disease, and link the genetic variants with neurological and 

neoplastic phenotypes primarily within individuals of admixed ancestries. Overall, our results underscore 

the utility of studying the genomes of diverse individuals through biobank-scale genotyping efforts linked 

with EHR-based phenotyping. 

Introduction 

Linking electronic health records (EHRs) to patient genomic data within biobanks in a de-identified fashion 

has the potential to significantly advance genomic discoveries and precision medicine efforts (e.g., 

population screening, identifying drug targets)[1]–[4]. However, the underrepresentation of minoritized 

populations in biomedical research [5]–[11]raises concerns that advancements in precision medicine may 

widen disparities in access to high-quality health care [12]–[14]. For example, European-ancestry 

individuals constitute approximately 16% of the global population, yet account for almost 80% of all 

genome-wide association study (GWAS) participants [13]. As a direct result of this imbalance, existing 

methods to predict disease risk from genetics (e.g., polygenic risk scores) are vastly inaccurate in 

individuals of non-European ancestry [13], [15] thus forming a barrier for advancing genomic medicine to 

benefit patients of all ancestries.  

The UCLA Health medical system is located in Los Angeles, one of the most ethnically diverse cities in 

the world. There is no ethnic majority: 48.5% of Los Angeles residents self-identify as Hispanic or Latino, 
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11.6% as Asian, and 8.9% as Black or African American; additionally, 37% of Los Angeles residents are 

neither U.S. nationals, nor U.S. citizens at birth [16]. Therefore, the UCLA Health patient population and 

the availability of digital health data captured in EHRs from a single medical system present a unique 

opportunity to increase the inclusion of underrepresented minorities in biomedical research. We introduce 

the UCLA ATLAS Community Health Initiative (or ATLAS for brevity), a biobank embedded within the 

UCLA Health medical system composed of de-identified, EHR-linked genomic data from a diverse patient 

population. The current initiative aims to collect data from over 150,000 individuals; currently this consists 

of 26,414 individuals genotyped at 673,148 variants genome-wide each using the Illumina global screening 

array (GSA) [17]. The EHR contains a de-identified extract of medical records (billing codes, laboratory 

values, etc.) as well as demographic information such as self-reported race and ethnicity information. It is 

important to note that self-reported race and ethnicity (SIRE) represent social constructs that capture shared 

values, cultural norms, and behaviors of subgroups [18] that are distinct concepts from genetic ancestry, 

which refers to the history of one’s genome with little to no relation to cultural aspects of identify. This 

difference is even more relevant for individuals self-describing as multi-racial (and/or admixed) where 

genetic ancestry bears little correlation to SIRE [19], [20]. Understanding the interplay of genetic factors 

(such as genetic ancestry) with social determinants of health (as inferred from self-reports) is still mired in 

the confounding overlaps between race, socioeconomic status, and disease, but serves as a critical step in 

mapping and predicting disease risk across individuals of all ancestries, thus enabling equitable genomic 

medicine to individuals of all ancestries.  

In this work, we leverage the unique genomic diversity of the patient population in ATLAS to explore the 

interplay between self-reported race/ethnicity and genetic ancestry within a disease context using 

phenotypes extracted from the EHR within a single medical system. We cluster individuals by genetic 

ancestry within the EHR-linked biobank, systematically construct phenotypes from EHR, and compute 

disease associations using multi-ethnic pipelines for both genome-wide and phenome-wide association 

studies. We find that genetic ancestry and self-reported ancestry yield distinct subpopulations thus 

emphasizing the distinction between genetic ancestry and self-reported race and ethnicities. We leverage 

genetic and self-reported data to find extensive variation of sub-continental ancestry within ATLAS across 

European, Asian, and American ancestries. For example, we find clusters of individuals with recent 

ancestry from Filipino, Japanese, and Korean ancestries. Such sub-continental clusters also stratify 

individuals according to disease groups thus emphasizing their utility in biomedical research. We perform 

genome-wide and phenome-wide association studies to recapitulate known genomic risk regions; as an 

example, focusing on chronic nonalcoholic liver disease, we recapitulate the  22q13.31 locus and perform 

a phenome-wide association study across 1,330 EHR-derived phenotypes at the lead SNP, rs2294915, 
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across multiple populations. We describe genetic associations for liver-related phenotypes in multiple 

ancestry groups as well as associations with neurological and neoplastic phenotypes that are associated 

exclusively in the Admixed American group. These results underscore how the utility of large-scale genetic 

analyses and deep phenotyping in diverse populations have substantial medical relevance for population 

health.  

Results 

ATLAS includes individuals of diverse continental ancestries 

The UCLA Health patient population is diverse, with 63.3% self-reporting their race as White or Caucasian, 

6.7% as Black or African American, 10.5% as Asian, 0.6% as American Indian or Alaska Native, 0.3% as 

Pacific Islander, and 18.6% identify as one of the additional races listed in detail in the Supplementary 

Materials (Figure 1A, Supplementary Table S1, S3). 15.8% of individuals self-report their ethnicity as 

Hispanic or Latino; the remaining individuals self-report as non-Hispanic/Latino (Figure 1A, 

Supplementary Table S2, S3). We investigated genetically inferred ancestry through principal component 

analysis (PCA)[21], [22], to identify population clusters according to the five continental 

“superpopulations” defined in the 1000 Genomes reference panel [23] (see Methods; Figure 1B, 2A; 

Supplementary Figure S1, S2; Supplementary Table S4). Although we broadly find that SIRE is concordant 

with the inferred continental genetic ancestry, we find marked differences between genetically defined 

ancestry groups and SIRE, further emphasizing that genetic ancestry is a distinct concept from self-reported 

race and ethnicity. For example, we find >10% of individuals within the European genetic ancestry group 

do not identify as Non-Hispanic/Latino – White/Caucasian (NH-WC) SIRE; 10% of individuals within the 

African genetic ancestry group do not self-report as Non-Hispanic/Latino – Black/African American (NH-

AfAm), and >25% of the Admixed American genetic ancestry group do not identify as Hispanic/Latino – 

Other Race (HL-Other) or Hispanic/Latino – White/Caucasian (HL-WC) (Supplementary Table S5).  

Further making the distinction between genetic ancestry and SIRE, we reveal extensive genetic 

heterogeneity both between and within SIREs within orthogonal spectra from PCA (Figure 2A and 2B). 

For example, most individuals who self-report as NH-AfAm lie along a cline between the African and 

European genetic ancestry clusters. We also observe that the cluster of individuals with inferred African 

ancestry from PCA form a considerably smaller cluster than the group of individuals in the NH-AfAm SIRE 

in ATLAS. Within ATLAS, we find that 1,426 individuals self-identify as NH-AfAm, but only 1,233 

individuals are grouped into the African genetic ancestry cluster. This difference is likely because many 

individuals in ATLAS identify as African American, which suggests genetic admixture between African 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.09.22.21263987doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.22.21263987
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

and European ancestry in this group. Conversely, there are fewer individuals in the Non-Hispanic/Latino – 

Asian (NH-Asian) SIRE (N=2,469) than those grouped into the East Asian and South Asian ancestry 

clusters (N= 2,611). A similar trend follows for the NH-WC SIRE (N= 14,328) and the European ancestry 

cluster (N= 14,800). The majority of individuals who are included in the genetic ancestry clusters, but not 

the corresponding SIREs, had either unknown SIRE information or reported their race as ‘Other Race’, 

demonstrating how genetic ancestry inference can be advantageous when self-reported information is not 

known or individuals’ race/ethnicity are not represented in patient questionnaires. However, 14% of 

individuals still have unclassifiable genetic ancestry (Supplementary Table S4) either because they are 

clustered into multiple ancestry groups or no ancestry group as all. The latter could be due to extensive 

admixture in their genomes or the absence of relevant ancestral groups in the chosen reference panels. 

Labeling individuals by self-reported preferred language, we observe trends that are consistent with both 

SIRE and continental genetic ancestry (Figure 2C). For example, out of all individuals who report Spanish 

as their primary language, 96.1% of these individuals were estimated to have Admixed American genetic 

ancestry. Additionally, 98.5% of individuals who report Japanese, Korean, Tagalog, Vietnamese, Mandarin 

Chinese, and Cantonese as their primary languages were inferred to have East Asian genetic ancestry. We 

also see clusters of individuals who speak Armenian, Arabic, and Farsi/Persian; we find that 26.2% of the 

individuals that speak these languages could not be classified into one of the five continental ancestry 

groups within 1000 Genomes. This discrepancy is likely because the 1000 Genomes reference panel does 

not contain samples from regions where these languages are primarily spoken. These findings showcase 

the limitation of current reference panels of genetic diversity and demonstrate the value of characterizing 

individuals using both genetic ancestry and self-reported information. 

Fine-scale subcontinental ancestry within ATLAS individuals  

Next, we inferred the ancestry of individuals within the ATLAS East Asian ancestry group (EAS) and 

identified 5 subcontinental genetic ancestry groups (Figure 3A, Supplementary Figure S3) [23]. First, we 

clustered individuals in ATLAS according to 3 different subgroups of Chinese ancestry (Han Chinese, 

Southern Han Chinese, and Dai Chinese). Additionally, when projecting individuals’ preferred language 

onto the PCs, two distinct clusters are delineated according to Chinese Mandarin and Chinese 

Cantonese/Toishanese (Supplementary Figure 5B). The Southern Han Chinese cluster of individuals highly 

correlates with individuals speaking Chinese Cantonese/Toishanese, where 91.7% of individuals who speak 

Chinese Cantonese/Toishanese are within this cluster. Conversely, only 8.3% of individuals who speak 

Chinese Mandarin are within the Southern Han Chinese cluster. Furthermore, the Han Chinese cluster 

correlates with Chinese Mandarin, although to a lesser extent, where 66.4% of individuals who speak 
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Chinese Mandarin fall within the Han Chinese ancestry cluster and 26.2% within the Southern Han Chinese 

cluster. Additionally, from Figure 3A, there are two notable clusters that do not match any of the East Asian 

subcontinental populations within 1000 Genomes. Projecting individuals’ self-identified race over the PCs 

shows that the majority of individuals in these two clusters identify as ‘Asian: Korean’ and ‘Asian: 

Filipino’ respectively (Supplementary Figure 5A). This pattern is similarly reflected by the self-identified 

preferred languages where many of these individuals speak Korean and Tagalog. This clustering not only 

characterizes the fine-scale genetic and ethnic diversity of ATLAS, but also emphasizes how the concepts 

of genetic ancestry and self-reported constructs, such as primary spoken language, can be combined to 

identify and label distinct genetic clusters that would not have been characterized based on a single criterion 

alone.  

Next, we identify clusters of individuals with subcontinental genetic ancestry of European descent, but due 

to limitations in reference panels, we were unable to describe the origins of the majority of the observed 

genetic variation within the ATLAS European continental ancestry cluster (Figure 3B).  Comparing self-

reported race and ethnicity information does not delineate any subgroups since most individuals are within 

the NH-WC SIRE (Supplementary Figure S6A). Instead, we overlay individuals’ self-reported preferred 

language over the projected PCs and observe clusters of individuals whose preferred languages are Arabic, 

Armenian, and Farsi/Persian; notably the primary populations that speak these languages are not present in 

the current 1000 Genomes reference panel (Supplementary Figure S6B). Although not definitive about 

ancestral origins, these results suggest that individuals in these clusters may have cultural ties and/or genetic 

origins relating to the Middle East. We also observe two distinct clusters of individuals who speak 

Farsi/Persian (labeled as ‘Farsi, Persian I’ and ‘Farsi, Persian II’), suggesting that although these groups 

may share cultural ties, the groups could have varying ancestral origins.  

We perform a similar analysis for the Admixed American cluster of individuals. We are able to cluster 

individuals according to Mexican, Peruvian, Columbian, and Puerto Rican ancestry, where 66.4% of 

individuals are within the Mexican ancestry cluster (Figure 3C, Supplementary Figure S4). Comparing self-

reported race/ethnicity and language did not reveal any additional subclusters for this population 

(Supplementary Figure S7A,B). However, shading the PCs by estimated genetic ancestry proportions (see 

Methods), we see a cline between European and Native American ancestries, demonstrating that although 

we cannot determine further clusters within our data, there is still substantial population substructure present 

(Supplementary Figure S7C,D). Corresponding analyses were also performed for the African ancestry 

group (Supplementary Figure S8), but clear subcontinental clusters could not be constructed. We omitted 

the subcontinental analysis for the South Asian ancestry group due to the small sample size.  
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IBD sharing reveals communities of recent shared ancestry within ATLAS 

A complementary method to principal components for inferring fine-scale ancestry is identical-by-descent 

(IBD) analysis [24]–[26]. Using pair-wise IBD estimates for all individuals in ATLAS and reference 

population information from the 1000 Genomes Project [23], Simons Genome Diversity Project [27], and 

Human Genome Diversity Project [28], we describe fine-scale populations based on total pairwise IBD 

(Figure 4; see Methods). Each subgroup is annotated according to a combination of genetic ancestry from 

reference populations as well as self-reported race, ethnicity, and language information. Many subgroups 

have similar characteristics to those defined from PCA-based clustering, such as the Filipino and Dai 

Chinese clusters. We can also characterize subgroups not previously identified through the previous PCA 

analysis. For example, PCA-based clustering was only able to distinguish clusters at the level of continental 

African ancestry, whereas IBD clustering identified West African, East African, and Ethiopian subgroups. 

In contrast, Japanese and Korean individuals form a single subgroup when estimated by the IBD clustering 

approach, whereas PCA-based clustering delineated these individuals into two separate groups. Note that 

both IBD and PCA-based clustering granularity is dependent on the clustering algorithm used and here we 

report at only a single level of resolution. For further discussion of PCA and IBD for fine-scale population 

analyses, see Belbin et al 2021[29]. Our results show that fine-scale population identification is specific to 

each genetic ancestry inference method, as well as how the combination of multiple methods can maximize 

the number of identified subgroups. 

Admixture describes genetic variation within self-reported race/ethnicity 

groups 

Many individuals do not fall within a single genetic ancestry cluster, but instead lie on the spectrum 

between multiple ancestry groups. We can characterize this variation through genetic admixture, the 

exchange of genetic information across two or more populations [30]. We estimate genetic ancestry 

proportions using k=4, 5,or 6 ancestral populations and visualize groups of individuals by SIRE (see 

Methods; Supplementary Figure S9). For the following analyses, we use k=4 ancestral populations where 

the clusters correspond to European, African, East Asian, and Native American ancestry. Among 

individuals in the HL-Other SIRE, the estimated average proportion of European ancestry is 49%, 6% 

African ancestry, and 44% Native American ancestry (Supplementary Table S6). We also observe that the 

HL-Other and HL-WC (White or Caucasian) SIREs have approximately the same admixture profile, where 

the proportion of European ancestry is 49% and 58% respectively, 6% and 5% African ancestry, and 44% 

and 36% Native American ancestry. However, there is also a large amount of variation within SIREs, where 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.09.22.21263987doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.22.21263987
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

for example, individuals who identify as Hispanic or Latino ethnicity are estimated to have European 

ancestry percentages ranging from nearly 0% to almost 100%.  

Genetic ancestry groups correlate with disease prevalence within ATLAS 

Understanding how disease prevalence varies across populations is integral to understanding how the 

interplay of genetic factors and social determinants of health contribute to disease risk. We investigate 1,330 

EHR-derived phenotypes (phecodes) [31] spanning a wide range of disease categories (see Methods) and 

identify 1,401 total significant phecode-ancestry associations (p < 3.8e-5) across the 5 continental ancestry 

groups after adjusting for age and sex (Supplementary Table S7). Overall, there are 659 phenotypes that 

show cross-ancestry differences, where a phenotype is significantly associated with a particular ancestry 

group compared to the rest of the population. From this set, the highest number of phecodes are from the 

circulatory (N=84), endocrine/metabolic (N=74), and digestive (N=80) system-related groups. Specifically, 

we recapitulate many known associations such as liver and intrahepatic bile duct cancer (p=6.97e-35) within 

the East Asian ancestry population [32]–[34], skin cancer (p=2.02e-162) in the European ancestry 

population [35], [36], hereditary hemolytic anemia (p=2.4e-22) [37] and primary open-angle glaucoma 

(POAG) (p=5.33e-12) [38], [39] within the African ancestry population, as well as both alcoholic liver 

damage (p=2.0e-47) and cirrhosis of liver without mention of alcohol (p=4.84e-70) [40]–[43] in the 

Admixed American population (Figure 5).  

Next, as an example, we analyze phecodes spanning different traits where we observe a significantly higher 

prevalence for at least one continental ancestry group per trait. For example, we observe that the prevalence 

of both schizophrenia (freq=0.02, SE=0.004) and sickle cell anemia (freq=0.03, SE=0.005) have the highest 

prevalence in the African ancestry group in ATLAS, which is consistent with previous findings [44], [45]. 

We also observe substantial disease risk heterogeneity across subgroups of the same continental ancestry. 

We compute the prevalence for the same set of diseases across subgroups within the East Asian ancestry 

group (Korean, Japanese, Filipino, Chinese, and Vietnamese) in ATLAS and compare this with the 

aggregated East Asian ancestry group. The estimated prevalence of type 2 diabetes from the East Asian 

ancestry group is 0.26 (SE=0.009). However, analysis of specific subgroups shows a significant increase in 

the prevalence of type 2 diabetes for individuals in the Japanese (freq=0.33, SE=0.03) and Filipino 

(freq=0.32, SE=0.02) subgroups compared to the Chinese subgroup (freq=0.21, SE=0.01). These results 

indicate that genetically grouping individuals across sub-continental ancestries yield meaningful 

interpretation of disease risk across groups of individuals. 

We also investigated disease prevalence within admixed individuals, where variation in genetic ancestry 

across individuals in the population allows for the correlation of disease risk with the proportion of genetic 
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ancestry from any given continental group. Within each SIRE group, we perform an association test 

between the proportions of inferred ancestry estimated from ADMIXTURE [46] and each phenotype (see 

Methods; Supplementary Table S8). After correcting for the number of tested phenotypes, we find 

numerous significant phenotype-ancestry associations: 113 associations within the HL-Other SIRE, 62 

within the NH-WC SIRE, and 48 within the NH-Asian SIRE. However, we do not find any significant 

associations within the NH-AfAm SIRE, which could be due to the smaller sample size. Across SIREs, 

both the top associated phenotype categories as well as the direction of the associations greatly vary. Out 

of the top 3 phenotype categories with the most associations in each SIRE group, only the 

endocrine/metabolic category is shared across all 3 tested SIREs (HL-Other, NH-WC, NH-Asian). Even 

within this category, looking at the statistics quantifying the association of the proportion of European 

ancestry with endocrine/metabolic phenotypes, there are exclusively 5 negative associations within the NH-

WC group, exclusively 16 negative associations within the HL-Other group, but 8 positive associations and 

no negative associations within the NH-Asian group. The other top phenotype categories for each SIRE are 

also unique, where the HL-Other SIRE’s top categories include digestive and respiratory phenotypes, the 

NH-WC SIRE’s top categories include neoplasms and dermatologic phenotypes, and the NH-Asian SIRE’s 

top categories includes mental disorders and infectious diseases. Specifically, we find that within the HL-

Other population, the overall proportion of European ancestry is significantly negatively associated 

(p=9.2e-14) with type 2 diabetes and the proportion of Native American ancestry is significantly positively 

associated (p=1.6e-13) (Figure 6A), which is consistent with previous studies [47], [48]; we additionally 

find a similar trend for ‘other chronic nonalcoholic liver disease’ (Figure 6B). These results suggest that 

not only are some disease statuses associated with SIRE and continental genetic ancestry, but the specific 

ancestry proportions may also correlate with disease risk.  

Genome and phenome-wide association scans identify known risk regions and 

elucidates correlated phenotypes  

EHR-linked biobanks also offer the opportunity of investigating genetic associations with traits across the 

genome. These efforts impose special challenges, such as adjusting for population stratification and cryptic 

relatedness in health systems that serve entire families as well as extracting phenotypes from EHR, namely 

due to inconsistencies in mapping diagnosis codes (ICD codes) to phenotypes and difficulties in defining 

appropriate controls for specific phenotypes. Here, we implemented the phecode system (v1.2) [31], [49] 

within a GWAS pipeline that accounts for population stratification (see Methods). As an example, we 

present results for phecode 571.5 ‘other chronic nonalcoholic liver disease’ (see Methods) across 15,439 

unrelated individuals of European (EUR) ancestry and 4,472 unrelated individuals of Admixed American 
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(AMR) ancestry (Figure 7). GWAS associations are well-calibrated for both populations (Supplementary 

Figure S10), with little evidence of test statistic inflation (AMR genomic inflation factor λGC = 1.01; EUR 

genomic inflation factor λGC = 1.02).  

In the EUR study, we find three SNPs that pass genome-wide significance (p < 5e-8) and 70 SNPs that 

reach significance in the AMR study (Supplementary Table S9). All genome-wide significant SNPs from 

both studies fall within the 22q13.31 locus, which contains the PNPLA3 gene. This gene has been 

extensively studied for its role in the risk of various liver diseases such as nonalcoholic fatty liver disease 

[50], [51]. The lead SNP from both analyses, rs2294915, is an intronic variant in the PNPLA3 gene and has 

MAF=0.45 in the AMR group but only MAF=0.24 in the EUR group. A nearby SNP, though not directly 

tested due to quality control filtering, is rs738409, a missense variant for PNPLA3 that has been well-

documented for its role in the susceptibility of several types of liver disease [52]. Using measurements of 

LD from the 1000 Genomes reference panel, we find that rs2294915 is in high LD with rs738409 in the 

AMR analysis (R2 =0.94) as well as in the EUR analysis, although to a slightly lesser extent (R2 =0.85) [53].  

Next, we leverage GWAS for all existing phecodes to investigate the association of the lead variant, 

rs2294915, across all 1,330 EHR-derived phenotypes (i.e. a phenome-wide association study: PheWAS). 

After adjusting for both genome-wide significance and the number of phenotypes (p < 3.8e-11), we find 

that only the liver-related phenotypes within the AMR study reach significance (Figure 8). Additionally, 

multiple neoplastic and neurological phenotypes, which are comorbidities with severe liver disease [50], 

[54]–[56], are nominally significant only in the AMR study after adjusting for the number of tested 

phenotypes (p < 3.8e-5). These findings suggest possible differential genetic architecture across these two 

populations, as well as variation even at the phenotype level, reflecting possible genetic or environmental 

modifiers of important comorbidities. 

Discussion  

In this work, we introduce the ATLAS Community Health Initiative, a biobank embedded within the UCLA 

Health medical system comprising of de-identified EHR-linked genomic data from a diverse patient 

population. The UCLA Health system serves Los Angeles County, leading to a study population of great 

demographic, genetic, and phenotypic diversity. We investigate ancestry both on the continental as well as 

the subcontinental population level and find that genetic ancestry and self-reported demographic 

information yield distinct subpopulations in the ATLAS biobank. We present a collection of results 

cataloguing the associations between genetic ancestry and EHR-derived phenotype where we find that 

disease status is not only associated with continental genetic ancestry but also associated with the specific 

admixture profile describing an individual. We use multi-ethnic pipelines to recapitulate known 
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associations for chronic nonalcoholic liver disease at the 22q13.31 locus and perform a phenome-wide 

association study at the lead SNP, where we find associations with neurological and neoplastic phenotypes 

exclusively in the Admixed American ancestry group. As the sample size increases, the ATLAS 

Community Health Initiative will enable rigorous genetic and epidemiological studies to further understand 

the role of genetic ancestry in disease etiology, with a specific aim to accelerate genomic medicine 

in diverse populations. Already, the ATLAS biobank accounted for 73.4% of the Admixed American 

samples utilized in the primary analysis from the COVID-19 Host Genetics Initiative [57].  

As the field moves forward with increased collaboration between the genetics and healthcare communities, 

it is of utmost importance to also be aware of potential pitfalls that may occur when translating research 

findings into actual clinical populations. Currently, many clinical protocols are deeply ingrained with racial 

bias, no matter how benign the original goal was intended[58]–[62]. Many of these flawed policies stemmed 

from erroneously linking race, a social rather than biological construct, with disease risk despite not 

presenting any biological justification. Although race and genetic ancestry are correlated [63], [64], our 

work shows that populations constructed from these two concepts are not analogous. We encourage 

protocol decisions that are rooted in actual biological phenomena, such as genetic markers, providing 

transparent, immutable criteria. For example, Benign Ethnic Neutropenia (BEN) is observed predominantly 

in African Americans, but specifically is strongly associated with the variant at rs2814778 [65], [66]. Recent 

studies have suggested that genotype screening at rs2814778 could aid in the interpretation of neutropenia 

in African Americans and avoid unnecessary invasive procedures as well as lead to an increase of the 

inclusion of these individuals to various treatments [67]. Additionally, the Kidney Donor Risk Index 

(KDRI) equation uses race as a risk factor [68], but it has been recently proposed to use the presence of 

APOL1 variants as a factor instead [69]. Discovered after the creation of the KDRI, the presence of these 

variants was shown to be associated with shorter allograft longevity [70]. Despite this finding, the original 

KDRI score is still commonly used. In order to remedy and not perpetuate current healthcare inequalities, 

we underscore the importance of favoring transparent clinical protocols with clear biological justification 

instead of race-adjusted formulas that leverage convenience at the expense of potential inequities.  

There are various limitations within our study, and we describe a few of these in detail as follows. First, the 

phenotypes are based on ICD codes, and due to the nature of billing codes, this form of labeling does not 

constitute a formal patient diagnosis and may contain individuals who do not have the specific disease. This 

uncertainty in phenotyping likely limits the power of our study to find disease associations. For the further 

investigation into specific phenotypes, we recommend refining each phenotype definition based on 

additional disease-specific factors and metrics. Additionally, although ICD codes are an international 

standard, there are still deviations between different institutions in how specific diagnoses are recorded. 
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This adds further heterogeneity in phenotyping and could present future challenges when replicating studies 

or porting algorithms to other institutions. Second, due to the de-identified nature of the data, we lack 

information that could help us better describe the fine-scale population groups. For example, location of 

birth, zip code, and family history has been shown to be useful descriptors for determining subgroups of 

genetic ancestry [29]. This geographic information could also be used as a proxy for various environmental 

exposures such as pollution. Additional socioeconomic information, such as income and availability of 

health insurance, could likely account for a portion of observed associations as well as provide more insight 

into the socioeconomic determinants of health. Third, our findings within the African and South Asian 

ancestry populations are limited due to the smaller sample sizes. As sample sizes increase, we hope to 

further refine population substructure within these initial continental ancestry groups and have the power 

to detect novel disease associations that have previously been mired by lack of statistical power. 

We conclude by discussing directions for future work.  Although we investigate admixed populations, such 

as African American and Hispanic/Latino populations, admixed individuals who do not fall under these 

groups are excluded from downstream analyses due to concerns over population structure. In the future, we 

hope to incorporate methods and pipelines that properly control for population structure in all types of 

admixed populations. Additionally, we plan to compute polygenic risk scores (PRS) across all 5 continental 

ancestry groups. PRS has already shown modest clinical utility for diseases such as breast cancer [71] and 

cardiovascular disease [72], but has proven difficult to perform accurate predictions across populations 

[13]. The genetic diversity within the ATLAS Community Health Initiative biobank partnered with the 

longitudinal clinical data provides a unique resource to further explore the role of ancestry in PRS 

prediction. Furthermore, as the size of the biobank grows and more data is collected over time, we hope to 

explore even more individualized health solutions and interventions.  

Methods 

Study population. The UCLA Health System includes two hospitals (520 and 281 inpatient beds) and 210 

primary and specialty outpatient locations predominantly located in Los Angeles County. The UCLA Data 

Discovery Repository (DDR) contains de-identified patient electronic health records (EHR) that have been 

collected since March 2nd, 2013, under the auspices of the UCLA Health Office of Health Informatics 

Analytics and the UCLA Institute of Precision Health. Currently, the DDR contains longitudinal records 

for more than 1.5 million patients, including basic patient information (height, weight, gender), diagnosis 

codes, laboratory tests, medications, prescriptions, hospital admissions, and procedures.  The UCLA 

ATLAS Community Health Initiative includes the EHR-linked biobank within the UCLA Health System. 
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Currently, there are more than 27,000 genotyped participants with their de-identified EHR linked through 

the DDR. Patients’ participation is voluntary and their privacy is protected by de-identifying the samples.  

Self-reported demographic information. Participants self-report their race and ethnicity via two distinct 

fields where there are multiple-choice fields for race and ethnicity (see Supplementary Table S1, S2 for full 

list). Only one selection from each category can be chosen as a patient’s primary race and ethnicity. We 

group together race/ethnicity pairings to form 21 ‘self-reported race/ethnicity’ (SIRE) groupings (see 

Supplementary Table S3).  Patients also report their ‘Preferred Language’ from multiple-choice fields. 

Genotype quality control. Bio-samples collected from the UCLA ATLAS Community Health Initiative 

in the form of blood samples, were de-identified and then processed for DNA extraction and genotyping. 

ATLAS participants (N= 26,439) were genotyped on a custom Illumina Global Screening (GSA) array [17] 

that included a standard GWAS backbone and an additional set of pathogenic variants selected from 

ClinVar [73]. We filtered out poor quality markers by removing variants with >5% missingness (M= 9,318 

variants removed) and then removed strand-ambiguous SNPs (M= 7,686). We excluded samples with  

missingness >5% (N=3 individuals removed) and kept one individual from each set of twins or duplicated 

individuals (N=22 individuals removed). All quality control steps were conducted using PLINK 1.9 [74]  

and duplicate individuals/twins were determined using KING [75]. These steps resulted in a total of 673,148 

variants and 26,414 individuals. 

Genetic relatedness inference. With the M=673,148 variants that passed quality control, we used KING 

[75] to compute pairwise kinship coefficients to determine family relationships. We identified a set of 

unrelated individuals (N=25,842) where individuals with kinship coefficient <0.0884 were included (‘king 

--unrelated’). Additionally, we identified 22 duplicate individuals or twins, 213 parent-offspring relatives, 

and 117 first-degree relatives. This level of relatedness is expected since families will often be members of 

the same healthcare system.  

Genotype imputation. After performing array-level genotype quality control, the PLINK-formatted 

genotypes are converted to VCF format and uploaded to the Michigan Imputation Sever [76]. On a variant 

level, the server removes the variant if it is not an A, C, G, T allele, monomorphic, a duplicate, an allele 

mismatch between the reference panel and provided data, an insertion-deletion, or if the SNP call rate is 

less than 90%. The server will additionally correct for any necessary strand flips or allele switches needed 

to match the reference panel. The server additionally phases the data using Eagle v2.4  [77] and imputation 

is performed against the TOPMed Freeze5 imputation panel [78] using minimac4 [79]. In summary, the 

explicit parameters used on the server are “TOPMed Freeze5” for the reference panel, “GRCh38/hg38” for 

the array build, “off” for the rsq filter, “Eagle v2.4” for phasing, no QC frequency check, and “quality 
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control & imputation” for the mode. After we filtered by R2>0.90 and MAF>1%, the final set of variants 

contained M=7,973,837 sites.  

Genetic ancestry PCA analysis. We limited analyses to unrelated individuals (2nd degree relatives) and 

performed the ancestry-related PCA analyses on only the typed data. Genotypes were filtered by Mendel 

error rate (‘plink --me 1 1 –set-me-missing’), founders (‘--filter-founders’), minor allele frequency (‘–maf 

0.15’), genotype missing call rate (‘--geno 0.05’), and Hardy-Weinberg equilibrium test p-value (‘–hwe 

0.001’). Genotypes were then merged with the 1000 Genomes phase 3 dataset [23]. LD pruning was then 

performed on the merged dataset (‘--indep 200 5 1.15 --indep-pairwise 100 5 0.1’). We computed the top 

10 PCs using the FlashPCA software [80] with all default settings. 

We use the superpopulations from the 1000 Genomes dataset to define continental genetic ancestry groups 

(European, African, East Asian, South Asian). Ancestry clusters  were determined by visually defining PC 

thresholds based on the labeled individuals from the 1000 Genomes dataset. The European group was 

determined by PC thresholds with PC1 and PC2 (Supplementary Figure S1A), the African group with PC1 

and PC2 (Supplementary Figure S1B), the Admixed American group with PC2 and PC3 (Supplementary 

Figure S1C), the East Asian group with PC1 and PC2 (Supplementary Figure S1D), and the South Asian 

group with PC4 and PC5 (Supplementary Figure S1E). ATLAS participants that fell within the set of 

thresholds for each ancestry group were assigned to that ancestry. Individuals who were classified into 

multiple ancestry groups or individuals that could not be classified into any of the ancestry groups were 

given an ancestry label of ‘Admixed or other ancestry’. 

Subcontinental PCA analysis. We ran PCA on individuals within the East Asian continental genetic 

ancestry group (N=2,242) and the individuals from the East Asian superpopulation within 1000 Genomes 

using FlashPCA. We define clusters of hypothesized Chinese, Vietnamese, Korean, Japanese, and Filipino 

ancestry. Ancestry groups were determined by visually defining PC thresholds based on the self-reported 

race information of the ATLAS participants: Korean ancestry based on PC2 (Supplementary Figure S3A),  

Chinese ancestry based on PC1 (Supplementary Figure S3B), Vietnamese ancestry based on PC1 

(Supplementary Figure S3C), Filipino ancestry based on PC1 (Supplementary Figure S3D), and Japanese 

ancestry based on PC1 and PC3 (Supplementary Figure S3E, S3F).  

We additionally ran PCA on individuals from the initial Admixed American ancestry cluster in ATLAS 

and individuals of Mexican (MXL), Puerto Rican (PUR), Columbian (CLM), and Peruvian (PEL) ancestry 

from 1000 Genomes. The Mexican ancestry cluster in ATLAS is described by PC1 (Supplementary Figure 

4A) and the Puerto Rican cluster is determined by PCs 1, 2, and 8 (Supplementary Figure 4B, C, D). Explicit 
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thresholds could not confidently be drawn for the Columbian and Peruvian ancestry clusters in ATLAS. 

Additionally, we did not compute explicit PC thresholds for the European subcontinental clusters.  

GWAS quality control per ancestry. We limited our analyses to N=25,842 unrelated individuals and then 

performed additional quality control steps within each continental ancestry groups for GWAS (European, 

African, Admixed American, East Asian, South Asian). SNPs that violated Hardy-Weinberg equilibrium 

(HWE) with p<1e-12 were excluded. Individuals with a heterozygosity rate that surpassed +/- 3 standard 

deviations from the ancestry-specific mean were also excluded. Analyses were restricted to common SNPs 

per ancestry group where MAF>1%.  

IBD Calling.  For IBD calling, an interim version of the ATLAS data comprising of 24,318 individuals 

was used. ATLAS data was merged with the 1000 Genome Project [23], the Simons Genome Diversity 

Project [27], and the Human Genome Diversity Project [28].  In total, 418,195 SNPs were kept for IBD 

analysis after filtering by missingness >=10% and MAF>1%. The merged dataset was then statistically 

phased using Shapeit4 [81]. IBD was called using iLASH using default parameters [82]. For downstream 

analysis, IBD segments were summed between individuals to create an adjacency matrix, where each row 

represented a pair of individuals, and each column represented the total genome-wide IBD between those 

two individuals. Using KING [75], the adjacency matrix was filtered to remove rows representing 

individuals who were third degree relatives or closer. Communities are annotated using the presence of 

reference individuals in a cluster and EHR characteristics, such as preferred language and self-reported 

race/ethnicity.  

Genetic admixture analysis. We inferred the proportion of genetic ancestry by using the AMIXTURE 

software [46] under the unsupervised clustering mode with the number of clusters k=4, 5, 6. For each SIRE, 

we compare the ancestry proportions from the clusters. For k=4, we assign the cluster with the majority of  

NH-WC individuals as European ancestry, the cluster with the majority of NH-AfAm individuals as African 

ancestry, the cluster with the majority of NH-Asian individuals as East Asian ancestry, and the cluster with 

the highest number of HL-Other and HL-WC individuals as Native American ancestry.  

Phecodes. We aggregated billing (ICD9/ICD10) codes into more clinically informative groupings known 

as phecodes [31]. We derived phecodes from ICD codes in the EHR using mappings described in the 

PheWAS catalogue (Phecode Map 1.2) [83]. Using phecodes to define case/control phenotypes, we treated 

individuals with the occurrence of a specific phecode as a case and a control otherwise. We restricted our 

analyses to phecodes that had >100 cases present in ATLAS, yielding a total of 1330 phenotypes.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.09.22.21263987doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.22.21263987
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

Association between phecodes and genetic ancestry. We performed a marginal association between each 

phecode and continental genetic ancestry group under a logistic regression model while also adjusting for 

age and sex. Statistical significance was determined after correcting for the number of tested phecodes 

(p<3.8e-5). 

Association between genetic admixture proportions and phecodes. 

We perform a marginal regression between each of the ancestry proportions estimated from ADMIXTURE 

where k=4 (European, African, East Asian, and Native American ancestry) and 1,300 EHR-derived 

phenotypes (phecodes) within each of the 7 ATLAS SIRE groups groups (NH-WC, NH-AfAm, HL-Other, 

HL-WC,  NH-Asian, NH-PI, NH-AmIn). Additional details on computing admixture proportions can be 

found under the section Genetic admixture analysis. We additionally adjust for age and sex in the 

regression. Only traits with >10 cases per SIRE were tested. Significance is determined after adjusting for 

the number of tested phenotypes (p<3.8e-5). 

GWAS for ‘Other chronic nonalcoholic liver disease’. We performed an association between all imputed 

autosomal variants and ‘Other chronic nonalcoholic liver disease’ within the European (N-Case: 2,275, N-

Controls: 14,155) and Admixed American (N-Case=919; N-Controls=3,262) continental ancestry groups. 

Using PLINK 1.9, we performed a marginal association test at each SNP using a logistic regression model 

(‘plink --logistic beta’) where we adjusted for age, sex, and PCs 1-10. Quantile-quantile plots and genomic 

inflation factors (EUR λGC = 1.02; AMR λGC = 1.01) provide evidence that both analyses are well-calibrated 

(Supplementary Figure S10).  

PheWAS. We performed an association between each typed SNP and 1330 phecodes. Due to the number 

of tests, we only perform associations at genotyped SNPs. To determine significance, we used a stringent 

threshold that corrects for both the number of tested phenotypes as well as genome-wide significance 

(p<3.8e-11) and a less stringent threshold that only corrects for genome-wide significance (p<5e-08).  
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Figures 
 

 

 

Figure 1: Self-reported race/ethnicity (SIRE) and genetic ancestry capture distinct information. 
We show the percentage breakdown of (A) all SIREs and (B) continental genetic ancestry for all 
unrelated individuals in ATLAS (N= 25,842). We exclude individuals whose self-reported race and/or 
ethnicity are unknown. 
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Figure 2: Global PCA reflects self-reported race/ethnicity and preferred language of ATLAS 
participants. (A) Genetic PCs 1 and 2 of individuals in ATLAS (N=25,842) shaded by inferred 
continental genetic ancestry (European, African, Admixed American, East Asian, and South Asian) as 
inferred from 1000 Genomes. (B) and (C) show the first two genetic PCs of the ATLAS participants 
shaded by SIRE and preferred language, respectively. To improve visualization in (C), only languages 
with >10 responses are assigned a color.  
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Figure 3: PCA of individuals with East Asian, European, and Admixed American genetic 
ancestry in ATLAS captures fine-scale subcontinental ancestry groupings. Principal component 
analysis performed separately on each continental ancestry group (East Asian, European, Admixed 
American) in ATLAS with corresponding subcontinental ancestry samples from 1000 Genomes. 
Cluster annotation labels were determined using a combination of known genetic ancestry samples 
from 1000 Genomes and self-reported race, ethnicity, and language information from the EHR.  
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Figure 4: IBD sharing between ATLAS participants. InfoMap community membership is indicated 
by color for all communities with greater than 100 individuals (20 communities total) and individuals 
with a degree greater than 30. Community membership indicates elevated shared IBD within that 
community. Community identity is labelled adjacent to the network plot in the corresponding color. 
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Figure 5: Disease associations vary across continental genetic ancestry groups in ATLAS. We 
show the odds ratio computed from associating each phenotype with individuals’ continental genetic 
ancestry in ATLAS (N=25,872) under a logistic regression model. Error bars represent 95% confidence 
intervals.   
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Figure 6: Global ancestry correlates with disease prevalence in admixed individuals. Individuals 
who self-report as “Hispanic/Latino – Other Race” (HL-Oth) (N=2,206) and have had a diagnosis of 
(A) “Other chronic nonalcoholic liver disease” or (B) type 2 diabetes are binned by their proportions of 
European, African, and Native American ancestry estimated using ADMIXTURE. Bins are defined by 
the proportion of each ancestral population in increments of 0.20. Within each bin, we plot the 
prevalence of the diagnoses and provide standard errors (+/-1.96 SE) of the computed frequencies. 
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Figure 7: Recapitulating known associations for ‘Other chronic nonalcoholic liver disease’ GWAS 
in both the AMR and EUR populations in ATLAS. GWAS Manhattan plots for “Other chronic 
nonalcoholic liver disease” in the (A) AMR genetic ancestry group (N-Case: 919, N-Controls: 3,262) 
and (B) EUR genetic ancestry group (N-Case: 2,275, N-Controls: 14,155). The red dashed line denotes 
genome-wide significance (p<5e-08). We recapitulate a known association at the 22q13.31 locus in both 
populations. 
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Figure 8: Identifying correlated phenotypes at rs2294915 in both the Admixed American and 
European populations in ATLAS. PheWAS plot at rs2294915 for the Admixed American (top) and 
European (bottom) ancestry groups across 1,330 phecode phenotypes. The red dotted line denotes 
p=3.8e-11, the significance threshold after adjusting the genome-wide significance threshold for 1,330 
tested phenotypes. The red dashed line denotes p=3.8e-5, the significance threshold after correcting for 
only the 1330 tested phenotypes.   
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