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Metabolic Dysfunction-Related Liver Disease as a Risk Factor for Cancer 

Abstract 

The aim of this study was to investigate the association with obesity, diabetes and related liver dysfunction and 

the incidence of cancer. 

This study was conducted with health record data available from the National Health Service in Tayside and 

Fife. GoDARTS, SHARE and Tayside and Fife diabetics, three Scottish cohorts of 13,695, 62,438, and 16,312 

patients respectively were analysed in this study. Participants in GoDARTS were a volunteer sample, with half 

having T2DM. SHARE were a volunteer sample. Tayside and Fife diabetics was a population level cohort. 

Metabolic dysfunction-related liver disease (MDLD) was defined using ALT measurements, and individuals 

with alternative causes of liver disease (alcohol abuse, viruses etc) were excluded from the analysis. Other 

indicators of liver disease were analysed including the Fatty Liver Index, Fibrosis Score(FIB-4) and hospital 

admissions for NASH.   The main outcomes were cancer incidence and cancer death.  

MDLD associated with increased cancer incidence with a hazard ratio of 1.31 in a cox proportional hazards 

model adjusted for sex, type 2 diabetes, BMI, and smoking status (95% CI = 1.27 – 1.35, p < 0.0001). This was 

replicated in two further cohorts, and similar associations with cancer incidence were found for Fatty Liver 

Index (FLI), FIB-4 and NASH. Homozygous carriers of the common NAFLD risk variant PNPLA3 rs738409 

had increased risk of cancer. (HR = 1.27 (1.02-1.58), p = 3.1x10-2 ).  BMI was not independently associated 

with cancer incidence when MDLD was included as a covariate. MDLD was associated with increased risk of 

cancer death (HR = 1.40, 95% CI =1.33 - 1.47, p < 0.0001). 

MDLD, FLI, FIB-4 and NASH associated with increased risk of cancer incidence and death. Further, we found 

evidence of a causal association between NAFLD and cancer using the established causal risk allele of PNPLA3 

as a genetic instrument. NAFLD may be a major component of the relationship between obesity and cancer 

incidence. 

Lay Summary 

We found that individuals with metabolic dysfunction-related liver disease (MDLD) have higher overall cancer 

risk than healthy individuals, as well as increased risk of specific cancers such as colon, breast and lung. We 

also show that when MDLD is accounted for, obesity does not significantly increase overall cancer risk. 

Introduction 

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease globally, affecting around 

25.2% of adults worldwide.1 NAFLD, a spectrum of simple steatosis to non-alcoholic steatohepatitis, is 

traditionally associated with endpoints which affect the liver, including fibrosis, cirrhosis and hepatocellular 

carcinoma (HCC).2 Recent studies have found associations between NAFLD and specific extrahepatic cancers, 

including colon and breast cancer, as well as overall cancer risk.3,4 The relationship between NAFLD and 

cancer, as well as the synergy between NAFLD and other cancer risk modifiers is not fully understood. 
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Obesity, commonly defined as BMI equal or higher than 30kg/m2, is a major cause of NAFLD, with 51.3% of 

NAFLD patients also being obese.5,6 Obesity has also been linked with cancer incidence at 13 different sites in 

the body.7 Wolin et al. estimate that excess weight or obesity accounts for 20% of all cancers.8 Mechanistically, 

several factors associated with increased fat mass have been proposed to cause cancer.9 For example, 

dysregulation of circulating hormones and cytokines including insulin, insulin–like growth factor signalling, 

adipokines, inflammation and sex hormones may disrupt normal cell cycle control and promote tumour 

formation. Indeed, there is significant overlap of many of such pathological abnormalities between both 

overweightness and NAFLD.10 The elements of shared pathophysiology of NAFLD and overweightness could 

potentially mean that the observed increases in cancer risk share a common aetiology. Allen et al. found only 

small increases in cancer incidence in obese patients without NAFLD. 4 Recently a study by Pfister et al. in 

patients with hepatocellular carcinoma (HCC) showed an associated with NASH and limited anti-tumour 

surveillance.11 This highlights the value in epidemiological studies assessing the relationship between NAFLD 

and the risk of cancer. 

This study utilises an alanine-transaminase (ALT) defined metabolic dysfunction-related liver disease phenotype 

(MDLD).12–14  ALT is positively correlated with hepatic steatosis, and when other causes of liver disease are 

excluded, this can be an effective method of NAFLD diagnosis. 15 Recently Eslam et al. described a phenotype 

of metabolic dysfunction associated fatty liver disease (MAFLD) based on biochemical, imaging or biopsy 

along with T2DM, obesity or other metabolic risk factors.16,17 The diagnosis of NAFLD in clinical settings often 

differs from the definitions applied in large scale epidemiological studies. Clinically patients with suspected 

NAFLD are not always subjected to invasive investigations such as biopsies or ultrasound imaging, therefore 

this necessitates the use of more commonly measured biomarkers and use of exclusion criteria to eliminate other 

causes of raised ALT. Therefore in this study we develop and validate a definition of metabolic dysfunction-

related liver disease (MDLD) in large scale data resources and in order to test its associations with cancer 

incidence.18   

 

The aim of this study was to analyse the effects of MDLD on cancer incidence and cancer death. In addition, the 

study aimed to investigate the interaction between BMI and MDLD. Finally, using Mendelian randomisation 

methods, we investigated whether the relationship between MDLD and cancer was causal or not. 

Methods 

Data 

GoDARTS (Genetics of Diabetes Audit and Research Tayside, Scotland) 

This study aimed to analyse the incidence of all cancer longitudinally. The first cohort used was GoDARTS, a 

case-control type 2 diabetes study based in Tayside, Scotland. Key descriptive statistics and demographic 

attributes of this cohort are shown in Table 1. This cohort was used for discovery and comprised of electronic 

health records (EHRs) from 13,695 eligible individuals.19 The mean age at sign up was 63.41 years and 

participants had a mean follow up of 8.95 years. 48.6% of patients were male. On patients’ date of sign up they 

were phenotyped by biochemical and haematological investigations, anthropometric measurements and lifestyle 
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questionnaires. This date was used as the beginning of the follow up period. 2,794 patients had cancer incidents 

during the follow-up period.  

SHARE (Scottish Health Research Register) 

Two further, independent cohorts were analysed for replication. The second data source was SHARE. This is a 

cohort in which individuals volunteer to allow their medical records to be used for scientific research, and is 

open to anyone in Scotland over the age of 16. The characteristics of this cohort are shown in table 2.This 

comprised 62,438 patients with EHRs available once patients with exclusions for alternate causes of raised ALT 

livers were removed.20 This cohort was used for replication of findings in GoDARTS. The mean age in SHARE 

was 57.0 years, and 61.6% were female.  

Tayside and Fife T2DM Cohort 

Replication of results was also undertaken in Tayside and Fife T2DM Cohort (T&F). This cohort comprises all 

patients in the Tayside and Fife NHS region who had a diagnosis of T2DM at some point in their lives. Many of 

the patients received a diagnosis of T2DM during the follow up period, therefore the T2DM rate is not 100% at 

baseline. The characteristics of this cohort are shown in table 3. Like the two previous cohorts, medical records 

from the NHS are available for these patients. The cohort 16,312 patients eligible after exclusions for other 

hepatic insults were made. The mean age of these patients was 65.0 years, and 48.1% were female. Results for 

analysis in T&F are reported in the supplemental appendix.  

The results from T&F were not meta analysed with GoDARTS and SHARE, as this is a primarily diabetic 

cohort, therefore does not capture those who do not go on to get diabetes. The ascertainment bias in this cohort 

that only contains individuals who did eventually get diabetes is likely to have resulted in the lower point 

estimate for MDLD in cancer risk that we have observed. To ensure there was no overlap in participants 

between cohorts, patients in SHARE who were also in GoDARTS were excluded from SHARE, and participants 

in GoDARTS or SHARE were excluded from analysis in T&F, meaning each cohort was completely 

independent. 

To allow comparison with the GoDARTS cohort, a baseline point had to be chosen from which to begin the 

follow up period in which to analyse cancer incidence in SHARE and T&F. The age of 60 was chosen as it is 

close to the mean baseline age of GoDARTS, and importantly close to the mean age of MDLD diagnosis in 

GoDARTS (60.8 years) and in the literature.21 This allowed a more robust replication of findings in GoDARTS 

in the two replication cohorts, ensuring age wasn’t a source of heterogeneity in analysis. These criteria left 

26,891 patients in SHARE and 11,141 patients in T&F suitable for analysis with a median follow up time of 

11.0 years and 8.0 years respectively. The EMRs available for patients in all cohorts are from the NHS Tayside 

and Fife authorities. Consort diagrams can be found for each cohort in the supplemental appendix. 

Outcomes 

All outcomes were defined using NHS medical record data, made available for participants in each of the three 

cohorts. As such, all data was recorded in the same format; all disease was recorded in ICD10 codes and 

biochemical measures in the same, relevant units.22 (E.g. Units per litre for ALT measurements) 
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MDLD Phenotype 

MDLD cases and controls were defined using the liver function test alanine transaminase (ALT), a commonly 

used marker of liver damage, and a useful surrogate for NAFLD.12,14,23–26 This was chosen as it is commonly 

measured and Schindhelm et al. found in a population cohort that raised ALTs are a good surrogate for 

NAFLD.23 Elevated ALT levels were considered to be over 30U/L for men, and over 19U/L for women (Normal 

ALT reference ranges: Males - 5-30U/L; Females – 5-19U/L.). These upper limits are those suggested by Prati 

et al. as the maximum normal values of ALT in healthy adult men and women.27 Raised ALT levels correlate 

with NAFLD and are an appropriate surrogate marker for the disease, provided other causes of liver disease are 

ruled out.23,28 There is substantial evidence that raised ALT levels in the absence of any apparent liver insult are 

extremely likely to be caused by NAFLD.29 All samples from GoDARTS and SHARE were analysed in the 

same laboratory.  

MDLD cases were defined as any patient who had experienced at least 2 raised ALT measurements, at least 3 

months apart. This time scale was chosen as 3 months is a commonly used definition of chronic and most cases 

of acute hepatitis, such as drug induced, will have resolved.30 This also increases the specificity of the definition. 

Due to the lack of confirmatory biopsy and ultrasound data in all patients, we have refrained from referring to 

this phenotype as “NAFLD”, and instead have used MDLD. 

Exclusions 

Patients were excluded from analysis if they had features of other chronic liver disease recorded in their medical 

records. These included: any positive serological tests for anti-smooth muscle antibody, antinuclear antibodies 

or anti-mitochondrial antibodies, any positive serology for hepatitis B surface antigen or hepatitis C antibody, or 

mention of cause of liver disease in medical records. In GoDARTS, 1,157 patients had both immunological and 

virological screens at some point which were negative, therefore they were included in analysis. Patients with 

alcohol dependence or any documentation of alcoholic liver disease in their EHRs were excluded using ICD 

codes: “K70” and “F10”. In addition, patients who self-reported drinking more than 20g (2.5 units) a day for 

women and more than 30g (3.75 units) a day for men were excluded. Allen et al. concluded that alcohol was not 

likely to explain the increase in cancer incidence seen with NAFLD in their study.4 

Validation of Phenotype 

To validate this phenotype, sensitivity and specificity analyses were conducted in GoDARTS comparing this to 

cases of NAFLD confirmed in EHRs with the “K76.0” ICD10 code. The sensitivity of this definition was 

97.4%, and the specificity was 32.0%. These analyses were also conducted in SHARE using the same method, 

with a sensitivity of 75.3% and specificity of 54.2%, and in T&F with sensitivity of 94.6% and specificity of 

38.3%. The SHARE cohort has lower sensitivity compared to the other two cohorts, likely due to the lower 

average age of the cohort and the lower prevalence of diabetes resulting in lower healthcare interaction, 

morbidity and mortality. Also, due to the relatively low numbers of confirmed NAFLD in EHRs, small 

differences in numbers can have large effects on sensitivity and specificity percentages. 

Another method of detecting NAFLD non-invasively is the Fatty Liver Index (FLI).31 This uses BMI, waist 

circumference, triglycerides and gamma-glutamyl transferase (GGT) to define NAFLD, and has been validated 
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in a number of cohorts as an accurate surrogate of NAFLD. 4,164 patients in GoDARTS had the required data 

available for this measure. In GoDARTS, FLI correlated significantly with MDLD as diagnosed by ALT levels. 

(Pearson correlation coefficient = 0.33 (0.31-0.36), p < 0.0001) 

The FIB-4 scoring system was also used in the GoDARTS study.32 A FIB-4 score of greater than 3.25 has been 

shown to predict advanced hepatic fibrosis, therefore this score was used as the cut off. This was calculated 

using the highest recorded AST and ALT measurements and platelet count before the beginning of the 

GoDARTS for each individual to calculate the highest FIB-4 score they had experienced.  

To further validate this phenotype positive control tests were run against chronic kidney disease (CKD) in 

GoDARTS, as it has been shown to associate with NAFLD.33 During the follow up, 1,131 patients had 

incidence of CKD. MDLD was found to associate with incidence of CKD in a cox proportional hazards model 

adjusted for sex, T2DM, age, and BMI. (HR = 1.32(1.25 – 1.39), p < 0.0001)   

A positive control test with the well-known NAFLD risk variant PNPLA3 rs738409 was conducted. 34 In 

GoDARTS, 8,399 eligible participants had been genotyped for this variant. In a logistic regression with an 

additive model, adjusted for age and sex, PNPLA3 rs738409 was associated with increased MDLD at the 

beginning of the study. (OR = 1.23(1.12-1.36), p < 0.0001) 

Clinically Adjudicated NAFLD and NASH  

As well as our ALT based MDLD definition, some patients had NAFLD confirmed in hospital admissions data 

with the ICD10 code “K76.0”. This is referred to as “NAFLD hospitalisation” in subsequent sections. In 

GoDARTS, 0.36% of participants had this code reported in their medical records at any point. 

Non-Alcoholic Steatohepatitis (NASH) was phenotyped by searching admissions, deaths and biopsy files for 

cases of NASH, defined using the ICD10 codes for NASH, fibrosis and cirrhosis. This may have been a main 

cause of hospitalisation or concomitant morbidity. 

Mendelian Randomisation 

Mendelian randomisation methods were used to assess whether the relationship between MDLD and cancer 

incidence was causative.35 The missense variant PNPLA3 rs734809, which is strongly associated with the 

development and progression of fatty liver disease, was chosen as it has been shown in a large number of studies 

to associate with MDLD, and has been used in previous Mendelian randomisation studies on MDLD. The ratio 

method was used to conduct this analysis..34  In GoDARTS, 7,715 patients had been genotyped for this variant, 

and 343 of these were homozygous carriers. (Minor Allele Frequency (MAF) = 20.6%) In SHARE, 1,755 

patients had been genotyped for this variant, with 50 being homozygous carriers. (MAF = 23.0%)  

Overweight and Obesity Definitions 

In this study, overweight is defined as a BMI greater than 25kg/m2 and less than 30kg/m2. Obesity is defined as 

a BMI equal or over 30kg/m2.36 

Cancer Phenotype 
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Cancer incident data was obtained from the Scottish cancer register, part of the Scottish Morbidity Record.37 

This contains all diagnoses of cancer made in Scotland in NHS care, in ICD10 code format. This data was 

available for patients in GoDARTS, SHARE and T&F. Cases were cross checked with recorded cases in 

hospital admissions and death records files. The cancer records were identified by the relevant ICD10 codes for 

malignant neoplasms or neoplasms of unknown behaviour. These were any code including "C", "D0", "D37", 

"D38", "D39", or "D4". Obesity related cancer incidents were phenotyped similarly, but specifically for the 13 

reported obesity related cancer sites. 7 

Cancer deaths were phenotyped based on death certificate files in EHRs. These list a main cause of death and 

contributing causes of death for each patient who has died. These were also cross checked with the Scottish 

cancer register file.  

Statistical Methods 

All data analysis was carried out in the statistical package R. The effects of MDLD and other independent 

variables on cancer incidence were analysed using a Cox proportional hazards model (CPH). Patients were 

censored at the point at which they had a cancer incident recorded, death, or September 2016 when the follow-

up period ended. Patients with missing data were excluded from analysis. 

To assess whether MDLD affected cancer death risk in the presence of non-cancer death as a competing risk 

regressions (CRR) using Fine and Gray’s method were run. Logistic regression (LR) models were used to 

evaluate the effect of MDLD on death cause.  

In the GoDARTS cohort models were adjusted for sex, age, BMI, T2DM, and smoking status. In GoDARTs, 

models with BMI replaced by weight or waist measurement were also run, as these are slightly different 

measure of obesity and may have provided further insight into the associations. Hypertension, activity level, 

alcohol consumption and deprivation level were not included in the models as they did not have a significant 

effect on cancer incidence in the adjusted model. In the SHARE cohort, models were adjusted for sex and 

T2DM. Smoking and BMI data were not widely available for individuals in the SHARE cohort, therefore this 

was not controlled for in most analyses.  

Patient and Public Involvement statement 

There was no patient involvement in the design of this study. 

Results 

MDLD and Cancer Incidence 

In the GoDARTS cohort, MDLD was associated with increased cancer incidence. During the follow up period, 

18.5% of controls compared to 22.2% of patients with MDLD developed cancer. In controls, 1244 patients had 

cancer incidents and 1550 patients had incidents in MDLD cases. Patients who had MDLD at enrolment to 

GoDARTS had increased cancer incidence independent of sex, age, BMI, smoking status, and diabetes status 

(Figure 1, HR = 1.31(1.27 – 1.35) , p < 0.0001).  Using the same covariates, the Fatty Liver Index was 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 20, 2021. ; https://doi.org/10.1101/2021.10.19.21264255doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.19.21264255


10 

 

associated with increased cancer incidence (HR = 1.004(1.00-1.008), p = 5.0x10-2) and FIB-4 score over 3.25 

was associated with increased cancer risk. (HR= 1.31, 95% CI =1.29 – 1.53, p = 3.2x10-3).  

When MDLD was not taken into account, BMI was associated with increased cancer incidence (HR = 1.09(1.01 

– 1.18), p = 3.1x10-2). This association was completely abrogated when adjusted for the presence of MDLD. 

Similar results were found for other markers of adiposity, weight and waist measurements. 

When analysis was limited to obesity related cancers, BMI was associated with increased cancer incidence. (HR 

= 1.01(1.00 – 1.03), p = 3.3x10-2)  Similarly to the analysis of all cancer incidence, BMI was not associated with 

cancer incidence when MDLD was added as a covariate.  

Similar results were found in the SHARE cohort. Out of 26,891 patients analysed, 5,728 had cancer incidents in 

the follow up period. MDLD was associated with increased cancer incidence (Figure 1, HR = 1.56, (1.45- 1.67), 

p < 0.0001). MDLD hospitalisation prior to baseline was associated with increased cancer risk, with a hazard 

ratio of 2.54. (95% CI = 1.14 – 5.65, p = 2.3x10-2).  NASH was also associated with increased cancer incidence. 

(HR = 4.18(1.74- 10.0), p = 1.4x10-3) Among the patients in SHARE, 1,912 had BMI data available. In these 

patients, when MDLD was accounted for, BMI was not significantly associated with overall cancer incidence, 

or with obesity related cancer incidence. 

Similar results were found in the population based diabetes cohort from Tayside & Fife. Out of the 11,141 

patients analysed, 1,819 had cancer incidents in the follow up period after the age of 60. MDLD was associated 

with cancer incidence in the follow up period. (HR = 1.16(1.04-1.29), p =5.9x10-3) Full results are shown in the 

supplementary appendix. 

As well as increasing all primary cancer incidence, MDLD was associated with increased incidence of specific 

cancers in GoDARTS and SHARE, shown in Figure 2. Due to lower numbers of cases, the confidence intervals 

for these are wider than for all primary cancers combined. Breast and uterine cancer analyses were limited to 

females, with prostate cancer analyses limited to males. T&F was not meta analysed in this analysis due to the 

primarily diabetic composition of the cohort, which did not capture those over 60 who did not go on to get 

T2DM. The ascertainment bias in this cohort that only contains individuals who did eventually get diabetes is 

likely to have resulted in the lower point estimate for MDLD in cancer risk that we have observed. 

MDLD and Cancer Death 

The relationship between MDLD and cancer death was analysed in GoDARTS. In a CPH model adjusted for 

age, sex, diabetes, BMI and smoking, MDLD was associated with increased risk of cancer death. (HR = 

1.40(1.21-1.61), p < 0.0001) FLI was associated with increased cancer death risk in the same CPH model. . (HR 

= 1.009(1.002 - 1.015), p =9.8x10-3) 

MDLD was associated with increased risk of non-cancer death in the same model. (HR = 1.23(1.12-1.35), p < 

0.0001) To estimate the effects of MDLD specifically on cancer death more accurately, competing risks 

analyses were run. 

A CRR using Fine and Grays’s method was run to analyse the association between MDLD and cancer death 

with non-cancer related death as a competing risk. In a model with sex, T2DM, smoking, obesity and age, 
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MDLD increased risk of cancer with a subdistribution hazards ratio (SHR) of 1.28 (95% CI =1.11 - 1.47, p < 

0.0001).  

In SHARE, a CRR adjusted for sex and T2DM with non-cancer death as a competing risk was run. Patients with 

MDLD had a significantly higher risk of cancer death. (SHR = 3.12 (2.38– 4.10), p <0.0001) 

In those patients who died during the follow up period of GoDARTS, MDLD was associated with increased 

chance of cancer being the main cause of death in a logistic regression adjusted for age, sex, T2DM, smoking 

and BMI (OR = 1.33 (1.10 – 1.62), p = 3.6x10-3). This was also found in SHARE in a logistic regression 

adjusted for sex and T2DM. (OR = 1.54(1.17 – 2.03), p = 2.0x10-3) 

Further analysis showed that this association between MDLD and cancer death is one of the major drivers of the 

shorter life expectancies of MDLD patients. This is shown in the supplementary appendix. The proportion of all 

deaths with cancer as the main or a contributing cause in GoDARTS are shown in Table 4.   

Further to the analyses in GoDARTS and SHARE, similar results were found in the Tayside and Fife diabetics’ 

cohort. MDLD was associated with increased cancer death. (SHR = 1.40(1.20-1.63), p < 0.0001) Full results are 

shown in the supplementary appendix. 

PNPLA3 and Cancer Incidence 

The effects of PNPLA3 on cancer incidence during the follow up period in GoDARTS and SHARE were 

evaluated. Homozygous carriers of PNPLA3 rs738409 had increased risk of cancer incidence (HR = 1.27 (1.02-

1.58), p = 3.1x10-2). These results were meta analysed with results from SHARE, shown in Figure 3. 

This association was also observed in GoDARTS when patients with liver cancer were excluded from analysis, 

as PNPLA3 rs738409 has been shown to increase liver cancer risk.38 (HR = 1.26(1.01-1.58), p = 3.8x10-2) 

Similar results were found in an adjusted CRR with death as a competing risk. (SHR =1.24(1.00-1.54), p = 

4.9x10-2) 

Mendelian randomisation analysis was conducted to estimate the effect of MDLD on cancer incidence. Using 

the ratio method in a meta analysis of GoDARTS and SHARE, MDLD was found to be significantly associated 

with cancer incidence, with a β estimate of 1.33(95% CI = 0.18 - 2.49, p = 0.023) 

 

Discussion 

Summary of Key Results 

In this study, we found that a significant increase in cancer incidence exists in patients with MDLD, high FLI, 

high FIB-4 and NASH. We also report an association between the strongest genetic instrument for NAFLD risk 

(PNPLA3 rs738409) and cancer incidence. Cancer incidence and death was higher in those who had MDLD in 

GoDARTS, SHARE, and T&F using the raised ALT definition as a surrogate of NAFLD. This demonstrates the 

generalisability of this result. This is the first truly large scale observational study to show these associations, as 

well as the first to show the effect of BMI on cancer incidence is driven to null when MDLD is accounted for. In 

SHARE and T&F, NAFLD admissions were associated with increased cancer incidence. NASH also increased 
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cancer incidence, with a larger effect size than MDLD. Other non-invasive biomarkers including Fatty Liver 

Index and FIB-4 score prior to enrolment to the GoDARTS study were also found to increase risk of cancer 

during the follow-up period. These results support findings from other published studies that link NAFLD to 

cancer of all types. 3,4 It also suggests that the more pro-inflammatory form of NAFLD, NASH, may have more 

of an effect and this may give clues to the biological mechanism(s). 

Limitations 

MDLD Phenotype 

The MDLD phenotype may be a limitation of this study. Case ascertainment for NAFLD is clinically performed 

using ultrasound, or the gold standard biopsy method. However, these tests are not routinely performed in order 

to diagnose NAFLD. Therefore, in a population cohort, data on liver biopsies and ultrasound scans are not 

commonly found. Instead, chronically raised ALTs in the absence of virological, immunoligcal and alcoholic 

liver insult is generally understood to indicate NAFLD.14,39 There is substantial evidence linking ALT levels to 

NAFLD, but also evidence that NAFLD can exist in patients with normal ALT levels,  however the true normal 

range used in this study negates this.23 Furthermore, a non-sensitive MDLD phenotype would drive the 

association towards null, and therefore we cannot exclude the fact that the true association may be stronger than 

that we have observed.   While we acknowledge that ALT levels may have a limited sensitivity for defining 

mild NAFLD, we have shown that our ALT based definition is highly sensitive for more advanced cases, such 

as those with the Fatty Liver Index measured and those hospitalised with steatosis. In GoDARTS, SHARE and 

T&F, we estimated sensitivity to be 97.4%, 75.3% and 94.6% respectively for such advanced cases. Indeed, our 

use of exposures such as MDLD, FIB-4, FLI and NASH are included under the umbrella of metabolic 

associated fatty liver disease (MAFLD). 16 

Genetic evidence for the suitability of our phenotype ascertainment is demonstrated by the observation that the 

major NAFLD susceptibility variant in PNPLA3, rs738409, was associated with our MDLD phenotype with an 

to a very similar magnitude to that previously reported. 40 The high sensitivity of the phenotype and similar 

effects of other NAFLD related phenotypes on cancer incidence, plus previous literature linking NAFLD to 

cancer support the validity of the ALT based MDLD phenotype. 3,4  

Whilst we show that our MDLD phenotype is accurate, even if part of the aetiology of the raised ALT levels is 

alcohol or another cause, this is still an important and interesting result. The observation that when ALT levels 

are taken into account, BMI no longer associates with cancer incidence changes current understanding of the 

link between cancer and obesity. 

We found NASH to be associated with increased cancer incidence, and suggest its associated hepatic 

inflammation may contribute to cancer risk. The majority of patients with NASH however also have a diagnosis 

of fibrosis, which could mean the effect is fibrosis rather than inflammation driven. 

Covariate Data Missingness 

The missingness of BMI and smoking data for patients in SHARE is a possible limitation of the current study.  

In the analysis of cancer incidence in GoDARTS, T&F and the sub-group of SHARE patients with BMI data 

available, the inclusion of BMI as a covariate did not modify the association between MDLD and cancer. In 
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GoDARTS also, MDLD was not associated with rates of smoking when age and sex were adjusted for. Due to 

this, the analysis of MDLD and cancer without BMI and smoking as covariates is still valid, and comparable 

with the analyses undertaken in GoDARTS. Allen et al, used similar methodology, as they did not correct for 

smoking and found that BMI played a relatively small part in cancer risk compared to NAFLD.4 The self-

reported nature of alcohol intake in GoDARTS, and missingness of this data in SHARE and T&F, as well as the 

ubiquitous nature of alcohol consumption at the sub clinical level, does not allow us to exclude the possibility 

that general alcohol consumption may play a role in the relationship between NAFLD and cancer, however this 

is likely to be a limitation of the concept of NAFLD in general. 

BMI as a marker of Obesity 

BMI is an accurate and useful marker of obesity, although is not perfectly correlated with abnormal body fatness 

as factors such as muscle mass can impact the result.41 To assess whether this was a factor in the lack of 

association between BMI and cancer incidence, other measures of body fatness including waist measurement 

and weight were analysed. These also did not associate with cancer incidence when MDLD was taken into 

account. 

Interpretation of Results 

Hepatocellular carcinoma has long been associated with NAFLD and is widely recognised as one of the most 

severe endpoints of NAFLD.2 There is emerging evidence that the association between NAFLD and cancer 

extends beyond the liver to other parts of the body. Kim et al. found in a cohort follow-up study that, in addition 

to an increased risk of liver cancer, NAFLD dramatically increased rates of extrahepatic cancers, including 

breast and colon in those who were diagnosed with NAFLD prior to the 10 year follow-up period.3 Allen et al 

similarly showed that NAFLD was associated with increased extrahepatic cancer risk, in sites such as the colon, 

lung and prostate.4 In the current study, we found an increase in cancer incidence in many of these specific sites, 

including breast, colon, liver, lung and prostate. Collectively, these data, including the results that we describe, 

supports the notion that NAFLD increases incident cancer risk. 

We found that MDLD was also associated with increased risk of cancer death in all three cohorts. This data 

correlates with our earlier findings that NAFLD is associated with increased cancer incidence, as increased 

incidence is naturally linked to increased mortality. Analysis of causes of death as reported by ICD10 codes in 

medical records showed that the deaths of patients with MDLD were more likely to be due to cancer. Cancer 

was also responsible for a large amount of the shorter lifespans of patients with MDLD, as there was no 

significant effect of MDLD on age of death when patients with a cancer diagnosis were excluded. Similar 

results were found in a recent study in a large Swedish cohort with biopsy confirmed NAFLD.42 In this study, 

Simon et al. found that excess death in NAFLD patients was primarily driven by extra-hepatic cancers and 

cirrhosis, while other causes such as cardiovascular disease and HCC had only a small effect. These findings 

agree with those of the current study, further implicating NAFLD in the development of extrahepatic cancer. 

We showed that homozygous carriers of the PNPLA3 NAFLD risk variant, rs738409, had an increased risk of 

cancer incidence. In a Mendelian randomisation analysis, we showed PNPLA3 rs738409 increased MDLD 

incidence, MDLD increased cancer incidence, and PNPLA3 rs738409 increased cancer incidence. This novel 

finding is supporting evidence that MDLD is causally associated with increased cancer incidence.  
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Substantial evidence links cancer to hyperinsulinemia. For example, hyperinsulinemia has been found to be a 

risk factor for colon cancer.43 Patients with NAFLD are more likely to have hyperinsulinemia, and this is 

associated with reduced insulin clearance.44 This insulin excess may underlie, at least in part, the mechanistic 

basis by which NAFLD increases cancer incidence, as insulin/Igf-1 may promote tumour formation through 

mitogenic pathways downstream of their receptors.45 Furthermore, NAFLD is a pro-inflammatory state that may 

inhibit cell cycle checkpoints. The larger effect sizes of NASH and FIB-4 on cancer incidence observed in this 

study are consistent with the notion of inflammation driving a proportion of cancer risk. Indeed, this observation 

has been validated recently in a study by Pfister et al., which showed inhibited anti-tumour surveillance in those 

with HCC caused by NASH.11 

In a model adjusted for age and sex, BMI was found to be associated with increased cancer incidence. Many 

studies have shown increased cancer risk with increasing BMI, therefore this finding is consistent with previous 

literature. We found that BMI was not associated with overall cancer incidence when NAFLD was taken into 

account, and the same was found for waist and weight measurements. We also found that individuals who were 

obese but did not have MDLD were not at increased risk of cancer incidence compared to those of a healthy 

weight. This finding supports those of Allen et al.4 When we limited analyses to so-called obesity related 

cancers, we found similar results, as BMI was associated with cancer incidence, but not when MDLD was 

adjusted for. This was found in all three cohorts analysed. The lack of independent association between BMI 

and cancer incidence in our study may suggest that NAFLD is a major component in the increased risk of cancer 

observed in overweight and obese patients.  

Generalisability 

The results of this study are generalisable to those of white European descent, and especially those who are at 

increased risk of NAFLD including patients with obesity and T2DM. Given the high prevalence of obesity, 

T2DM and other metabolic dysfunctions, the results have important implications for a large portion of the 

population. The large number of participants involved allowed for high statistical power further ensuring the 

external validity of results. The use of population level data in the T&F replication limited the influence of 

selection bias on results. 

Conclusion 

In the current study we have shown that MDLD is associated with increased risk of cancer incidence. There is 

also an association between MDLD and cancer death, and cancer is a key factor in the shorter life expectancies 

associated with MDLD patients. Furthermore, we are first to show the association between BMI and cancer is 

driven to null when MDLD is included in the model. This is further replicated in two additional, large cohorts, 

demonstrating the robust nature of this relationship. Given the large numbers of participants, these findings are 

likely generalisable to the general population. A key, novel finding of the study was that the missense variant 

PNPLA3 rs738409 is associated with increased cancer incidence. These findings suggests that the effect of 

NAFLD on cancer incidence may be causative, and that a major component of the association between body 

weight and cancer may be driven by NAFLD. 
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Tables 

Table 1: Mean Characteristics of GoDARTS Patients Stratified by NAFLD Status at Time of enrolment 

to GoDARTS 

Characteristic Non NAFLD Number NAFLD p 

Number 6726 6969  

% Diabetic 24.65%(n = 1,658) 66.34%(n = 4,623) < 0.0001 

BMI 27.22kg/m2(SD = 4.76) 30.90kg/m2(SD = 6.07) < 0.0001 

Weight (Males/Females) 84.44kg(SD = 14.18) 

/70.20kg (SD = 14.38) 

92.89kg(SD = 17.04) 

/79.64kg(SD = 18.30) 

< 0.0001 

/< 0.0001 

Female 41.48% (n = 2790) 55.46% (n = 3865) < 0.0001 

Smoker 55.14% (n = 3709) 57.67% (n = 4019) 2.3x10-3 

Age at Signup 61.88 years(SD = 13.72) 64.9 years(SD = 11.54) < 0.0001 

Follow-up Length 9.24years(SD = 2.50) 8.58 years(SD = 2.88) < 0.0001 

 

Table 2: Mean Characteristics of SHARE Patients Stratified by NAFLD Status at Age 60 (Beginning of 

Follow-Up Period) 

Characteristic Non NAFLD NAFLD p 

Number 19035 7856  

% Diabetic 1.65% (n = 314) 8.17% (n = 6418) < 0.0001 

Female 52.45% (n = 9984) 65.10% (n = 5114) < 0.0001 

Follow-up Length 13.92 years(SD = 7.45) 6.91 years(SD = 4.31) < 0.0001 

 

Table 3: Mean Characteristics of Tayside and Fife Diabetics Patients Stratified by NAFLD Status at Age 

60 (Beginning of Follow-Up Period) 

Characteristic Non NAFLD NAFLD p 

Number 5,102 6039  

% Diabetic 40.53% (n = 2068) 60.37% (n = 3646) < 0.0001 

BMI 30.55kg/m2 (SD = 6.12) 33.15kg/m2 (SD = 6.78 <0.0001 

Female 45.84% (n = 2339) 53.27% (n = 3217) < 0.0001 

Smoker 58.57% (n = 2988) 65.01% (n = 3926) <0.0001 

Follow-up Length 11.08 years (SD = 6.07) 6.21 years (SD = 4.03) < 0.0001 
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Table 4: Proportion of All Deaths Due to Cancer Stratified by NAFLD and Type 2 Diabetes Status in 

GoDARTS 

 

Table 4 shows the proportion of all deaths which are attributable to cancer. For example, in patients with 

NAFLD and not diabetes, 41.25% of deaths had cancer a the main cause, and 45.26% of all deaths in this group 

had cancer as a main or contributing cause. 

Figures 

Figure 1: Hazard Ratios for Cancer Incidence in GoDARTS and SHARE 

 

 

 

 

 

Group 
Cancer as Main Cause of 

Death Rate 

Cancer as Contributing 

Cause of Death Rate 
Total Number in Group 

No NAFLD or T2DM 31.33% 35.34% 382 

T2DM 24.28% 30.29% 449 

NAFLD 41.25% 45.26% 559 

Both NAFLD and  T2DM 27.80% 31.73% 1853 
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Figure 2: Hazard Ratios for Cancer Incidence at Specific Sites in Meta-Analyis of GoDARTS and 

SHARE. 

 

Figure 3: Forest plot of Cancer Incidence and PNPLA3rs738409 in GoDARTS, SHARE, and meta-

analysis of both cohorts. 
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