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Abstract 21 

Suicide is among the leading causes of death in youth worldwide. Early identification 22 

of children with high risk for suicide is key to effective screening and prevention strategies. 23 

Brain imaging can show functional or structural abnormalities related to youth suicidality, but 24 

literature is scarce. Here we tested the extent to which brain imaging is useful in predicting 25 

suicidal risk in children. In the largest to date, multi-site, multi-ethnic, epidemiological 26 

developmental samples in the US (N = 6,172; the ABCD study), we trained and validated 27 

machine learning models and deep neural networks on the multimodal brain imaging derived 28 

phenotypes (morphometry, white matter connectivity, functional activation, and connectivity) 29 

along with behavioral and self-reported psychological questionnaire data. The model trained 30 

on diffusion white matter connectomes showed the best performance (test AUC-ROC = 74.82) 31 

with a one percentage increase compared with the baseline model trained on behavioral and 32 

psychological data (test AUC-ROC = 74.16). Models trained on other MRI modalities showed 33 

similar but slightly lower performances. Model interpretation showed the important brain 34 

features involved in attention, emotion regulation, and motor coordination, such as the anterior 35 

cingulate cortex, temporal gyrus, and precentral gyrus. It further showed that the interaction 36 

of brain features with depression and impulsivity measures contributed to the optimal 37 

prediction of youth suicidality. This study demonstrates the potential utility of a multimodal 38 

brain imaging approach to youth suicidality prediction and uncovers the relationships of the 39 

psychological and multi-dimensional and multi-modal neural features to youth suicidality. 40 
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Introduction 41 

Suicide is a major public health problem, with more than 25 million suicide attempts 42 

occurring each year worldwide. In youth, suicide is among the leading causes of death. Most 43 

suicide research focuses on the adult population 1, and the literature on youth suicidality has 44 

been scarce. Identifying the neural underpinnings of youth suicidality will advance research 45 

by allowing brain-based markers and targets for prediction, monitoring and prevention 2. Also, 46 

early detection of youth suicidality may not only prevent death by suicide among children but 47 

also reduce the risk of psychopathology later in life.  48 

Prior brain imaging literature suggests a link between youth suicidality and abnormally 49 

delayed neurocognitive development. Children with suicidal ideation showed a reduced brain 50 

response to reward 3 or decreased cognitive capacity 4. As abnormal neurocognitive 51 

development may cause long-term sequelae, young children with prior suicide ideation are 52 

more likely prone to the risk for suicide in their later life.  53 

Based on recent findings of brain abnormalities linked to suicidality, several studies 54 

applied machine learning to brain imaging data in small samples. Gosnell et al. classified 55 

suicidal psychiatric inpatients and non-suicidal inpatients with resting-state functional 56 

connectivity and structural neuroimaging5,6. Just et al. demonstrated that the functional 57 

coupling of the brain regions like the superior medial frontal and anterior cingulate regions, 58 

during death-related and life-related concepts, could identify youth with suicidal ideation 7. 59 

Although previous studies show promise, the practical utility of neuroimaging-based prediction 60 

of youth suicidality remains untested rigorously in sufficiently large, representative samples 61 

using rigorous predictive modeling approaches.  62 

Multimodal data integration may help predict. Combining the brain’s structural and 63 

functional aspects, multimodal brain imaging may better account for complex and dimensional 64 

brain abnormalities related to suicidality compared with a single modality approach 8. No 65 
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literature in suicidality research, however, has provided information of what combinations of 66 

imaging modalities would optimally explain brain abnormalities related to youth suicidality. 67 

Here, we aim to identify youth with suicidal ideation using deep learning trained on the 68 

brain structural, functional, and connectivity data, as well as behavioral and psychological 69 

measures. Beyond prediction, using interpretable deep learning, we aim to identify brain circuit 70 

features and psychological measures of which nonlinear interactions may contribute to 71 

prediction. Leveraging large, representative, epidemiological, multi-site, and developmental 72 

study in the US, we test the generalizability and practicality of the prediction models. We also 73 

test the utility of advanced computational learning strategies, such as stacking ensembles for 74 

data integration and GANs for data augmentation in psychiatric research.  75 
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Methods 76 

Study Sample 77 

The Adolescent Brain and Cognitive Development (ABCD) study recruited a nationally 78 

representative cohort of 9- and 10-year-old children from 21 research sites across the US 4. 79 

For the current analysis, we used minimally preprocessed data from the curated ABCD annual 80 

release 2.0.1 and selected ABCD participants based on the availability of non-imaging 81 

measures and neuroimaging data. The number of participants was different in each dataset: 82 

sMRI, dMRI, and rs-fMRI dataset included 5,878 participants (783 cases and 5044 controls 83 

for suicidal ideation; 48 cases and 5779 controls for suicidal attempt). SST fMRI, N-back fMRI, 84 

and MID fMRI included (592 cases and 4035 controls for suicidal ideation; 34 cases and 4596 85 

controls for suicidal attempt). Thus, total participants consisted of 6,172 children (837 cases 86 

and 5,335 controls).  87 

 88 

Non-imaging features 89 

Clinical Outcomes 90 

Suicidal ideation and attempts were assessed from the computerized version of Kiddie 91 

Schedule for Affective Disorders and Schizophrenia (KSADS-COMP) reported by children or 92 

caregivers 9. Validity of the computerized version of KSADS has been shown elsewhere9. 93 

Suicidal ideation was constructed to measure both passive suicidal ideation and active suicidal 94 

ideation10. Among the reports from children and parents, we used ones reporting more severe 95 

symptoms. In this study, we used suicide ideation as the main outcome and suicide attempt 96 

as the secondary target, given the data availability (fewer numbers of participants with suicide 97 
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attempts than ones with suicide ideation) and the consideration that suicide ideation precedes 98 

suicide attempt.   99 

 100 

Psychosocial features 101 

To estimate the feasibility of a brain-based prediction model, we constructed a 102 

psychosocial model as a benchmark model. The benchmark model consisted of demographic, 103 

psychological health, mental health, cognition, and environmental variables, which reported 104 

associations with suicidality in the literature.  105 

Sociodemographic variables we considered were age, sex, race, highest parental 106 

education, family income, and parental marriage status. Physical health variables included 107 

anthropometric variables (height, weight, BMI, and brain volume) and sleep function assessed 108 

by Sleep Disturbances Scale for Children 11. For mental health, we measured dimensional 109 

psychopathology (the Child Behavior Checklist 12), impulsivity (UPPS-P 13), mania symptoms 110 

(Parent General Behavior Inventory14), psychosis (ABCD prodromal psychosis scales 15), and 111 

behavioral inhibition/approach system (PhenX modified version 16). Cognitive ability was 112 

measured using NIH toolbox 17. Environmental variables contained the measures of family 113 

conflict, early life stress (ELS), and friendship. Family conflict consisted of nine measures, 114 

which were assessed by ABCD Youth Family Environment Scale-Family Conflict Subscale 115 

Modified from PhenX. The ELS measures were composite variables based on child exposure 116 

domains in the ABCD study including household challenges, neglect, and abuse as main 117 

categories. Subcategories of ELS data contained parental separation or divorce, criminal 118 

household member, household substance abuse, mental Illness in household, mother treated 119 

violently in household challenges, emotional neglect, physical neglect in neglect, physical 120 

abuse, and sexual abuse in abuse. The items of each subscale were derived from various 121 

instruments rated by children themselves or parents:  ABCD Youth Family Environment Scale-122 

Family Conflict Subscale Modified from PhenX, ABCD Diagnostic Interview for DSM-5 123 
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Traumatic Events, ABCD Family History Assessment, ABCD Parent Demographic Survey, 124 

ABCD Children’s Report of Parental Behavioral Inventory, and ABCD Parental Monitoring 125 

Survey. We assigned 0 to those who have never had ELS and 1 to those who have at least 126 

one type. For three main categories, a child has 1 if at least one subcategory is 1. Missing 127 

values were imputed with Bayesian approach and then z-normalization was performed. 128 

 129 

Brain imaging analysis  130 

Brain imaging included in this study are as follows: structural MRI (sMRI), diffusion 131 

MRI (dMRI), resting-state functional MRI (rs-fMRI), and task-based functional MRI. For task-132 

based functional MRI, participants performed three types of tasks including stop signal task 133 

(SST), the emotional version of N-back (N-back), and the monetary incentive delay task (MID).  134 

MRI scanning was performed using a 3T scanner (Siemens Prisma, General Electric 135 

(GE) 750 and Philips). Image processing and quality assessment for the brain imaging 136 

datasets were performed at the ABCD Data Analysis and Informatics Center (DAIC). The 137 

ABCD MRI quality assessment consists of three parts: protocol compliance checking, 138 

automated quality metrics, manual review of data quality 18. Firstly, protocol compliance 139 

checking examined whether key imaging parameters matched expected values of a given 140 

scanner, such as voxel size or repetition time. Secondly, quality control metrics were obtained 141 

for sMRI and fMRI. Mean motion and the number of slices and frames affected by slice dropout 142 

by head motion were controlled. Thirdly, the data quality was manually assessed by trained 143 

investigators as binary (0 = reject and 1 = accept) considering the image quality and the 144 

severity of the artifact (motion, intensity inhomogeneity, white matter underestimation, pial 145 

overestimation, magnetic susceptibility artifact). Images that failed to pass the quality 146 

assessment were excluded from the analysis.  147 
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We acquired multi-shell diffusion MRI from an ABCD study using the following protocol 148 

19. The ABCD Data Analysis and Informatics Center (DAIC) preprocessed diffusion MRI 149 

including distortion and motion correction. B0 distortion and gradient nonlinearity distortion 150 

were corrected 20,21. We used individualized connectome data to estimate brain imaging 151 

phenotypes. Using MRtrix3, we preprocessed diffusion MRI (dMRI), estimated whole-brain 152 

white matter tracts, and generated an individualized connectome 22. To estimate connectivity, 153 

we used streamline counts which represent the fiber connection strength associated with fiber 154 

integrity 23,24. After decreasing the noise, we performed bias correction with the N4 algorithm 155 

of the Advanced Normalization Tools (ANTs) pipeline 25. Of the target 20 million streamline 156 

counts, we filtered out preliminary tactograms with spherical-deconvolution for a 2:1 ratio. 157 

Finally, we generated an 84 x 84 whole-brain connectome matrix for each participant with 10 158 

million streamline counts using T1-based parcellation and segmentation from FreeSurfer. All 159 

the computation was carried out by supercomputers at the Argonne Leadership Computing 160 

Facility Theta and Texas Advanced Computing Center Stampede 2. 161 

For resting-state functional MRI acquisition, participants completed four 5-minutes 162 

resting-state blood oxygen level-dependent scans, with their eyes open and fixated on a 163 

crosshair. Participants were also scanned during cognitive tasks. Resting-state functional MRI 164 

and task-based functional MRI data were processed and analyzed according to standardized 165 

ABCD protocols 19. Because of post-processing problems on resting-state and task-based 166 

functional MRI data collected on the Philips scanners, all data from the Philips scanner were 167 

removed from the current analysis following the ABCD data analysis center’s advice. For 168 

functional brain features, we used functional connectivity measures from resting-state fMRI 169 

and pairwise correlation coefficients between each region of interest (ROI) from task-based 170 

fMRI. The pairwise correlations were examined for ROIs within functionally defined 171 

parcellations (i.e., Gordon networks) and subcortical ROIs, and applied Fisher’s r to z-172 

transformation.  173 

 174 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 14, 2021. ; https://doi.org/10.1101/2021.10.10.21264580doi: medRxiv preprint 

https://paperpile.com/c/ek9uHD/AW8L
https://paperpile.com/c/ek9uHD/AYfFz+KYtaK
https://paperpile.com/c/ek9uHD/voOab
https://paperpile.com/c/ek9uHD/d76Ji+ryA8B
https://paperpile.com/c/ek9uHD/xUZ5z
https://paperpile.com/c/ek9uHD/AW8L
https://doi.org/10.1101/2021.10.10.21264580
http://creativecommons.org/licenses/by-nc-nd/4.0/


Deep Neural Network  175 

Firstly, we split the data into discovery and replication sets. Within the discovery set, 176 

we trained, optimized, and validated models with stratified 5 fold cross validation. Secondly, 177 

we tested the generalizability of the optimized models on the balanced (down-sampled) 178 

replication set and then measured model performance with sensitivity, specificity, accuracy, 179 

area under the receiver operating characteristic curve (ROC-AUC), and area under the 180 

precision recall curve (AUPRC). These metrics were estimated using the pROC package v. 181 

1.16.2 in the R programming language and the sklearn package for average precision scores.  182 

The benchmark model contained existing non-imaging variables about suicidality. 183 

These variables were also included in all neuroimaging models, since one of our research 184 

goals was to test whether neuroimaging data would be useful for suicide prediction.  185 

For multimodal interpretable neuroimaging models for identifying youth suicidality, we 186 

used TabNet and further implemented stacking ensemble, GAN-based data augmentation, 187 

and dimension reduction methods. TabNet has been developed for tabular data enabling 188 

rigorous end-to-end deep learning with built-in interpretability 26. This neural network is based 189 

on a sequential attention mechanism that gently selects features to infer at each decision step 190 

and then accumulates processed information to make final prediction decisions. By using 191 

sequential attention mechanisms, selecting sparse features, the model could learn efficiently 192 

at each decision-making stage. Therefore, the model with fully related variables shows high 193 

performance by taking advantage of related variables. This sparsity could allow for more 194 

interpretable decision-making through visualization of variable selection masks 26. In this study, 195 

given the large feature space of the multimodal brain imaging data, TabNet would enable 196 

effective learning of latent representations of the complex data as well as interpretation of the 197 

models. Running a single TabNet experiment took around 18 hours on three V100 GPU cards. 198 

Hyper-parameter tuning was done by grid search. We changed the width of the attention 199 

embedding for each mask, coefficient for feature reusage in the masks, number of steps, 200 
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learning rate and weight decay. Thus, we used 32-dimension hyper-parameter spaces and 201 

found the best hyper-parameter dimension for each dataset.  202 

 203 

Stacking Ensemble Modeling 204 

Stacking ensemble algorithm, widely used ensemble methods along with voting and 205 

bagging, is a two-level classification consisting of base classifier level and meta-classifier level 206 

27. Previous studies showed that a multimodal stacked ensemble algorithm yielded better 207 

representation than single modal algorithms 28,29. Therefore, we aimed to test the effects of 208 

stacking ensembles on multimodal neuroimaging data, and whether stacking ensemble 209 

methods take advantage of learning higher-level feature representation. 210 

We generated stacking ensemble models whose output types of base learners are 211 

continuous probability values. Trained models of single neuroimaging data with TabNet are 212 

base learners. Train data and test data used at the meta-classifier level were concatenated 213 

with predicted results from cross-validation and testing in base learners. Logistic regression, 214 

xgboost, and random forest were used as meta-learners. The best results from the three meta-215 

learners were reported.  216 

 217 

Data Augmentation 218 

For imbalance between case and controls in suicide prediction that might constrain 219 

representation learning, we implemented GAN-based data augmentation approaches through 220 

conditional tabular GAN 30.  Given the fact that youth suicidal ideation and attempts are rare 221 

events at the population level, we observed a highly imbalanced distribution between youth at 222 

risk for suicidality. Thus, augmented suicidality samples with synthesized data. We generated 223 

as many as samples until generated samples showed acceptable CTGAN metrics 30: 224 
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logistic_detection (Logistic Regression classifier to detect whether each row is real or synthetic, 225 

the returned score is 1 - ROC-AUC score obtained by the classifier): 0.99, 226 

svc_detection(Support Vector Classifier to detect whether each row is real or synthetic): 0.92 227 

in rs-fMRI + sMRI + dMRI dataset and logistic_detection: 0.99, svc_detection: 0.99 in rs-fMRI 228 

+ SST fMRI + N-back fMRI + MID fMRI dataset. As a result, the augmented discovery set was 229 

less imbalanced with a ratio of 1: 2.5.  230 

 231 

Dimension reduction 232 

We utilized TabNet and principal component analysis (PCA) to reduce dimensionality 233 

by selecting important features for modeling. For feature selection, we chose the top 50 234 

features (in TabNet) or components (in PCA) in each neuroimaging modality estimated in 235 

validation sets. This number was based on our observation that the rate of the increase in 236 

explainability slowed for more than 50 features (Supplementary Figure 1). For PCA, the full 237 

Singular Value Decomposition method was used 31.  238 
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Results 239 

Demographics 240 

We used data from the ABCD study, a nationwide multisite prospective, longitudinal 241 

study. The enrolled samples consisted of 9 and 10-year-old children in the US across 21 sites. 242 

Total participants used in this analysis included 837 children with suicidality (i.e., Suicidal 243 

ideation or Suicidal attempt) and 5,335 controls (Table 1). 244 

 245 

Identification of children with suicidal ideation using neuroimaging data 246 

Our neuroimaging models for classification of suicidal ideation showed varied 247 

performances ranging from test ROC-AUCs of 48.26 to 61.22 (AURPCs: 47.85ー60.06; Table 248 

2). Among the models trained on neuroimaging features only, the structural MRI, the diffusion 249 

MRI and the resting-state fMRI models (ROC-AUCs: 61.22ー57.18, AURPCs: 52.74ー60.06) 250 

provided higher performances than task fMRI models (ROC-AUCs: 48.26ー53.42, AURPCs: 251 

47.85ー50.87), which exceeded at chance level. All the neuroimaging models fell short of the 252 

classification performance of the psychosocial model, which yielded a moderate accuracy in 253 

classifying children with suicidal ideation and controls (ROC-AUC = 74.16, AUPRC: 70.18).254 

  255 

 256 

Combining psychosocial and imaging-based data showed improvements in 257 

identifying children with suicidality. 258 

When combining behavioral and brain imaging-derived  phenotypes, models showed 259 

moderately accurate performance in classifying children with suicidal ideation, ranging from 260 
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ROC-AUC 69.54% to ROC-AUC 74.16% (AUPRC: 64.79ー67.85; Table 2). Moreover, to 261 

address problems brought from the large feature space of multimodal neuroimaging data, we 262 

implemented dimension reduction and data augmentation strategies to further optimize the 263 

suicide prediction models. We found that deep neural net-based feature selection led to 264 

marginal improvement of ROC-AUC in the combined models of structural MRI, diffusion MRI, 265 

SST fMRI, and MID fMRI. Of note, the diffusion MRI model outperformed the benchmark 266 

model by a small margin (diffusion MRI: 74.82 ROC-AUC, 70 AUPRC). 267 

 268 

Integration of multimodal neuroimaging data   269 

  We further investigated whether fusing psychosocial and multimodal neuroimaging 270 

data could improve the identification of suicidal ideation. While most multimodal neuroimaging 271 

models failed to show better classification than the benchmark model, two models (i.e., dMRI 272 

+ rs-fMRI, rs-fMRI + sMRI + dMRI) showed comparable ROC-AUCs to that of the benchmark 273 

model (Table 3). These models were based on feature selection and ensemble methods.  274 

  Also, the combined model of sMRI and dMRI, which represents brain morphology and 275 

structural connectivity of white matter, offered higher ROC-AUC compared with the single 276 

modal performances of sMRI and dMRI, respectively. We also found that integrating functional 277 

MRIs slightly exceeded the performance of each single modality model: e.g., rs-fMRI + SST 278 

fMRI: 73.58 ROC-AUC, rs-fMRI + N-back fMRI: 73.82 ROC-AUC.  279 

  Compared with the same multimodal models trained on original features, the feature 280 

selected models provided slightly higher performances. In ensemble models, while the 281 

connectivity models (i.e., sMRI, dMRI, rs-fMRI) showed slight improvements in test ROC-282 

AUCs, the models trained on task fMRI-derived activation estimates showed a sharp decrease 283 

to 53.94ー56.71 ROC-AUCs. 284 
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 285 

Model Interpretation 286 

Across modalities, the feature importance plots of our models included brain derived 287 

features related to anterior cingulate cortex, temporal gyrus, and precentral gyrus (Figure 1). 288 

Common psychological features were observed including Internalizing-externalizing 289 

comorbidity, Prodromal psychosis, Anxiety, Depression, and Family conflict. These 290 

multimodal features showed patterns in predicting the risk for suicidal ideation across 291 

modalities: top 2~17% features accounted for 90% performances. These important features 292 

consisted of small numbers of psychological features (9~17%) and large amounts of 293 

neuroimaging derived features (83~90%). Complete feature importance details are in 294 

Supplementary Figure 2.  295 

296 
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Discussion 297 

We tested deep neural networks trained on the largest youth brain multimodal MRI 298 

data, as well as parent-reported psychosocial questionnaires, to predict youth with suicidal 299 

thoughts. Our deep neural networks showed both feasibility and limitations of the brain-based 300 

risk prediction of youth suicidality. Throughout our systematic model comparison, the one 301 

trained on white matter connectivity and psychological data performed the best. Models 302 

trained on multimodal brain imaging-derived data alone, including white matter connectivity, 303 

morphometry, functional connectivity, and task reactivity, showed above-chance performance 304 

yet were poorer compared with the baseline psychological model. Model interpretation showed 305 

the cortical regions and connections of which structural or functional metrics contributed to the 306 

prediction of youth suicidality, including the inferior frontal, temporal, precentral gyri, insula, 307 

and anterior cingulate cortex. These results from large, multi-site, epidemiological samples 308 

show the feasibility of the data-driven computational learning approach to multimodal brain 309 

MRI for prediction, as well as scientific discovery of youth suicidality.   310 

The brain alone models showed statistically meaningful classification performance with 311 

the maximum ROC-AUC of 61.22 in resting-state fMRI-functional connectivity and similarly in 312 

structural and diffusion MRI-derived estimates. Prior studies with small sample sizes (e.g., N 313 

< 160) in adults report moderate accuracy in predicting suicidal ideation or attempts based on 314 

structural and functional brain imaging (with ROC-AUC ranging from 0.72 to 0.94; some results 315 

from only cross-validation but not from held-out test set)6,7,32,33. Conversely, literature in 316 

children has been extremely rare. To our knowledge, this is the first study reporting the 317 

machine learning application to neuroimaging data to identify youth with suicidality.  318 

Our neural networks permit delineating the brain correlates of youth suicidality. Our 319 

integrative models combining the psychosocial and white matter connectivity showed a slight 320 

increase in model performance (with a 1% ROC-AUC) compared with the baseline 321 

psychosocial model. Important features in this model include white matter connectivity, 322 
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morphometry, and functional connectivity within the distributed brain network, primarily the 323 

neocortex, including the inferior frontal gyrus, insula, and anterior cingulate cortex. The inferior 324 

frontal gyrus plays a role in emotional regulation, sustained attention, and language 325 

processing 34, of which abnormalities were associated with suicidality in adolescents 35. The 326 

insula and anterior cingulate cortex, as part of the salience network, are involved in the 327 

detection and integration of emotional and sensory stimuli 36. These features selected by the 328 

deep neural network with the sequential attention mechanism, are largely overlapped with 329 

those selected in the linear mass-univariate analysis in a prior study37 (note that this prior study 330 

did not include diffusion MRI). Despite neither the mass-univariate nor machine learning 331 

approach can present the causal brain circuitry underlying suicide, the brain circuit correlates 332 

found in this study may help future research in youth suicidality.  333 

Considering the previous univariate statistical analysis of the same data reporting the 334 

low classification accuracy (with area under precision-recall less than 0.10) for youth suicidality 335 

using brain imaging (cf. without diffusion data)37, our results of the maximum ROC-AUC of 336 

0.75 (area under precision-recall of 0.70) in held-out test samples show the importance of 337 

nonlinear multimodal modeling with machine learning in individualized prediction. Then, a 338 

more highly parameterized, end-to-end learning model trained on 3D and 4D brain MRI would 339 

improve accuracy to the level of practicality. Despite that a recent study shows a poorer 340 

scalability of the end-to-end deep learning models than linear models with the size of 10,000 341 

samples 38, which was based on the tasks to predict common biological phenotypes (e.g., age 342 

and sex), we believe it is necessary to test the very scalability of this approach in the task of 343 

youth suicidality prediction. Moreover, even if the brain imaging itself contributes to the 344 

prediction with a limited degree, integrating the multi-modal data, not limited to the brain 345 

imaging, but extending to genetics, microbiome, life-log data, SNS and speech data may help 346 

us build a better predictive model with the practical utility in clinical or school settings.  347 

Our deep neural networks trained on psychological and multimodal neuroimaging data 348 

may reflect the interplay between psychological variables and brain circuits related to risk for 349 
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youth suicidality. This is based on our observations of model interpretation across modalities: 350 

About 20% of features accounted for more than a 90% variance. Of those, besides several 351 

psychological features (e.g., internalizing symptoms) the multimodal brain phenotypes 352 

constitute the majority. Although the performance boost owing to the brain data was limited 353 

with up to a 1% ROC-AUC increase, we find this observation may reflect the interaction 354 

between the internalizing symptoms and the distributed brain system contributing to youth 355 

suicidality.  356 

Our models include common psychosocial features as important attributes (e.g., 357 

internalizing and depressive behaviors, prodromal psychosis, and family conflict). This result 358 

is consistent with previous suicidality literature and recent findings from the ABCD study 2,10,39.  359 

We tested two different methods of dimensionality reduction to overcome the sample 360 

complexity problem, i.e., the large feature space compared with the sample size. Overall, 361 

performance improvements were trivial. TabNet-based feature selection significantly improved 362 

performance compared to the models trained on original features, while PCA showed no 363 

improvements. Since TabNet’s sequential attention mechanism accounts for the nonlinearity 364 

of the relationships among the features, which PCA cannot do so, this result implies the 365 

importance of non-linear modeling of the brain data in predicting suicidality in children.  366 

Our stacking ensemble approach showed no benefits of integrating multi-modal brain 367 

imaging data. We believe that the stacking approach may have failed to account for 368 

complementary characteristics across the modalities. For better multi-modal integration, a 369 

principled approach that can utilize multitude representations as well as the brain network 370 

organization might be tested in the future. A recent breakthrough in computational chemistry 371 

may be a good example. A graph neural network accurately predicts protein folding structures 372 

and interactions by learning rich representations about proteins from multimodal and 373 

multidimensional data40. 374 
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Likewise, in our experiment, performance increases by GAN-based data augmentation 375 

were not meaningful in the replication set (while it significantly improved performance in the 376 

validation set). This may be due to different distributions between the discovery and replication 377 

set41. In the future, since the benefits of the dimensionality reduction were observed in this 378 

study (e.g., TabNet’s sequential attention mechanism), it will be interesting to test the data 379 

augmentation method in reduced numbers of the brain features.  380 

There are some limitations to be considered in future studies. Firstly, suicidality (which 381 

includes suicidal ideation and attempt) does not always lead to suicidal commitment 42. This 382 

might result from the difficulty not only of collecting data on who committed suicide but also of 383 

obtaining sufficient samples of suicide attempts from prepubertal children. Secondly, this study 384 

used a cross-sectional design. This limits us to testing the causal relationship between brain 385 

data and suicidality, or predictability of future outcomes. Given that the brain organizations of 386 

prepubertal children mature throughout adolescence, future research should test prospective 387 

predictions of suicidal risk using longitudinal data. 388 

In sum, this study demonstrates the potential utility of a deep neural network approach 389 

using both psychosocial variables and neuroimaging to identify prepubertal children at risk for 390 

suicide in large, representative, and multi-site samples.  391 
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 396 

Data and code availability 397 

The ABCD data can be accessed via the NIMH Data Archive (https://nda.nih.gov/). Our 398 

codes used in this study are freely accessible: for the Tabnet implementation 399 

(https://colab.research.google.com/drive/1y5I89AxrfGYAlJmW2jnYk42OOlDfP8Zz?usp=shar400 

ing) and for the ensemble modeling 401 

(https://colab.research.google.com/drive/1lR1Y5BBEuGtxQfDDYZ2RL9EtL__h_Jxf?usp=sharing)  402 
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Tables 510 

Table 1. Sociodemographics of the study participants (n=6,172).   511 

 Controls  SI  SA  Statistics p-value 

N 5335  782  55    

Suicidal ideation     51    

Age 119 ± 7.4  119 ± 7.42  121 ± 6.08  F = 2.295 0.101 

Sex         

Male 2704 50.68 465 59.46 36 65.45 Chisq = 25.123 p<.001 

Female 2631 49.32 317 40.54 19 34.55   

Race / Ethnicity         

White 2994 56.12 426 54.48 20 36.36 Chisq = 32.56 p<.001 

Black 482 9.03 69 8.82 13 23.64   

Hispanic 1183 22.17 157 20.08 18 32.73   

Asian 120 2.25 20 2.56 1 1.82   

Other 551 10.33 110 14.07 3 5.45   

Parents married 3858 72.31 517 66.11 26 47.27 Chisq = 28.489 p<.001 

Income level 7.42 ± 2.26  7.22 ± 2.29  5.66 ± 2.6  F = 18.551 p<.05 

 512 
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Table 2. Classification performances of psychosocial, imaging-based, and combined 513 

deep neural networks identifying suicidal ideation. Deep neural network (TabNet) and 514 

additional methods for dimensionality reduction (feature selection, PCA) and data 515 

augmentation (CTGAN) were tested. 516 

Model Replication set     

 ROC-AUC AUPRC Accuracy Sensitivity Specificity 

Psychosocial model 74.16 70.18 70.66 72.78 68.55 

Structural MRI      

Neuroimaging model 57.18 52.74 57.53 43.81 70.18 

Combined model 71.44 67.95 67.82 84.18 51.57 

Neural net based feature selected 72.55 †  69.05 69.72 75.32 64.15 

PCA based dimension reduced 67.44 63.18 65.93 71.52 60.38 

GAN based data augmented 69.74 65.08 67.51 78.48 56.60 

Diffusion MRI      

Neuroimaging model 58.15 53.48 58.9 64.76 53.51 

Combined model 69.54 64.79 66.88 74.68 59.12 

Neural net based feature selected  74.82 * 70.06 72.24 75.95 68.55 

PCA based dimension reduced 69.1 65.31 66.56 75.95 57.23 

GAN based data augmented 68.74 64.09 65.93 73.42 58.49 

Resting state fMRI      

Neuroimaging model 61.22 60.06 59.82 82.86 38.6 

Combined model 73.74 67.58 70.34 86.07 54.71 

Neural net based feature selected 73.43 70.86 * 69.72 72.78 66.67 

PCA based dimension reduced 69.95 62.02 67.51 81.01 54.09 

GAN based data augmented 71.26 66.92 67.51 81.65 53.46 

Stop signal task fMRI      

Neuroimaging model 53.42 50.87 54.79 55.24 54.39 

Combined model 71.37 67.6 67.51 65.79 69.11 

Neural net based feature selected 72.52† 68.41 67.93 62.28 73.17 

PCA based dimension reduced 66.61 61.22 66.24 65.79 66.67 

GAN based data augmented 70.24 65.05 66.24 71.05 61.79 

N-back task fMRI      

Neuroimaging model 50.43 47.85 53.88 50.48 57.02 

Combined model 72.69 66.73 70.04 81.58 59.35 

Neural net based feature selected 72.09 68.71 68.78 75.44 62.60 
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PCA based dimension reduced 68.29 61.99 65.82 54.39 76.42 

GAN based data augmented 68.78 62.29 66.67 85.09 49.59 

Monetary incentive delay task fMRI      

Neuroimaging model 48.26 49.47 54.79 64.76 45.61 

Combined model 71.22 66.19 65.82 65.79 65.85 

Neural net based feature selected 72.28† 68.89 70.04 71.93 68.29 

PCA based dimension reduced 64.58 60.86 64.14 62.28 65.85 

GAN based data augmented 68.23 63.39 66.67 73.68 60.16 

Note: Combined models included imaging derived and psychosocial features. * indicates 517 

higher performance than the benchmark result in TabNet and † indicates higher performances 518 

than TabNet results in the same dataset. 519 

 520 

521 
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Table 3. Classification performances (ROC AUC) of psychosocial and multimodal 522 

neuroimaging data for identification of suicide ideation on balanced replication datasets.  523 

 Model TabNet TabNet - Ensemble 

 
  Feature 

selection 

 

Morphometry and 

connectivity 
sMRI + dMRI 73.81 ‡  72.3 73.91† 

 sMRI + rs-fMRI 72.43 72.71† 73.77† 

 dMRI + rs-fMRI 72.86 73.28 74.7* 

 rs-fMRI + sMRI + dMRI 68.47 74.43＊ 74.41* 

Functional connectivity 

and activation 
rs-fMRI + SST fMRI 73.58 ‡ 72.23 54.97 

 rs-fMRI + Nback fMRI 73.82 ‡ 72.31 56.22 

 SST fMRI + Nback fMRI 71 72.48† 56.71 

 SST fMRI + Nback fMRI + MID fMRI 71 72.74† 53.94 

 rs-fMRI + SST fMRI+ Nback fMRI + 

MID fMRI 
70.43 69.91 56.51 

All modalities 
sMRI + dMRI + rs-fMRI + SST fMRI 

+ Nback fMRI + MID fMRI 
65.9 69.76† 54.95 

* represents higher performances than the psychosocial model with ROC AUC of 74.16. † denotes 524 

higher performances than TabNet results in the same dataset. ‡ denotes higher performances than the 525 

combined model trained on single neuroimaging data.  526 
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 527 

Figure 1. Important neuroimaging features contributing to the identification of suicidal 528 

ideation in combined models with selected features. A. dMRI-derived White Matter 529 

Connectivity. B. Structure MRI-Derived Morphometry. C. RS-FMRI-Derived Functional 530 

Connectivity.  D. Task FMRI-Derived Activation Estimates (Stop signal task, emotional N-531 

back task, monetary incentive delay task). The size of the node and edge represents the 532 

relative importance.  533 

dMRI-derived White Matter Connectivity L.BSTS: Left Banks of Superior Temporal Sulcus, L.PA: Left-Pallidum. 534 

R.AC: Right-Accumbens-area, R.HI:   Right-Hippocampus, R.ITG: gray matter of right inferior temporal gyrus, 535 

R.TTG: gray matter of right transverse temporal gyrus./ Structure MRI-Derived Morphometry caudalMFG: caudal 536 

middle frontal, frontal pole: frontal pole, fusiform-G: fusiform gyrus, Insula: superior segment of_the circular sulcus 537 

of the_insula, lingual-gyrus: lingual-gyrus, occipital-pole: occipital pole, rostral-ACC: rostral anterior 538 

cingulate, subcallosal-G: subcallosal gyrus/ RS-FMRI-Derived Functional Connectivity N.VAT: Network ventral 539 

attention, NAc: nucleus accumbens, RSC:  retrosplenial temporal cortex, S.VAT: Subcort ventral attention, / Task 540 

FMRI-Derived Activation Estimates aINS: vertical ramus of the anterior segment of the lateral sulcus, aINS: 541 

vertical ramus of the anterior segment of the lateral sulcus, AOS: anterior occipital sulcus and preoccipital notch, 542 

ATCS: anterior transverse collateral sulcus, IN: superior segment of the circular sulcus of the insula, IOG: inferior 543 

occipital gyrus and sulcus, LOS: lateral orbital sulcus, MTG: middle temporal gyrus, PCG: postcentral gyrus, PHG: 544 
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parahippocampal gyrus, SFG: superior frontal gyrus, SFS: superior frontal sulcus, SPS: subparietal sulcus 545 
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Figure 2. Feature importance plot of diffusion MRI combined model. Important 20 546 

features are indicated. Top 5% features (N=180) exceed 95% of cumulative importance.   547 

 548 

 549 

AnxDep.CBCL: Anxious/depressed behavior, Attention.CBCL: Attention problems, con_R.LOG_R.IN_count: 550 

connectivity between right lateral occipital gyrus and right insula, con_L.PA_L.HI_count: connectivity between left 551 

pallidum and left hippocampus, con_L.RMFG_R.FP_count: connectivity between left rostral middle frontal gyrus 552 

and right frontal pole, con_L.PaCG_L.SPG_count: connectivity between left parahippocampal gyrus and right 553 

subparietal gyrus, con_R.BSTS_R.PCAL_count: connectivity between right bankssts and right pericalcarine, 554 

con_L.STG_L.TTG_count: connectivity between left superior temporal gyrus and left transverse temporal gyrus, , 555 

con_L.CU_R.CACG_count: connectivity between left cuneus and right caudal anterior cingulate, 556 

con_L.SPG_R.TH_count: connectivity between left superior parietal gyrus and right thalamus,  557 

con_L.PCAL_L.TTG_count: connectivity between left pericalcarine and right transverse temporal gyrus, 558 

con_L.BSTS_L.MOFG_count: connectivity between left bankssts and right medial orbitofrontal gyrus,  559 

con_L.CU_L.ITG_count: connectivity between left cuneus and gray matter of left inferior temporal gyrus, 560 

con_L.CER_R.PaCG_count: connectivity between left Cerebellum-Cortex and right paracentral gyrus, 561 

Conduct.CBCL: Conduct problems, conflict_openly angry,  fes_q1_1: Family_frequent fights, fes_q2_1: Family, 562 

Internal.CBCL: Internalizing behavior, Obsessive.Compulsive.Problems..OCD..CBCL: OCD problems, 563 

WithDep.CBCL: Withdrawn/depressed behavior 564 

 565 
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Supplementary Table 1. Classification performances in predicting youth suicidality 583 

attempt. Deep neural networks (TabNet) and additional methods of dimensionality reduction 584 

and data augmentation were tested. 585 

Model TabNet 
TabNet - 

Feature selection 

TabNet  

- PCA 

TabNet 

 - CTGAN 

Psychosocial  83.33‡ 69.44 - 69.44 

Structural MRI 60.68 75† 75† 75† 

Diffusion MRI  72.22‡ 79.17† 72.2 79.17† 

Resting state fMRI  80.56‡ 80.56  84.72＊ 80.56 

Stop signal task fMRI 78.1‡ 76.91 64.29 76.91 

N-back task fMRI 69.05 78.57†  76.19† 78.57† 

Monetary incentive delay task fMRI 54.76 54.76 78.57 54.76 

Note: All single modality models except psychosocial model included psychosocial by 586 

default. * denotes higher performance than the benchmark result in TabNet and † denotes higher 587 

performances than TabNet results in the same dataset. ‡ denotes higher performances than the results 588 

in suicidality ideation using TabNet. 589 

 590 

On the single modal neuroimaging data, the neural networks, TabNet showed a wider 591 

range of accurate performances in classifying children with suicidal attempts, ranging from 592 

ROC-AUC 54.76% to ROC-AUC 83.33%.  593 

When we apply feature selection to TabNet, in structural and diffusion MRI, additional 594 

methods including feature selection, PCA and CTGAN showed higher performance than just 595 

TabNet model. Although there isn’t any higher result than benchmark in both MRI data, we 596 

found that dimensionality reduction explains suicidality ideation and attempt better than the 597 

other ways. 598 
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Supplementary Table 2. Summed contribution of top 50 important features of the 599 

combined models to identify children at risk for suicidal ideation using TabNet. 600 

Model Psychosocial variable Neuroimaging variables 

Structural MRI 0.343 0.334 

Diffusion MRI 0.296 0.359 

Resting state fMRI 0.585 0.133 

Stop signal task fMRI 0.382 0.343 

N-back fMRI 0.435 0.245 

Monetary incentive delay fMRI 0.456 0.252 

 601 
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Supplementary Table 3. Summed contribution of top 50 important features of suicidal 602 

attempt prediction models using TabNet 603 

Model Psychosocial variable Neuroimaging variables 

Structural MRI 0.218 0.307 

Diffusion MRI 0.329 0.143 

Resting state fMRI 0.129 0.411 

Stop signal task fMRI 0.0966 0.453 

N-back fMRI 0.105 0.396 

Monetary incentive delay fMRI 0.0321 0.414 

 In the suicide attempt prediction task, we observed that most neuroimaging variables 604 

outweighed psychosocial variables in several neuroimaging models (structural MRI, resting-605 

state fMRI, stop signal task fMRI, N-back task fMRI and monetary incentive delay task fMRI 606 

models). However, only diffusion MRI derived features outperformed psychosocial variables 607 

among the top 50 features. 608 

 609 
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Supplementary Table 4. Top 10 features predictive of suicidal ideation. The models 610 

were trained on brain imaging-derived phenotypes and psychosocial data 611 

Psychosocial Structural MRI Diffusion MRI Resting state fMRI 

Feature 
Importanc

e 
Feature 

Importanc
e 

Feature 
Importanc

e 
Feature 

Importanc
e 

Internalizing-
externalizing 
comorbidity 

15.15 
Anxiety /  

Depression 
10.18 

Internalizing-
externalizing 
comorbidity 

12.8 Depression 6.02 

Prodromal 
psychosis_frequen

cy 
7.37 

Prodromal 
psychosis_distress 

6 
Prodromal 

psychosis_frequen
cy 

7 
Prodromal 

psychosis_frequenc
y 

5.33 

Prodromal 
psychosis_distress 

6.68 Family temper 3.71 
Prodromal 

psychosis_distress 
6.05 

Withdrawn / 
Depressed 

3.18 

Family conflict 5.53 Family anger 3.22 Family anger 3.45 
Obsessive-
Compulsive 

Disorder(OCD) 
2.56 

Anxiety / 
Depression 

3.38 
Oppositional  

Defiant Disorder 
3.07 

Behavioral 
inhibition system 

3.23 Weight 2.44 

Depression 3.01 
Externalizing 

disorder 
3.05 

Rash tendency in 
extreme 

2.72 Internal comorbidity 2.39 

Family angry 2.65 ADHD 2.68 

Connectivity_Right-
Hippocampus_Gra

y matter of right 
transverse 

temporal gyrus 

2.65 Social Problems 2.11 

Family peace 2.57 Sex 2.54 Depression 2.61 Married 2.1 

Income 2.35 
Internal 

comorbidity 
2.52 

Aggressive 
behavior 

2.56 Family Angry 1.97 

Internal 
comorbidity 

2.2 Total Problem 2.46 Family temper 2.12 

Connectivity_ 
retrosplenialtempora

l_ 
dorsalattention 

1.92 

  Stop signal task fMRI N-back task fMRI 
Monetary incentive delayed 

task fMRI 

  Feature 
Importanc

e 
Feature 

Importanc
e 

Feature 
Importanc

e 

  Depression 9.19 
Prodromal 

psychosis_frequen
cy 

10.77 
Prodromal 
psychosis_ 
frequency 

9.75 

  
Prodromal 

psychosis_frequen
cy 

6.41 
Anxiety / 

Depression 
6.12 Aggressive Behavior 7.35 

  Externalizing 
disorder 

5.74 
Externalizing 

disorder 
5.37 

Prodromal 
psychosis_distress 

7.04 

  Prodromal 
psychosis_distress 

5.55 
Aggressive 
behavior 

3.71 
Obsessive-
Compulsive 

Disorder(OCD) 
6.4 

  Internal 
comorbidity 

5.3 
Rule breaking 

behavior 
3.4 Depression 5.51 

  Family anger 3.27 Depression 3.1 
Internalizing-
externalizing 
comorbidity 

4.76 

  Anxiety / 
Depression 

2.75 
Internalizing-
externalizing 
comorbidity 

2.8 
superior frontal 

gyrus (L) 
2.74 

  
Internalizing-
externalizing 
comorbidity 

2.53 Family conflict 2.47 
Externalizing 

disorder 
2.64 

  
Obsessive-
Compulsive 

Disorder(OCD) 
2.39 Conduct disorder 2.43 Family temper 2.16 

  Race 1.85 
Obsessive-
Compulsive 

Disorder(OCD) 
2.41 

middle temporal 
gyrus (L) 

9.75 

612 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 14, 2021. ; https://doi.org/10.1101/2021.10.10.21264580doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.10.21264580
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Supplementary Figure 1. Explainability of the resting-state fMRI combined model 613 

as an increase of the number of features. Top 50 features contain explainability of 91.6%. 614 

 615 
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Supplementary Figure 2. Feature importance plots of combined models. Top 20 features 616 

are denoted.  617 

(A) Structural MRI 618 

 619 

Aggressive.CBCL Aggressive behavior 

AnxDep.CBCL Anxious/Depressed behavior 

AnxDisord.CBCL Anxious behavior 

Attention.CBCL Attention problems 

Conduct.CBCL Conduct problems 

cuneus_area Cuneus area 

External.CBCL Externalizing behavior 

fes_q4_1 Family conflict_losing tempers 

fes_q5_1 Family conflict_criticizing 

fes_q7_1 Family_reconciliation attempt 

G_cingul.Post.dorsal_area Posterior-dorsal part of the cingulate gyrus 

G_oc.temp_med.Lingual_thickness Lingual gyrus thickness 

inferiorparietal_meancurv Inferior-parietal mean curve 

Internal.CBCL Internalizing behaviour 

isthmuscingulate_area Isthmus cingulate area 

Opposit.CBCL OCD problem 

PPSP_distress Prodromal psychosis_distress 

PPSP_frequency Prodromal psychosis_frequency 
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Social.CBCL Social problems 

TotProb.CBCL Total behavioral problems 

 620 

 621 

 622 

(B) Resting state functional MRI 623 

 624 

AnxDep.CBCL Anxious/Depressed behavior 

Aggressive.CBCL Aggressive behavior 

cinguloparietal Cingulo parietal 

Conduct.CBCL Conduct problems 

cor_network Correlation between two networks 

dorsalattn Dorsal attention 

fes_q2_1 Family conflict_openly angry 

fes_q5_1 Family conflict_criticizing 

Internal.and.External.Comobidity Internalizing and Externalizing behavior 

Internal.CBCL Internalizing behaviour 

PPSP_distress Prodromal psychosis_frequency 

PPSP_frequency Prodromal psychosis_distress 

race.ethnicity Race/ethnicity 
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smmouth Somatomotor cortex to the mouth 

TotProb.CBCL Total behavioral problems 

ventralattn Ventral attention 

ventraldc Ventral DC 

WithDep.CBCL Withdrawn/Depressed behavior 
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(C) Stop signal task functional MRI 629 

 630 

Aggressive.CBCL Aggressive problem 

AnxDep.CBCL Anxious/depressed behavior 

fes_q2_1 Family conflict_openly angry 

fes_q3_1 Family conflict_throwing things 

fes_q4_1 Family conflict_losing tempers 

g.and.s.cingul.mid.post Middle-posterior part of the cingulate gyrus and sulcus 

s.central Central sulcus 

g.cingul.post.dorsal Posterior-dorsal part of the cingulate gyrus 
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Internal.and.External.Comobidity Internalizing and Externalizing behavior 

Internal.CBCL Internalizing behaviour 

married Never married 

Obsessive.Compulsive.Problems..OCD..CBCL OCD problems 

PPSP_frequency Prodromal psychosis_distress 

RuleBreak.CBCL Rule breaking problem 

s.intrapariet.and.p.trans Intraparietal sulcus and transverse parietal sulci 

s.oc.temp.med.and.lingual Medial occipito-temporal sulcus and lingual sulcus 

s.orbital.lateral Lateral orbital sulcus 

s.temporal.sup Superior temporal sulcus 

Stress.CBCL Stress problems 

TotProb.CBCL Total behavioral problem 
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(D) Emotional N-back functional MRI 632 

 633 

tfmri Task functional mri 

nback Emotional N-back functional mri 

Aggressive.CBCL Aggressive problem 

AnxDep.CBCL Anxious/depressed behavior 

Depress.CBCL Depression problems 

fes_q1_1 Family_frequent fights 

fes_q2_1 Family conflict_openly angry 
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g.insular.short short insular gyri 

g.oc.temp.lat.fusifor lateral occipito-temporal gyrus 

g.oc.temp.med.parahip parahippocampal gyrus 

g.temp.sup.g.t.transv anterior transverse temporal gyrus 

g.temp.sup.lateral lateral aspect of the superior temporal gyrus 

Internal.and.External.Comobidity Internalizing and Externalizing behavior 

Obsessive.Compulsive.Problems..OCD..CBCL OCD problems 

PPSP_distress Prodromal psychosis_distress 

s.circular.insula.inf Inferior segment of the circular sulcus of the insula 

s.collat.transv.post Posterior transverse collateral sulcus 

s.front.middle Middle frontal sulcus 

s.oc.sup.and.transversal Superior occipital sulcus and transverse occipital sulcus 

Social.CBCL Social problems 

s.orbital.lateral.rh Lateral orbital sulcus (right hemisphere) 

TotProb.CBCL Total behavioral problems 
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(E) Monetary incentive delay functional MRI 635 
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AnxDisord.CBCL Anxious behavior 

Conduct.CBCL Conduct problems 

External.CBCL Externalizing behavior 

fes_q1_1 Family_frequent fights 

fes_q4_1 Family conflict_losing tempers 

g.and.s.subcentral.rh Subcentral gyrus and sulci (right hemisphere) 
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g.front.inf.triangul.lh Triangular part of the inferior frontal gyrus (left hemisphere) 

g.front.sup.lh Superior frontal gyrus (left hemisphere) 

g.orbital.rh Orbital gyri (right hemisphere) 

g.rectus.lh Gyrus rectus (left hemisphere) 

g.temporal.inf.rh Inferior temporal gyrus (right hemisphere) 

g.temp.sup.lateral.lh Lateral aspect of the superior temporal gyrus (left hemisphere) 

Internal.and.External.Comobidity Internalizing and Externalizing behavior 

Obsessive.Compulsive.Problems..OCD..CBCL OCD problems 

PPSP_frequency Prodromal psychosis_distress 

s.circular.insula.inf.rh 

Inferior segment of the circular sulcus of the insula (right 

hemisphere) 

s.occipital.ant.rh 

Anterior occipital sulcus and preoccipital notch (right 

hemisphere) 

s.postcentral.lh Postcentral sulcus (left hemisphere) 

s.temporal.inf.lh Inferior temporal sulcus (left hemisphere) 
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