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Abstract 

 

The present study proposes to measure and quantify the heart rate variability (HRV) changes during effort and to test the 

capacity of the produced indices to predict cardiorespiratory fitness measures. Therefore, the beat-to-beat cardiac time 

interval series of 18 adolescent athletes (15.2 ± 2.0 years) measured during maximal graded effort test were detrended using 

a dynamical first-order differential equation model. Heart rate variability was then calculated as the standard deviation of 

the detrended RR intervals within successive windows of one minute. The variation of this measure of HRV during exercise 

is properly adjusted by an exponential decrease of the heart rate. The amplitude and the decay rate of this exponential trend 

are strongly associated with maximum oxygen consumption, maximal aerobic power, and ventilatory thresholds. It indicates 

that among athletes with better fitness, HRV has higher values at low heart rate and decreases faster when the heart rate 

increases during exercise. This analysis, based only on cardiac measurements, provides a promising tool for the study of 

cardiac measurements generated by portable devices. 
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Introduction 

The human heart is involved in the response to the energy demand of the body. Its regulation is mainly driven by the 

subtle balance between the sympathetic and parasympathetic branches of the autonomic nervous system (ANS) (1,2). The 

activity and relative level of these two cardiac neural systems cause the main dynamical changes of heart rate (HR) in 

response to external stimulus, and on a shorter time scale, the fluctuations of the heart R-wave to R-wave (RR) time 

interval known as heart rate variability (HRV). HRV during rest has been shown to be influenced by psychological (3) as well 

as physiological factors such as age, body mass index, diseases (4), heart functions and heart diseases (5,6), body position 

(7) and physical fitness (8,9). During physical exercise, HRV dynamics is drastically modified due to the break of the balance 

between both branches of ANS. The progressive withdrawal of the parasympathetic activity and the subsequent increase 

of the sympathetic activity causes extensive changes in RR intervals, such as the decrease of their variability measured 

both in time and frequency domain (8,10–15), the modification of the scaling properties of their linear correlations (16), or 

even the reduction of their sample entropy (17) and of their nonlinear correlations (18,19). 

The decrease of HRV during exercise has been described in most cases, mainly qualitatively, as a function of exercise 

intensity, measured by the oxygen consumption expressed in percentage of the maximum oxygen consumption 

(%VO2max) (7,8,10,12). Lewis and co-authors (11) modeled the decrease of the absolute high frequency (HF) and low 

frequency (LF) power of the RR series spectrum as an exponential decay of the work load. They suggest that the decay 

constant of such exponential regression could be an indicator of the physical capacity. To our knowledge, no other study 

has tried to demonstrate this assertion nor to use this promising index. That could be explained by three main reasons, as 

follows:  i) the inherent need to remove the main RR decrease due to the metabolic response to the energy expenditure 

during exercise to obtain the detrended RR series, that is the beat-to-beat variability commonly designed as HRV; ii)  The 

technicity and the variety of the HRV characterizations, as illustrated by the variety of spectral measurements used and by 

the sometimes contradictory results they provide (20,21); iii) the use of the mechanical work rate during exercise as the 

independent variable of the exponential model, which could restrict the use of such approach only on RR series recorded 

during effort (HRV before and after effort are associated to the same power value: 0 Watt) and may be protocol 

dependent. 

In the present retrospective analysis, we aimed at testing the ability of an improved and extended approach of the HRV 

decay time to predict cardiorespiratory fitness (CRF).  
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Methods 

Each individual RR series was first detrended to obtain a stationary RR series. The detrending has been performed by a tested 

and characterized dynamical model based on simple physiological considerations [22–24] and free from ad-hoc parameters 

(see “detrending” subsection). HRV during each individual effort was then quantified by the standard deviation of the 

detrended RR intervals (SDRR) calculated on adjacent windows of one minute (corresponding to each effort step during 

effort, see “Heart rate variability” subsection). The mean HR, the mean work intensity %VO2max and the mean mechanical 

power were calculated in the same windows. The analysis was then divided in two parts.  

In a first part, three models describing the evolution of the HRV during graded effort test (GET) were compared: the first one 

represents HRV as an exponential decay of HR, the second one as an exponential decay of the exerted power, and the last 

one as an exponential decay of the work intensity. More precisely, these models were operationalized as follow: 

                                                                

𝑆𝐷𝑅𝑅𝑗 = 𝑏𝑒−𝑎𝐻𝑅𝑗                         (model 1)

𝑆𝐷𝑅𝑅𝑗 = 𝑏𝑒−𝑎𝑃𝑗                           (model 2)

𝑆𝐷𝑅𝑅𝑗 = 𝑏𝑒−𝑎𝐼𝑗                            (model 3)

                                                       equation 2 

where 𝐻𝑅𝑗  is the mean 𝐻𝑅 , 𝑃𝑗  the mean mechanical power exerted and 𝐼𝑗  the mean work intensity calculated in same 

windows j as the 𝑆𝐷𝑅𝑅𝑗. 𝑎 is the HRV decay rate, and 𝑏 the HRV intercept, i.e. the SDRR corresponding to a hypothetical 

null heart rate, mechanical power or work intensity respectively. These three models have been implemented by performing 

least squares nonlinear regressions on the ensemble of the SDRR measurements covering the entire exercise test (measures 

before the GET and during the recovery are included), and on those during the effort only. They were then compared using 

Akaike information criterion (AIC) and Bayesian Information criterion (BIC). 

In a second part, we used model 1 on each individual SDRR series and tested whether the estimated decrease of HRV as a 

function of HR is correlated with CRF. Therefore, we performed the least squares nonlinear regression of model 1 (equation 

2) for each individual SDRR series, and calculated the correlation between the obtained coefficients (the HRV decay rate 𝑎 

and the HRV intercept 𝑏) and CRF indices (namely maximum VO2, maximum aerobic power, power at ventilator thresholds) 

using Spearman rank correlation. The robustness of this analysis has been tested by an extended sensitivity analysis (see 

“sensitivity analysis” subsection). 
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Participants 

The database used in this work consists of records of 18 young athletes (10 males and 8 females; 15.2 ± 2 year-old, see table 

1)) of the Regional Physical and Sports Education Centre (CREPS) of French West Indies (Guadeloupe, France), belonging to 

a national division of fencing, or a regional division of sprint kayak and triathlon. All athletes completed a medical 

screening questionnaire, and a written informed consent from the participants and the legal guardians was obtained prior 

to the study. The study was approved by the CREPS Committee of Guadeloupe (Ministry of Youth and Sports) and the 

CREPS Ethics Committee and performed according to the Declaration of Helsinki. A short summary of the physiological 

characteristics of the studied group is presented in Table 1. 

Variable (unit) Value 

Number 18 

Age (years)  15.0 [14.0, 16.8] 

Sex (Male)    12 (66.7 %)  

Weight (kg)  62.9 [54.3, 76.5] 

Height (cm) 174.0 [165.0, 182.0] 

VO2max (mL/kg/min)  36.5 [32.6, 41.8] 

MAP (W) 222.5 [177.5, 297.5] 

Peak HR (beat/min) 187.2 [183.3, 190.1] 

PVT1 (W) 105.5 [79.2, 143.0] 

PVT2 (W) 169.0 [141.2, 246.8] 

sport Fencing: 10; Kayak: 6; Triathlon: 2 

Table 1. Physiological characteristic of the 18 participants. Values indicated are medians [Inter quartile range]. VO2max: 

maximum oxygen consumption; MAP: Maximum aerobic power; Peak HR: peak heart rate reached during maximal effort 

test; PVT1: power at the first ventilatory threshold; PVT2 power at the second ventilatory threshold. 

 

Graded effort test (GET) measurement 

GET were performed at the end of the off-competition season. The subjects performed under the supervision of a doctor in 

sport medicine a GET on an SRM Indoor Trainer electronic cycloergometer (Schoberer Rad Meßtechnik, Jülich, Germany) 

associated to a Metalyzer 3B gas analyzer system (CORTEX Biophysik GmbH, Leipzig, Germany). The room was climatized 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 22, 2022. ; https://doi.org/10.1101/2021.09.23.21263943doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.23.21263943
http://creativecommons.org/licenses/by-nc/4.0/


6/19 

and did not have external light to provide similar temperature, humidity, and light for each GET. The participants were 

instructed not to take alcohol, caffeine, nor to practice intense sport activities during the 24 hours preceding their GET. The 

GET consisted of a 3 min cycling period at 50 watts, followed by an incremental power testing of 15 Watts each minute 

until exhaustion. At the end of the test, measurements were prolonged during a 3 min period to record the physiological 

recovery of the athletes. They were during this period sitting on the cycle ergometer.  

Cardiorespiratory parameters were recorded breath-to-breath all along the test session. The ventilatory thresholds 1 (VT1) 

and 2 (VT2) were calculated using the Wasserman method (22). Maximum aerobic power is the maximum power achieved 

during the last completed step of the GET. Peak HR and VO2max are the maximum values of the HR and VO2 averaged other 

5 breaths. The RR series were derived from Electro Cardiogramm (ECG) recordings (Cardio 110BT, Customed, Ottobrunn, 

Germany, with 12 derivations). The time resolution of the ECG recording was 1 ms. Heart rate (HR) is calculated as  

 

                                                                                          𝐻𝑅 =
60000

𝑅𝑅
                                                                                       equation 1 

where RR is in millisecond and HR in beat/min.  

Data cleaning 

Prior to performing the statistical analysis, we removed the artifacts in the RR series {𝑥1, 𝑥2, … , 𝑥𝑛} due to connection errors 

in the electrodes according to the following steps: 

• All RR intervals with a value above 1000 ms during effort were removed. This concerned 0.02% of the RR 

measurements. 

• At each point, if the RR value exceeded 2 times or was inferior of the half of the median value of the RR calculated in 

a 201 RR values windows centered on 𝑥𝑖, it was removed. This concerned 0.02% of the measurements. 

• At each point 𝑥𝑖 , if the absolute RR change 𝑥𝑖 − 𝑥𝑖−1  exceeded 10 times the median value of the RR increases 

calculated in a 201 RR values windows centered on 𝑥𝑖 , the point was removed. This concerned 0.5% of the 

measurements. 

An example of points cleaned in an original raw RR series is presented in Fig 1. 
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Fig 1. Measured RR interval during a maximal graded effort test (effort starts at time = 0). The points removed by our 

cleaning procedure are indicated in red 

 

 

Detrending 

We used recent developments in dynamical analysis to model the non-stationary aspect of HR. The main trend of HR 

dynamics during a GET can be modeled by a simple first order differential equation driven by the power expenditure. A two-

step estimation procedure, consisting in first estimating the time derivative of HR using a spline regression and then 

obtaining the constant coefficient of the differential equation through a linear regression, produces unbiased estimation of 

the differential equation parameters (23). An estimated curve can then be produced by numerical integration of the 

differential equation with the obtained coefficients. This simple model produces indices sensitive to CRF and performance 

changes (24). The possibility to estimate the gain (the amplitude of the HR increase corresponding to a workload increase) 

for each power step of the exercise test allows to reproduces up to 99% of the HR dynamics during the GET, and yields 

coefficients varying consistently with the metabolic changes associated to the respiratory thresholds (25). 

Because of the absence of ad-hoc parameters and the fact that it has been theoretically and practically validated, this 

procedure to estimate HR during exercise was used in the present study to detrend the RR time series. 
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Heart rate variability 

Given a series of 𝑛  detrended RR intervals {𝑥1, 𝑥2, … , 𝑥𝑛} , the series of standard deviations of the RR intervals SDRR 

calculated on a successive window of 𝜔𝑅𝑅  RR intervals is  

𝑠𝑑({𝑥1, 𝑥2, . . , 𝑥𝜔𝑅𝑅
}), 𝑠𝑑({𝑥𝜔𝑅𝑅+1, … , 𝑥2𝜔𝑅𝑅

}), … , 𝑠𝑑({𝑥𝑘𝜔𝑅𝑅
, … , 𝑥𝑛}) 

 

Where 𝑠𝑑 is the standard deviation, and 𝑘 the integer part of 𝑛/𝜔𝑅𝑅  . This calculation has the advantage of its simplicity, 

thus being easily reproducible. We have considered a window size of 1 min for the SDRR calculation in the main study in 

order them to correspond to each power step during the exercise test. 

Because HRV is a result of parasympathetic and sympathetic neuronal activity, both being processes taking part in the 

regulation of the mean HR, we propose to analyze the decay of SDRR during exercise as a function of the mean HR calculated 

on the same time windows. 

Sensitivity analysis 

In order to test the sensitivity of our results to the approach proposed, we performed a sensitivity analysis by: 

- testing more classical polynomial detrending methods of different orders (26) to obtain stationary RR time series, 

instead of our parameter-free approach based on HR dynamical model; 

- varying the windows size ωRR used for SDRR calculation. 

 

The polynomial detrending procedure can be described as follows: let us consider a time series of RR intervals and let be ωp 

(odd integer) the window size and p the polynomial order. For each value of the RR series {𝑥𝑖}, we perform a least squares 

polynomial regression of order 𝑝 on the data inside the window of size 𝜔𝑝  centered at position 𝑖. The detrended value at 

position 𝑖  (𝑥𝑑𝑒𝑡,𝑖 ) is then obtained by subtracting the estimated value produced by the polynomial regression 𝑝̂𝑖  to the 

experimental value 𝑥𝑖: 

𝑥𝑑𝑒𝑡,𝑖 = 𝑥𝑖 − 𝑝̂𝑖  

During the sensitivity study, the following parameters have been varied: 

- The degree p of the polynomial has been set to 𝑝 = 0, 1 and 2 (respectively equivalent to substract the mean, the 

linear fit and the quadratic fit inside the window). 
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- The window size of the local polynomial regression 𝜔𝑝  has been set to odd integers between 5 and 101. 

- The window size 𝜔𝑅𝑅  used to compute the RR time standard deviation SDRR has been varied considering the same 

range, i.e. odd integers between 5 and 101. 

We thus tested the robustness of our analysis for 49x49x3 = 7203 different evaluations of SDRR change during effort for 

each of the 18 subject’s RR measurements. 

 

Statistical analysis 

All signal processing and statistical analysis have been performed with the R 4.1 open source software (27). The comparison 

between regression models is based on Akaike information criterion (AIC) and Bayesian Information criterion (BIC). The 

calculation of the correlations between the estimated HRV decay coefficients and the CRF indices has been performed using 

Spearman rank correlation coefficients ρ. The regression of the three models proposed in equation is operationalized with 

a nonlinear least square regression using the packages nls. The ggplot2 was used for graphical representation (28) and 

data.table for data manipulation. 

Results 

The median number of RR distance recorded was 2726 beats (Inter Quartile Range [2433;3548]). An example of detrended 

RR estimated using the dynamical model presented in the method section is illustrated in Fig 2. This model produced an 

individual estimation of RR with a median R2 of 0.97 [IQR: 0.91 – 0.98]. 
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Fig 2. Measured RR interval during a maximal graded effort test, its estimation by a first order differential equation and the 

resulting detrended RR values obtained by subtracting the model estimate (2) to the real data. 

Comparison of models 

 

In this first part we want to determine which representation of the evolution of SDRR along exercise correspond the best 

to an exponential decay. The ensemble of the SDRR values along the GET of all 18 participants are represented in Fig 3 on a 

logarithmic scale as a function of the corresponding mean HR (Fig 3A), as a function of the corresponding mechanical power 

exerted during the exercise test (Fig 3B) or as a function of the corresponding work intensity (Fig 3C).  

When plotted as a function of HR (model 1, Fig 3A), the ensemble of SDRR measured before, during and after the exercise 

align nicely on a linear-log scale, indicating a clear exponential behavior. When displayed as a function of the mechanical 

work rate (Fig 3B, model 2) as proposed by Lewis and co-authors (11), the values of HRV at high work rate do not align with 

the rest of them in a linear-log scale. Furthermore, the HRV calculated before and after the effort have a wide variety of 

values for the same null power. Finally, when represented as a function of %VO2max, although SDRR values plotted in linear-

log scale display a clear linear trend during exercise, they do not align with the values calculated before and after effort (Fig 

3C model 3). 
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Fig 3. SDRR of the detrended RR time series recorded during a graded effort test as a function of: A) the mean heart rate 

(HR) during the interval, B) the mechanical power during the exercise test and C) the mean work intensity. The shape of the 

points indicates the SDRR was calculating on RR during (effort), before (pre) or after (post) the effort. The red line 

corresponds to the regression estimate obtained using model 1, 2 and 3 of equation 3 in A, B and C respectively 

 

When performing the least square nonlinear regressions of these three models on the entire dataset (the estimated 

model is plotted as a red line in Fig 3), the model 1 in Equation 2 describing SDRR as an exponential decay of the mean HR 

has a significantly lower AIC and BIC than the two others, both when considering cardiac measurement only during exercise 

or when including HRV before, during and after exercise (see table 2).  
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model effort range AIC BIC 

model1 pre + effort + post 3179 3191 

model2 pre + effort + post 3855 3867 

model3 pre + effort + post 3477 3489 

model1 effort 1976 1987 

model2 effort 2080 2091 

model3 effort 2068 2079 

Table 2. Akaike information criterion (AIC) and Bayesian Information criterion (BIC) for the models 1, 2 and 3 in equation 2 

when applied to the ensemble of the SDRR computed on different part of the exercise test: before test (pre), during test 

(effort) or during recovery (post). 

The mean coefficients of model 1 in equation 2 estimated on the ensemble of the detrended SDRR series are b = 1325 

ms and a = 0.035 min.beat−1 (p < 0.0001 for both coefficients), meaning that for young athletes, an increase of 10 beat/min 

of HR divided SDRR by exp(0.5)= 1.41, i.e. decreased it by ~30% on average. 

 

Study of individual decrease of HRV during effort 

 

 Each individual SDRR series had a median of 22 measures [IQR 20-28]. The correlations between the individual 

parameters 𝑎 (the HRV decay rate) and 𝑏 (the HRV intercept), obtained when performing the nonlinear regression of model 

1 on each detrended RR series, and the aerobic performances indexes, are reported in table 3.  
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  a  b 

 Spearmann 

corrlation ρ 

P value Spearmann 

corrlation ρ 

P value 

VO2max 0.59 0.009 0.60 0.009 

MAP 0.60 0.009 0.64 0.004 

PVT1 0.53 0.02 0.58 0.01 

PVT2 0.50 0.03 0.54 0.02 

Peak HR 0.04 0.88 0.11 0.66 

HRR -0.46 0.05 -0.54 0.02 

Table 3. Spearman correlation coefficients ρ with the associated p value between the estimated HRV decay coefficients 

(HRV decay rate a and the HRV at HR=0 b) and aerobic performance indices: maximum oxygen consumption (VO2max), 

maximum aerobic power (MAP), maximum experimental heart rate Peak HR power at the first and second ventilatory 

threshold (PVT1 and PVT2) and Heart rate recovery (HRR) 

 

The HRV decay rate 𝒂 of SDRR as a function of HR is strongly and significantly correlated with VO2max (ρ = 0.6, p < 0.009), 

with the maximum power reached during effort test MAP (ρ = 0.6, p < 0.009), and with the power at the ventilatory 

thresholds (ρ = 0.50, p = 0.03 and 0.5, p = 0.02 for PVT1 and PVT2). The HRV intercept 𝑏 is also strongly positively correlated 

with VO2max (ρ = 0.6, p = 0.009), with the maximum power reached during effort test MAP (ρ = 0.6, p < 0.004), and with the 

power at the ventilatory thresholds (ρ = 0.64, p = 0.005 and 0.64, p = 0.004 respectively for PVT1 and PVT2). This indicates 

that participants with better aerobic performance have a higher SDRR at low HR, which decays more rapidly as HR increases. 

 

Sensitivity analysis 

In Fig 4, the correlation between HRV decay rate 𝑎 and VO2max and the associated p value is represented for all tested 

𝜔𝑝 and 𝜔𝑅𝑅  values when using 0th order local polynomial detrending. Within the red square (𝜔𝑅𝑅  > 50 and 𝜔𝑝 > 50), ~90% 

of the analysis yielded significant correlation with value higher than 0.5. The sensitivity analysis demonstrated that the 

previous results can be obtained using a simpler 0th order local detrending with 𝜔𝑝 > 50 (i.e. performing the local polynomial 
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detrending in windows of at least 50 points) to obtain a stationary RR series and calculating SDRR on the detrended RR series 

in windows of at least 50 points (𝜔𝑅𝑅  > 50). The results of the sensitivity analysis for other polynomial order and other CRF 

indices (ventilatory thresholds and maximum power) are given in supplementary material. 

 

Fig 4. p value higher or lower than 0.05 (panel A) and Spearman correlation coefficient (panel B) between the HRV 

decay rate 𝑎 and VO2max using a 0th (p=0) order polynomial detrending. Each pixel corresponding to 1 of the 49 size of 

detrending window ωp= 1,3,5...101 and 49 sizes of SDRR calculation window ωRR=1,3,5...101. Red squares delimit the 

regions for which we observe significance (p < 0.05) (A) and a high correlation (B) for 90% of the tests. 

 

Discussion 

Our study aimed at studying how HRV varies during effort and how this evolution is linked with CRF. SDRR varies as an 

exponential decay of HR, and decreases by 30% every increase of 10 beats/min of HR. This fast decay causes time HRV indices 

to reach values close to the minimum allowed by the resolution of the ECG device early during the GET, thus explaining the 

absence of significant differences between HRV measured during constant load exercise at high intensities (14). On the other 

hand, the exponential decay rate of SDRR extracted by a nonlinear regression during an incremental exercise is strongly 

related to several parameters linked with aerobic performance, such as VO2max, MAP, and power at the ventilatory 

thresholds.  This HRV decay rate increases (i.e. a faster decay of HRV when HR increases) for athletes with higher aerobic 
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capacity. The analytical approach proposed only requires cardiac measurements and make use of measurements before, 

during and after the exercise.  

This study is to our knowledge the first one proposing to observe the change of HRV during exercise as a function of the 

corresponding heart rate. Compared to the more common approach consisting in studying the change of HRV as a function 

of exercise intensity, our representation is better described by the exponential decay during exercise and unifies under the 

same model the HRV calculated on cardiac measurement before and after the effort. The similarity of these two 

representations during the effort resides in the linear relation that HR and VO2 have when performing graded exercise tests 

(29). Their differences reside in the shorter dynamical time of VO2 compared to HR, and is revealed at exercise onset and 

exercise cessation (24,30).  

Previous studies reported higher HRV for trained subjects than untrained subjects at rest or at low exercise intensity (31,32). 

This result finds its roots in the higher vagal (parasympathetic) neuronal activity for trained subjects compared to untrained 

ones, as proved by the increase of vagal-related indices of resting and post-exercise HRV (33). Post-exercise HR recovery 

studies have also shown that trained subjects have a faster re-activation of their vagal activity at exercise cessation (34). The 

rate at which HRV decreases when the HR increases during activity is another measure of vagal activity, which has been 

shown to be directly linked with the exercise capacity (35), explaining thus the strong link between rate of HRV change during 

exercise and CRF. In our study, individuals with higher CRF start their exercise with a higher HRV due to their high vagal tone 

and have a faster subsequent decrease of HRV when their HR increases during exercise due to the faster withdrawal of their 

parasympathetic activity.  

The strong correlation between our HRV decay characterization and performance indices found among a heterogeneous 

population of athletes in term of sport modality is a strength. Indeed, although these different sport modalities require 

unequal sources of energy and train distinct physical capacities, leading to different cardiorespiratory and cardio autonomic 

control features, the exponential decay of HRV as a function of HR seems to be a robust indicator of the cardiovascular 

fitness. On the other hand, the limited number of athletes in each sport category did not allow us to compare the changes 

of HRV during exercise between sport modalities.  

The use of a physiologically motivated model of HR dynamics during exercise using no ad-hoc parameters to obtain the 

detrended RR series and the extensive sensitivity study associated shows the robustness of our approach and facilitates 

future similar studies by providing guidelines of necessary data acquisition and analysis methods used.  
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Nevertheless, the limited age range and physiological characteristics of the participants are limitations, and further studies 

are needed to generalize our results to a more diverse population. The cross-sectional aspect of our approach should be also 

complemented by a longitudinal approach. 

Conclusion 

The present work demonstrates that the measure of the SDRR decay during exercise offers a solid index of physical 

capacities. Our study proposes a simple model to describe the changes of HRV with effort: SDRR behaves as an exponential 

of the heart rate. The characteristics of this exponential decay of HRV are highly dependent on the physical capacities and 

on the cardiorespiratory fitness. The proposed analysis, relying only on cardiac measurements and based on a set of simple 

mathematical tools, pave the way to the measurement of cardiorespiratory fitness using measurements provided by mobile 

devices.   
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