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Abstract

Superspreading events and overdispersion are hallmarks of the Covid-19 pandemic.

To gain insight into the nature and controlling factors of these superspreading events

and heterogeneity in transmission, we conducted mechanistic modeling of SARS-CoV-

2 transmission by infectious aerosols using real-world occupancy data from a large

number of full-service restaurants in ten US metropolises. Including a large number

of factors that influence disease transmission in these settings, we demonstrate the

emergence of a stretched tail in the probability density function of secondary infection
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numbers indicating strong heterogeneity in individual infectivity. Derived analytical

results further demonstrate that variability in viral loads and variability in occupancy,

together, lead to overdispersion in the number of secondary infections arising from indi-

vidual index cases. Our analysis, connecting mechanistic understanding of SARS-CoV-

2 transmission by aerosols with observed large-scale epidemiological characteristics of

Covid-19 outbreaks, adds an important dimension to the mounting body of evidence

with regards to the determinants of airborne transmission of SARS-CoV-2 by aerosols

in indoor settings.

1 Introduction

Superspreading events and overdispersion are now well-established characteristics of the

Covid-19 pandemic, similar to SARS and other outbreaks of respiratory viruses [1]. The

documented outbreaks at the Skagit Valley Chorale [2, 3], at a restaurant in Guangzhou

[4, 5] and at a call center in Korea [6] are examples of superspreading events where one

infectious index case led to tens of individuals infected within a few hours, at an order of

magnitude higher than the basic reproduction number 2 ≤ R0 ≤ 3.6 for the original SARS-

CoV-2 variant [7]. The term ”superspreading” has generally been ascribed to any event

(index case and exposures) that led to more than the average number of secondary trans-

missions, and thus in probabilistic terms could refer to any number of secondary cases to the

right of the expectation [1]. As such, it has been proposed that superspreading events are

not exceptional events but an expected feature of an expected right-sided tail of the distri-

bution of the basic reproduction number. When this right-hand tail is further skewed, with

greater variability than expected leading to an uneven distribution, the term overdispersion

is applied (statistical definition). In the context of communicable diseases, overdispersion

refers to a non-random pattern of clustering, and which often include a large number of

zero cases and a small number of larger outbreaks [8]. This pattern of overdispersion can

be applied at the level of an event or index case (individual-level variation) [8], or in the

context of networks (population-level via onward transmission chains) [9]: both fall under

the broader epidemiological umbrella of heterogeneity. In the context of the former, data
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suggest that such superspreading events are characterized by overdispersion in SARS-CoV-2

transmissions, with 10-20% of index cases responsible for 80% of secondary cases [10].

Understanding the nature and characteristics of superspreading events is therefore key

to understanding SARS-CoV-2 spread. Agent based modeling by Sneppen et al. [11] sug-

gested that non-repeating, random contacts such as those in restaurants, bars etc. is a

dominant contributor to SARS-CoV-2 spread. Chen et al. [12] argue that while social,

and micro-environmental factors affect transmissibility, overdispersion could result from an

intrinsic characteristic of certain viruses. The knowledge gap that remains is the extent to

which each of these factors contribute to the observed distribution of secondary SARS-CoV-2

transmissions per index case, by connecting variability in each of the components with our

mechanistic understanding of SARS-CoV-2 transmission.

Emerging data strongly suggest the importance of airborne transmission of SARS-CoV-2

by respiratory aerosols [13, 14, 15, 16, 17]. A large number of small respiratory droplets

(when size < 100µm at point of exhalation) often referred as aerosols, as suggested by

Prather et al. [18], can remain airborne in the liquid or semi-solid state [19], encapsulating

the SARS-CoV-2 virus. As a result, the virus can remain infectious within the aerosols

for substantial length of time [20]. Several studies have analyzed airborne transmission in

specific micro-environments. Bourouiba et al. [21] identified that respiratory droplets and

aerosols exhaled during violent expiratory events can travel long distances co-flowing with the

moist air jet. Abkarian et al. [22], analyzed exhaled air flow during speech and how certain

phonetics produce a train of puffs. Chen et al. [23] showed that for talking and coughing,

short range airborne route dominates transmission of respiratory infections. Analyzing a

respiratory droplet/aerosol laden cough jet, modeling by Chaudhuri et al. [19] showed that

aerosols (droplet-nuclei) of initial size less than 50 µm pose highest infection risk and variation

in the corresponding viral load could lead to large variation in the number of secondary

infections. Using well-mixed assumptions and the Wells-Riley model [24, 25], Buonanno

et al. [26] proposed a quantitative risk assessment for specific micro-environments with

asymptomatic infectious cases and suggested that instead of specific superspreaders it is a

combination of several factors, including emission and exposure that lead to highly probable,

superspreading events. Using similar well-mixed approach Bazant and Bush [27] proposed
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to restrict occupancy number and time spent in a room, to mitigate airborne transmission

[27]. Schijven et al. estimated risk of infection resulting from sneezing, coughing, speaking,

breathing, and singing [28] at different viral loads. Analysis by Bond et al. [29] quantified the

importance of confinement in pathogen transport using “effective rebreathed air volume”.

Further details on specific aspects of airborne disease transmission: including but not limited

to aerosols, flow physics, respiratory droplet size distribution could be found in recent review

and opinion articles [30, 31, 32, 33, 34]. Yet, to date mechanistic models describing airborne

transmission have not been coupled with real-world distributions and occupancy information

towards understanding the large scale features of disease dynamics, for e.g. overdispersion

in transmissibility.

The overarching goal of this work is to utilize the mechanistic underpinnings of the

airborne disease transmission to explore event-level overdispersion of SARS-Cov-2 spread,

utilizing real-world inputs from a large number of social gatherings. The specific goals are:

1. Develop an algorithm based on aerosol dispersion with randomized inputs and available

occupancy data to generate distribution of the number of secondary infections per

infectious case.

2. Explore if observed patterns of overdispersion in secondary transmissions could be

reproduced via simulations using the above algorithm.

3. Derive an analytical function (and not a fit) which can describe the probability density

function of number of the secondary infections from the dynamics of the problem.

4. Identify the dominant variables that drive overdispersion and the resulting implications

for mitigation measures.

To these ends, an aerosol spread model is solved over a hundred thousand random social-

contact settings, utilizing real-world occupancy and area information coupled with realistic

input distributions of viral-load and ventilation rates, to obtain the probability distributions

of the number of secondary infections per infectious case, in those settings.
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2 Method

In this section, first we describe the model to obtain the probability of infection resulting

from inhalation of infectious aerosols generated from speaking and breathing, in an indoor,

confined, and ventilated micro-environment. Next, we connect this model to an algorithm

- a first of its kind to our knowledge, that accepts randomized inputs from distributions

of viral load, exhaled aerosol size distribution, ventilation rate, speech and exposure time

corresponding to specific inputs of number of people occupying specific indoor areas. The

occupancy information is obtained from a large SafeGraph data-set of full-service restaurants

from ten major US cities. The restaurants serve as our study setting for time-limited, point

source transmission via mostly non-repeating, random contacts, in contrast to households

or workplaces where repeated contacts are made with the same individuals and over longer

periods of time. In this work, we focus on disease spread by asymptomatic infectious cases

(asymptomatic at the time of disease spread therefore including presymptomatics) under the

assumption that individuals with symptoms would not be engaged in indoor dining. Hence,

we consider only speech and breath as the mechanisms by which respiratory aerosols are

ejected into specific micro-environments. The algorithm developed for this work, is shown

in Fig. 1.

2.1 Aerosol dispersion from an infectious case

We use the standard, turbulent diffusivity based closure [35] to model the spatio-temporal

evolution of ensemble averaged infectious aerosol concentration ca (number of aerosol parti-

cles per unit volume of air associated with emissions from the infector), as shown by Eqn.

1. This approach was used by Drivas et al. [36] to model indoor concentration fields from

point sources.

The turbulent diffusivity DT in Eqn. 1 is a function of the air-change rate a and area

of the space given by A. The second term on the R.H.S. is a sink term that accounts for

removal of particles by ventilation (a: air change rate) and by deposition, while wd is the

deposition velocity and V being the volume of the indoor space.

∂ca
∂t

= DT

(
∂2ca
∂x2

+
∂2ca
∂y2

+
∂2ca
∂z2

)
−
(
a+

wdA

V

)
ca (1)

5

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.28.21263801doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.28.21263801


We treat the infectious case as a continuous point source. The initial condition is

ca(x, y, z, 0) = 0 with reflection boundary conditions at the six walls. Since the virus re-

mains embedded inside the infectious aerosols and since they are non-volatile, the ratio of

the number of virions to the number of aerosol particles in any given volume of air can

be assumed to remain constant post-ejection. To retain analytical tractability of the solu-

tion, in this work, we consider fast evaporation and a constant, post-evaporation, aerosol

volume-averaged wd; see [23, 37, 19] for detailed evaporation and deposition considerations

of respiratory droplets. Therefore, the ensemble averaged concentration of virus RNA copies

per unit volume of air c is proportional to ca, or

c = caNa (2)

The average number of virions within an aerosol particle, Na, is the constant of proportional-

ity. Using the identity Eq. 2 we can immediately convert Eqn. 1 into an evolution equation

for c, as shown in Eqn. 3:

∂c

∂t
= DT

(
∂2c

∂x2
+
∂2c

∂y2
+
∂2c

∂z2

)
−
(
a+

wdA

V

)
c (3)

While one can use more complex approaches to model turbulent mixing and aerosol dis-

persion, the advantage of the relatively simple, yet sufficiently robust and accurate, diffusivity

based closure is the analytical tractability and the inexpensive solution it offers. As will be

seen later, such an attribute is pivotal to generating the large number of realizations of the

c field, utilized in this work. As such, for a continuous point source Qx0,y0,z0 at (x0, y0, z0),

the solution of the concentration field c(x, y, z, t′) at time t′ was given by [36]:

c(x, y, z, t′) =

∫ t′

0

Qx0,y0,z0e
−
(
a+

wdA

V

)
t

(4πDT t)
3/2

RxRyRzψ(t)dt (4)

with wall reflection terms for i, j, k 6= 0

Rx =
∞∑

i=−∞

[
e
− (x+2iL−x0)

2

4DT t + e
− (x+2iL+x0)

2

4DT t

]
(5)

Ry =
∞∑

j=−∞

[
e
− (y+2jW−y0)

2

4DT t + e
− (y+2jW+y0)

2

4DT t

]
(6)
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Rz =
∞∑

k=−∞

[
e
− (z+2kH−z0)

2

4DT t + e
− (z+2kH+z0)

2

4DT t

]
(7)

L,W,H are the length, width, and height of the room, respectively. Here, we have introduced

a virus survivability function ψ(t) in the solution, as in Chaudhuri et al. [19]

ψ(t) = (1/2)
t/t 1

2 (8)

t 1
2

= f(T,RH,UVindex) (9)

Here T is the temperature, RH is the relative-humidity and UVindex is the ultra-violet index

inside the room of interest. Based on the experiments by Dabisch et al. [20] and calculator

from DHS [38], for T = 21.7oC, RH = 0.50, UVindex = 0 i.e. typical ASHRAE recommended

indoor air conditions, for SARS-CoV-2, half-life t 1
2

= 32.07 minutes. The SARS-CoV-2

virus half-life reduces monotonically with temperature and non-monotonically with relative

humidity [39] like other enveloped viruses, as shown by Marr et al. [40].

The above solution given by Eqns. 4-7 (without ψ(t)) was validated by Cheng et al. [41]

who released CO from a point source and measured its spatio-temporal dispersion character-

istics inside typical built environments. Indeed aerosols deposit (accounted for in this paper)

unlike CO, but since their motion is predominantly controlled by turbulent diffusion inside

a room (turbulent diffusivity DT >> molecular diffusivity of CO or effective diffusivity of

aerosol particles), the validation exercise is highly relevant. They suggested the following

correlation between turbulent diffusivity, area of room, and air change rate:

DT = A× (0.52× ACH + 0.32)/3600 (10)

which is used for the present study as well. Recall that A is the area, ACH is the air changes

per hour, therefore a = ACH/3600.

Denoting τ as the time duration of the event under considerations, the ensemble averaged

number of infectious virions, generated from both speech and breath of the infected individual

located at x0, y0, zo, that is inhaled at x, y, z0 upto time τ is denoted Nv(x, y, z0, τ) and it is

given by:

Nv(x, y, z0, τ) =

∫ τ

0

c(x, y, z0, t
′)V̇bdt

′ (11)
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While infectious aerosol emissions from breathing take place over the entire time duration

of the event, emissions from talking are assumed to occur only for a time ts < τ (see

supplementary material, section 3 for details). This is accounted for in our calculation of

the corresponding time-varying virus concentration field. V̇b is the average volume of air

inhaled per second. The local probability of infection due to infectious aerosols produced by

speaking and breathing Ps+b(x, y, z0, τ) is calculated using the dose-response model originally

proposed by Haas [42]. The dose-response constant is chosen as rv = 1/1440 based on the

estimations by Haas [43] and Schijven et al. [28] for the original SARS-CoV-2 variant. The

subscript s + b indicates infection caused by exhaled aerosols due to speech (s) and breath

(b) from the infected individual.

Ps+b(x, y, z0, τ) = 1− e−rvNv(x,y,z0,τ) (12)

Th number of secondary infections Z within a room is thus given by

Z =

∫ L

0

∫ W

0

ρpPs+b(x, y, z0, τ)dxdy (13)

Here ρp is the susceptible population density (assumed to be uniform), estimated as ρp = n/A

at the given point of interest (POI). POI is a term used in SafeGraph data-set and in Chang

et al. [44] referring to a specific business location like a restaurant. A is the indoor area of

that POI. In this paper, we place one infectious case at each POI. Therefore, Z is a measure

of individual-level infectivity as well. Here n is the number of susceptible individuals present

at a given POI i.e. n = np − 1 where np is the total number of people present at that POI.

N is the sample space variable corresponding to n.

8
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2.2 Algorithm for generating the pdf of secondary infections

Start
i = 1

i ≤ Ns

Total number of
samples required:
Ns

Exhaled PSD for
expiratory event

Number of
virions emitted
per unit time

Random
sample

Log-normal viral
load distribution

Turbulent
diffusion solution

Random
sample

Log-normal ACH
distribution

Infection prob-
ability - dose

response model

Area
of POI

Index i

Cell phone occu-
pancy data

Z

Dose response
constant

Log-normal expo-
sure time distri-
bution (τ)

Speaking time (ts)

Random
sample

Random
sample

Virus half-life:
f(T∞, RH∞)

Population
density

Occupancy
in number
of people

i = i + 1

PDF of Z

End

Yes

No

1

Figure 1: The algorithm for estimating distribution of secondary infections Z.
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With a basic semi-analytical framework available to compute the number of secondary in-

fections inside a room of specified dimensions, for a given viral load, ACH, and occupancy,

we use the algorithm detailed in Fig. 1 with randomized inputs from specified distributions

(e.g., for viral load, air change rate) and available data (e.g., for occupancy, room area) to

generate the pdf of Z.

The algorithm runs over Ns iterations where Ns = 103679 corresponding to the total

number of full service restaurants in 10 US cities, available from SafeGraph data, used for

generating a pdf at the end; i being the iteration index. First, the volume of the mucosalivary

fluid ejected per unit time, evaluated from the exhaled respiratory droplet size volume size

distribution (vsd) multiplied with a random sample from the log-normal viral load distribu-

tion, is fed into the code to generate the number of virions emitted per unit time. This is

used in the turbulent diffusion solutions shown in Eqns. 4-7 . Random samples of exposure

time, speaking time, ACH, and area of POI, along with virus half-life, which is calculated

separately, also act as input parameters for the solver. The resulting concentration field is

used in the dose response model (with a specified dose response constant) to obtain proba-

bility fields. Next, probability fields are multiplied with the POI specific population density

data (from SafeGraph) to obtain Z values. Once the index value reaches Ns, the iteration

ends and the pdf of Z is calculated using Z values from every iteration. Note that the

random variable - number of secondary infections at specific POIs or individual infectivity is

denoted by Z, while the sample-space variable corresponding to Z is denoted by Z. Pdf of Z
i.e. probability density function, defined as probability per unit distance in the sample space

of Z [35], is a powerful tool to describe overdispersion, irrespective of the specific number

of events or samples. Furthermore pdfs are amenable to analytical descriptions. Fundamen-

tally, any long tailed pdf represents an inherently overdispersed random variable, because

the long tail represent finite (but could be small) probability of an event where Z >> mean

of Z, while any pdf other than that represented by a delta function represents heterogeneity.

In view of these, in this paper, the analysis of overdispersion will be addressed using both

simulated and analytical pdfs of Z.

Three key inputs - particle size distribution, viral load distribution, and occupancy in-

formation are described below, details of the rest of the inputs: ventilation rate distribution,

10
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speech time and exposure time distributions can be found in the supplementary material

(section 3). A table summarizing the important parameter values, distributions, and sources

can also be found there (Table 1).

2.2.1 Particle size distribution of exhaled aerosols

10-2 100 102

10-5

100

10-2 100 102

10-5

100

105

Figure 2: Aerosol number size distribution (nsd) on left, and volume size distribution (vsd)

on right, for speaking and breathing as expressed by Eq. 14 and Eq. 4 respectively, from

[33] as a function of initial particle diameter sample space variable Ds,0 i.e. at the moment

of exhalation.

The particle size distributions at the source of the expiratory events: speaking and breathing

are obtained from the review by Pöhlker et al. [33]. A multimode lognormal fitting has been

found to describe the corresponding distribution reasonably well. Number size distribution

(nsd) for exhaled aerosol particles for different expiratory events can be described using a

single function with event specific constants. The general form for the distribution can be

expressed as
dη

dDs,0

= log10(e)
n∑
i=1

Ai
Ds,0

exp

(
−
[

ln(Ds,0/Di)

σi

]2)
(14)

where η is the number concentration of particles (whereas qη is the volume concentration

of particles), D0 is the particle diameter at ejection i.e. at time t = 0, and Ds,0 is the

corresponding sample space variable. Moreover, Ai and σi are constants that depend on

the mode and type of expiratory event. For further details the reader is referred to the
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supplementary material (section 1). Figure 2 shows the number and volume size distributions

that are used in the simulation for the speaking and breathing events. The volume size

distribution (vsd) is integrated over Ds,0 to obtain the volume of the exhaled respiratory

liquid per unit volume of air for the given expiratory event. This volume flow rate ratio

multiplied with the individual viral load ρ and the volume flow of air per unit time, yields

the ejected number of virions (RNA copies) emitted per unit time i.e. the source term

Qx0,y0,z0 of Eqn. 4. Here we choose particles only with Ds,0 < 100µm as the larger ones will

settle in less than 10 s even after accounting for evaporation [19]. A detailed description

of the particle deposition velocity calculation is presented in the supplementary material

(section 2).

2.2.2 Viral load distribution

Viral load, (ρ) has been associated with infectivity and thus, the number of secondary infec-

tions for a given setting [45, 46]. Analyzing respiratory droplet and aerosol laden cough jets

Chaudhuri et al. [19] showed that the corresponding number of infected individuals could

vary by orders of magnitude due to variation in the viral load. Chen et al. [10] analyzed a

large number of SARS-CoV-2 viral load databases and suggested that viral load is an impor-

tant contributor to heterogeneity in secondary infections. They also showed that the viral

load distributions were similar for symptomatic and asymptomatic stages of infection. This

point was further amplified by direct measurements of Yang et al. [47] who showed that viral

load distributions are nearly identical among hospitalized (symptomatic) and asymptomatic

population. In this paper, we utilize measurements of viral load in asymptomatic (including

presymptomatic) population from Yang et al. [47] as an input into the algorithm shown in

Fig. 1. According to [47] at the time of saliva collection, the infected individual was either

asymptomatic or presymptomatic. The pdf of ln(ρv) (ρv is the sample space variable of ρ)

is shown in Fig. 3. We generate and use samples of ρ from this log-normal distribution in

our calculations.

12
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Figure 3: Viral load pdf for asymptomatic (including presymptomatic) population, based on

the histogram data from Yang et al. [47]. The red line shows a normal distribution with µ

and σ given by 13.84 and 3.63 respectively.

2.2.3 Occupancy and area of different points of interest from SafeGraph data

Two of the important inputs in the simulation are the areas of different points of interests

(POI) and the number of people occupying them during each time period of interest. These

data were obtained from SafeGraph - a company that collects anonymous data from mobile

devices. For our simulation, data that is available from individual confined spaces, rather

than that from a collection of several indoor spaces, was felt to be most appropriate. Hence,

we used SafeGraph data for areas of full service restaurants (POI) over ten cities in USA,

namely Atlanta, Chicago, Dallas, Houston, Los Angeles, Miami, New York City, Philadel-

phia, San Francisco, and Washington D.C. The SafeGraph-tabulated area for each restaurant

is multiplied by 0.5 to convert the total area of a given restaurant to the corresponding sit-
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ting area since the dining area is estimated as 50 % of the total restaurant area (based on

typical restaurant design guides [48]; change of this factor does not qualitatively change the

observations). The occupancy information in these POIs between hours 12:00 - 13:00 and

18:00 - 19:00 over seven days starting from March 1, 2020 is obtained from the data sets

created by Chang et al. [44] who developed a mobility network based SEIR model using

the SafeGraph data. These two time periods represent typical lunch and dinner times, and

hence highest occupancy periods of any day. The pdf of the averaged number of susceptible

individuals in restaurants (total occupancy minus one) between hours 12:00 - 13:00 and 18:00

- 19:00 over ten US cities is shown in Fig. 4. Also, shown in the figure is an exponential fit

and the corresponding fitting parameter.

0 20 40 60 80

10-4

10-2

100

Figure 4: Pdf of number of susceptible individuals in full service restaurants at ten US cities,

from SafeGraph data.

14

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.28.21263801doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.28.21263801


3 Results and discussion

3.1 Spatial distributions of particle concentration and infection

probability for fixed conditions

First, we present the spatial distribution of the virus concentration (RNA copies/m3 of air)

with the source at x = 2.5m and y = 2.5m from the origin (at the bottom left corner) of a

10m x 10m x 3m room after 15 minutes of aerosol exhalation by speech and breath. In Fig.

5 the first row (a-c) presents results with a constant viral load ρ = 109 copies/ml, but with

increasing ACH. Note that the third column represents a case without wall reflections and

hence can simulate outdoor conditions. The second row of Fig. 5 (d-f) represents a constant

but five times higher viral load of ρ = 5 × 109 copies/ml. The results demonstrate strong

inhomogeneity of virus concentration and also show that contours scale linearly with ρ for

the same ACH due the linear nature of the governing Eqn. 3. Using the dose response model

(Eqn. 12) the corresponding contours of probability of infection are shown in Fig. 6. Indeed

near unity Ps+b are found near the source, and there is decay with distance from the source.

The Ps+b contours do not scale linearly with ρ due to the nonlinear nature of the dose response

model. Increasing ACH invariably reduces virus concentration for a given ρ. However, the

reduction in the probability of infection may not be proportional to the reduction of the

virus concentration due to the non-linearity involved in the dose response. Interestingly, the

simulated outdoor conditions (c, f) show much smaller infection probability both near and

far from the source w.r.t. the confined cases. This can be attributed to the inherently higher

ACH inside the volume of interest, but primarily due to absence of confinement which allows

the virus concentration to freely decay with space.
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(a) ρ = 109 copies/ml

ACH = 2 h−1

(b) ρ = 109 copies/ml

ACH = 5 h−1

(c) ρ = 109 copies/ml

ACH = 12 h−1, no walls

(d) ρ = 5× 109 copies/ml

ACH = 2 h−1

(e) ρ = 5× 109 copies/ml

ACH = 5 h−1

(f) ρ = 5× 109 copies/ml

ACH = 12 h−1, no walls

Figure 5: Contour plots of spatially resolved virus concentration (RNA copies/m3) at time

t = 15 minutes from start of expiration event (source located at x = 2.5m, y = 2.5m).
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(a) ρ = 109 copies/ml

ACH = 2 h−1

(b) ρ = 109 copies/ml

ACH = 5 h−1

(c) ρ = 109 copies/ml

ACH = 12 h−1, no walls

(d) ρ = 5× 109 copies/ml

ACH = 2 h−1

(e) ρ = 5× 109 copies/ml

ACH = 5 h−1

(f) ρ = 5× 109 copies/ml

ACH = 12 h−1, no walls

Figure 6: Contour plots of spatially resolved probability of infection Ps+b(x, y) at time t = 15

minutes from start of expiration event (source located at x = 2.5m, y = 2.5m).

3.2 Statistical distributions of secondary infections generated from

realistic input distributions

A simulation based on the algorithm presented in Fig. 1 is run for each data point available

from the predefined SafeGraph dataset, resulting in a sample size of Ns = 103679. We place

one infected individual at each POI, at random locations within its premises. As such, most

inputs, including viral load, ACH, exposure time, speaking time, source location (x0, y0),

are randomized. ACH is generated from a log-normal distribution with a median ACH=

2.16 hr−1, such that µACH = 0.7701, σACH = 0.7554 based on measurements by Bohanon

et al. [49]. Room height H = 3 m, height of source (seated) z0 = 1 m, indoor conditions

(T = 21.7oC, RH = 0.50, UVindex = 0), and dose response constant rv = 1/1440 are held
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constant. The resulting distribution of number of secondary infections - pdf of Z is presented

in Fig. 7. An analytical solution g(Z) to be derived in sub-section 3.3 is also shown in the

figure.

0 10 20 30 40

10-4

10-2

100

Figure 7: Pdf of the number of secondary infections: Z and negative binomial fit. The

analytical function g is given by Eqn. 22. g(µ = 13.84, σ = 3.63, α = 1.123×10−10, ν = 7.71).

The stretched tailed nature of the simulated pdf is immediately apparent. This shows that

there is small but finite probability of tens of secondary infections per infected individual. For

this simulation the mean(Z)s = 〈Z〉s = 0.14 indicating that over this one hour, on average

less than 1 person got infected per infector. The calculated total number of infections

is 14482, with many of the infections occurring in large superspreading events. As such,

only 3.57 % of the infected individuals infected 80 % of the population over this time.

This could also be the reason why it is generally difficult to culture the virus from the air,

though that was unequivocally demonstrated by Lednicky et al. [50]. High probability of
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infection, which as shown in the paper typically occurs at high viral load, could be correlated

with high probability of virus detection in the air. Direct virus detection from air could

therefore necessitate sampling from a large population of infected individuals. Clearly, the

finite probability of Z >> 〈Z〉 recovers the inherently overdispersed nature of SARS-CoV-2

transmission dynamics. Fitting a negative binomial probability distribution function to the

Z-pdf yields a good fit, with a dispersion parameter k = 0.029. While the fit quality worsens

at the pdf tails, the dispersion parameter is in the same order as the corresponding values

for SARS and measles estimated by Lloyd-Smith et al. [1]. However, it is to be noted that

we are considering only infections over a period of about 1 hour on average, as opposed to

the entire course of infection, hence 〈Z〉 should not be interpreted as R0. Similarly, the

qualitative k value thus obtained should be interpreted with care.

Figure 8 shows the joint pdf of ρ and Z. The close correlation of the two random

2 4 6 8 10 12

-4

-3

-2

-1

0

1

2

0

0.05

0.1

0.15

Figure 8: Joint pdf of viral load and number of secondary infections.

variables across nearly six orders of magnitude is immediately apparent from this figure.
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While correlation may not imply causality in general, it is reasonable in this case that the

extreme variation in ρ is causing a similar variation in Z, with other parameters controlling

the slope and strength of the correlation.

We present the jpdf of ACH and Z in Fig. 9. It is apparent that the highest number of

infections Z occur at lower air exchange rates, as expected; however, the majority occur at

an intermediate air exchange rate of about 1-1.5 ACH, in part because very low and very

high air exchange rates are simply less common. Furthermore, it is also clear that dispersion

of Z and ACH are indeed negatively correlated. The effect of universal, high ventilation

rates, and masks will be taken up later.
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Figure 9: Joint pdf of ACHand Z.
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3.3 Derivation of the analytical pdf of Z: g(Z)

The viral load pdf from Yang et al. [47] can be well approximated by a log-normal distribution

with parameters µ and σ given by µ = 13.84 and σ = 3.63. This is shown in Yang et al. and

also shown in Fig. 3. As such, we used the following pdf of viral load f(ρv) for generating

inputs into the simulation

f(ρv) =
1

ρvσ
√

2π
e−(ln(ρv)−µ)

2/2σ2

(15)

Due to its extremely large (over O(12)) variation, our analysis shows that viral load ρ is one

of the most dominant variables in controlling overdispersion of secondary infections Z, as is

apparent from Fig. 8. This result can also be presented in terms of secondary attack rate

- a more generalized descriptor, defined as Z̃ = Z/n where n is the number of susceptible

individuals present at the given POI over the period of interest τ . Z̃ is the sample space

variable corresponding to Z̃. Variation of Z̃ w.r.t. ρ is shown in Fig. 10. Clearly, this plot

reflects the dose-response function (Eqn. 12) on a macro scale given the dominant influence

of ρ in controlling probability of infection and eventually secondary attack rates. Therefore,

we propose a function similar to Eqn. 12 to model the response of Z̃ to ρ variation. This is

shown below:

Z̃ = 1− e−αρ (16)

We can also write

ρ = − 1

α
ln(1− Z̃) (17)

The constant α can be estimated as the inverse of the average number of virions inhaled

per unit volume of mucosalivary liquid ejected that is required for infection probability of

1 − e−1 = 0.63. For the average room volume 〈V 〉 = 6.34 × 102 m3, average speaking time

〈ts〉 = 1469 s, average exposure time 〈τ〉 = 3914 s, average air change rate, 〈ACH〉 = 2.87

hr−1, and deposition parameter based on average room area and volume β0 = 0.002 s−1, α

can be estimated as

α =
rvQ̇l〈ts〉V̇b
〈V 〉

∫ 〈τ〉
0

ψ(t)e−(〈ACH〉/3600+β0)tdt (18)

ψ(t) is given by Eqn. 9, and Q̇l = 2.223 × 10−6ml/s. Note that all the 〈〉 quantities

mention averages over the distributions used in the present simulation. Equation 18 yields
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α = 1.123×10−10 ml/copies. The comparison of Eq. 16 and the simulation results are shown

in Fig. 10.

Figure 10: Scatter plot of viral load (ρ) vs secondary attack rate (Z̃). The black dot curve

shows Eqn. 16 with α = 1.123× 10−10 ml/copies.

With the functional form of the pdf of the viral load known (given by Eqn. 15) we can

immediately substitute Eqn. 17 into Eqn. 15 to eventually derive the pdf of Z̃ using the

generalized equation below.

φ(Z̃) = f

(
− 1

α
ln(1− Z̃)

) d
(
− 1
α
ln(1− Z̃)

)
dZ̃

(19)

Using the log-normal form of f we derive the analytical function below which could be used

to model the pdf of secondary attack rate Z̃: φ(Z̃). However, the same method should be

applicable to other functional forms of f , like a Weibull distribution as in [10] instead of
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log-normal.

φ(Z̃) =
1(

−|1− Z̃|ln(1− Z̃)
)
σ
√

2π
e−{ln(− 1

α
ln(1−Z̃))−µ}2/2σ2

(20)

Comparison of Eqn. 20 with the simulation results is shown in Fig. 11.
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100
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Figure 11: Pdf of Z̃ and its comparison with the analytical result given by Eqn. 20

It is evident that Eqn. 20 describes the simulation data to good quantitative accuracy.

It is also remarkable that very important effects of area, ACH, virus kinetics, exposure

and speaking times could be encapsulated within one constant α. It is to be recognized

that the equation is valid only for Z̃ < 1. This is an inherent feature emanating from the

derivative of the functional form of the dose response model which yields the 1− Z̃ term in

the denominator. Importantly, the equation can describe the range 0 ≤ Z̃ < 1 with high

degree of veracity. Now, we can write Z = N(1− e−αρ) using Eqn. 16. For a fixed α, clearly

N and 1− e−αρ are independent random variables. Therefore, for any given pdf of N given
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by h(N), pdf of Z/N given by φ(Z/N) and a known α, and using the general equation that

describe the pdf of the product of two independent random variables, we can write the pdf

of Z given by

g(Z) =

∫ ∞
0

h(N)φ(Z/N)
1

N
dN. (21)

Using the exponential distribution h(N, ν) = 1
ν
e−

N
ν shown in Fig. 4 we derive for Z < N

g(Z) =

∫ ∞
0

e−
N
ν

−νσ
√

2π(N −Z)ln(1−Z/N)
e−{ln(− 1

α
ln(1−Z/N))−µ}2/2σ2

dN (22)

It is to be noted that the constants µ, σ are properties of the viral load distribution, ν is the

constant of the occupancy distribution, and α encapsulates τ, ts, ACH,A, V, t 1
2

etc. according

to Eqn. 18. It is apparent that the pdf g(Z) is stretched to higher (lower) Z values when

µ, σ, ν or α increases (decreases). The remarkable match between this analytical function:

g - the analytical pdf of the number of secondary infections and that obtained from the

simulation data has been shown in Fig. 7. We revisit it here for further discussion. It is

evident that the stretched tail of the pdf of Z results from the two stretched exponential

functionals of Z and N . This can be verified by noting that when either σ → 0 or ν → 0

the overdispersion of Z vanishes. The first stretched exponential arising from the lognormal

distribution of viral load ρv and the latter from the exponential distribution of number of

people at the different POIs. Therefore, it is the joint contribution of overdispersed viral load

and overdispersed occupancy that results in overdispersion of secondary infection numbers

causing superspreading events. This is shown here with a single equation. The 〈Z〉 obtained

from the analytical pdf, given by 〈Z〉 =
∫∞
0
Zg(Z)dZ. We find mean and standard deviation

as 〈Z〉 = 0.13, std(Z) = 0.99, respectively, in comparison to 〈Z〉s = 0.14 and std(Z)s = 0.87

from the simulations. The analytical pdf g(Z) is expected to be a generalized result and

could be applied for any large number of indoor POIs, without much restriction on their

type.

3.4 Variants and mitigation measures

Finally, we test whether the derived Eqn. 22 can describe overdispersed transmission associ-

ated with a different viral load distribution equally well. To this end, we generate a viral load
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distribution with a mean which is 1000 times the mean of the original distribution presented

in Fig. 3. Thus, while Fig. 3 represents the pdf of the original variant, the new log-normal

distribution characterized µ = 20.67 and σ = 3.63 might represent the pdf of viral load of

the δ−variant infected individuals. Early data from Li et al. [51] suggest that the viral

loads of the δ−variant could be as high as “1000 times greater compared to A/B lineage

infections during initial epidemic wave in China in early 2020”. The simulation results in

terms of Z-pdf are presented in Fig. 12. The greater transmissibility of the δ−variant under

the assumption of 1000-fold higher mean viral load is immediately apparent. In comparison

to the 〈Z〉 = 0.13 for the original variant, the 〈Z〉 = 2.64 for δ. Therefore, just based

on viral load, according to the calculations and model, δ−variant could be nearly 20 times

higher transmissible on average w.r.t. the original variant, over about an hour of contact.

Interestingly, with just increased µ, Eqn. 22 can capture the pdf of Z for the δ−variant,

remarkably well, alongside the one for the original variant. However, it is to be recognized

that there is some uncertainty on the assumption that mean viral load of the δ-variant is 1000

times higher than the original variant. Data also suggest that viral load and infectiousness

potential (using a proxy of culture-positivity for example), while monotonic in nature, may

not demonstrate a linear relationship [52]. Furthermore, 〈Z〉 6= R0. Hence, the enhancement

factor thus found is valid only within the context of the assumptions and scope of this work.
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Figure 12: Pdf of Z and its comparison with the analytical result given by Eqn. 22

for original variant (red circle symbols, red bold line)

g(µ = 13.84, σ = 3.63, α = 1.123× 10−10, ν = 7.71) and for δ−variant (blue square symbols,

blue bold line) g(µ = 20.67, σ = 3.63, α = 1.123× 10−10, ν = 7.71).

Finally, we explore the effect of adopting uniformly high ventilation rates and masks,

on the distribution of secondary infections. To that end, we keep the ventilation rates

constant at ACH = 5 hr−1 and assume that the entire population (including the infectors and

susceptibles) are wearing masks that provide 50% reduction by volume of exhaled aerosols

and 50% reduction in the correspondingly inhaled aerosols. The results are shown in Fig 13.
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Figure 13: Effect of masking, fixed ventilation rates, vaccines, and reduced occupancy. Solid

red and blue lines correspond to the analytical solutions given by Eqn. 22 for the original

and δ−variant respectively, for 〈ACH〉 = 2.9 hr−1 and without masks, as shown in Fig.

12. For fixed ACH = 5 hr−1, and with masks blocking 50 % volume of aerosols during

inhalation and exhalation, the dashed red line shows the analytical solution for original

variant g(µ = 13.84, σ = 3.63, α = 2.36 × 10−11, ν = 7.71) while the dashed blue line shows

the analytical result for δ−variant g(µ = 20.67, σ = 3.63, α = 2.36 × 10−11, ν = 7.71). The

solid green line: g(µ = 20.67, σ = 3.63, α = 2.81 × 10−11, νv = 4.01) shows the effect of

80% vaccination coverage, with 60% vaccine efficacy, with all individuals wearing masks

that block 50% of the aerosols during exhalation and inhalation. The dash-dotted green

line: g(µ = 20.67, σ = 3.63, α = 2.81× 10−11, νv = 2.00) shows the effect of 80% vaccination

coverage, with 60% vaccine efficacy, with all individuals wearing masks that block 50% of

the aerosols during exhalation and inhalation along with occupancy restriction to 50% of the

original occupancy. The top left inset shows the zoomed in view of the left side of the pdfs.

Please refer Table 3 in the supplementary material for detailed values.
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We observe that such interventions result in significant reduction in transmissibility for

the original variant; reducing the mean to 〈Z〉 = 0.04 (from 〈Z〉 = 0.13 obtained without

any interventions) with significant reduction in the extension of the tail. Such intervention

effect remains substantial, yet less pronounced for the δ-variant where the 〈Z〉 = 1.69 (w.r.t.

〈Z〉 = 2.64 obtained without any interventions) and tail remains sufficiently stretched with

some shift in the overall pdf towards lower Z. Once again, we note that these numbers are

obtained over nearly an hour of exposure time on average. Note that, in our model, α does

not change between the original and the δ variant. Only the µ increases, resulting in an

increase in the higher proportion of secondary attack rates close to unity as the virus strain

switches from the original variant to the δ−variant. A more detailed analysis of the influence

of individual parameters: mean viral load, mean occupancy, and mean ventilation rates on

the mean and standard deviation of Z could be found in the supplementary material (section

5).

Within the scope of the present study - social gatherings in restaurants, we ask what kind

of spread could be expected for the δ−variant given the period of exposure and available

occupancy data, in a population where a large fraction is already vaccinated? This is shown

in Fig. 13 by the green curves. Using the realistic ACH distribution and with masks that

can reduce both emission and inhalation of aerosol volumes by 50%, respectively, we do

a basic calculation including the effect of vaccination. Assuming vaccine efficacy ηvac =

0.6 and vaccination coverage efficiency ηcov = 0.8 representing fraction of the population

vaccinated, we estimate the new population of susceptible individuals at a given POI as

nv = (1− ηvacηcov)n. We do not consider any change in viral load or change in distribution

of infectious cases. Fitting an exponential distribution to nv, the new constant νv = 4.01.

Clearly, from Fig. 13 we observe a significant drop in the number of secondary infections

and superspreading events. The pdf of the number of secondary infections with the δ-variant

with partially effective masks and vaccines is much less stretched than the original variant

without masks or vaccine. Still the finite risk of superspreading event sustains. However, with

80% vaccination and 50% reduced occupancy, coupled with masks, a significant reduction

in overdispersion is attained. This behooves the need for rapidly vaccinating the population

alongside physical intervention measures like high-quality masks, reduced occupancy, and
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across the board higher ventilation rates.

4 Conclusions

Overdispersion leading to superspreading events is a major driving force of the Covid-19

pandemic. Understanding the factors that lead to overdispersion in individual infectivity

are also considered long standing scientific problems. Coupling an aerosol mixing model

with real-world inputs: exhaled aerosol size distribution for speech and breath, measured

viral load distribution, occupancy information from SafeGraph for full-service restaurants

in major US cities, realistic ventilation rate distributions, we explore the overdispersion in

the number of secondary infections per infector. The simulated results demonstrate that

aerosol transmission route is consistent with the overdispersed individual infectivity with

viral load variability being a dominant factor that controls secondary attack rates alongside

ventilation rate, exposure time, and speaking time. We derive analytical expressions that

can accurately and probably for the first time, describe the simulated pdfs of the secondary

attack rates and number of secondary infections, respectively. The function for the secondary

infection number pdf elucidates quantitatively, how overdispersed distributions of viral load

and occupancy, jointly control the overdispersion in the number of secondary infections per

infector. Finally, given the input data, modeling assumptions and the scope of the study, it

appears significant reduction in transmissibility (both the average, as well as the dispersion)

of the highly transmissible δ−variant necessitates all possible mitigation measures: efficient

masks, high ventilation rates, and reduced occupancy, even after a significant fraction of the

population has been vaccinated.
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