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Abstract

Past pandemic experience can affect health outcomes in future pandemics. This
paper focuses on the last major influenza pandemic in 1968 (H3N2), which killed up
to 100,000 people in the US. We find that places with high influenza mortality in 1968
experienced 1-4% lower COVID-19 death rates. Our identification strategy isolates
variation in COVID-19 rates across people born before and after 1968. In places with
high 1968 influenza incidence, older cohorts experience lower COVID-19 death rates
relative to younger ones. The relationship holds using county and patient-level data,
as well as in hospital and nursing home settings. Results do not appear to be driven
by systemic or policy-related factors, instead suggesting an individual-level response
to prior influenza pandemic exposure. The findings merit investigation into potential
biological and immunological mechanisms that account for these differences—and their
implications for future pandemic preparedness.
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Introduction

The COVID-19 pandemic resulted in the global implementation of an unprecedented set
of public health and economic measures including social distancing and supply chain in-
novations, along with widespread emergency use of new pharmaceuticals and vaccines. To
evaluate pandemic response effectiveness and to better understand how to prepare for and
prevent future pandemics, researchers are investigating the epidemiological and patho-
logical nature of the SARS-CoV-2 virus in the hope of fully assessing the disease’s global
impact—and, in particular, investigating the susceptibility of populations to illness. This
paper presents novel findings associating distant life experiences—and potentially biolog-
ical factors—with the severity of COVID-19 illness, and contributes to several strands of
related research spanning the social and biological sciences.

One such research area involves the investigation of heterogeneous COVID-19 outcomes
among different populations. Previous work has presented evidence linking demographic,
racial, social, and policy factors to the spread and severity of COVID-19 (Dowd et al. 2020;
Kraemer et al. 2020; Wells et al. 2020; Taylor et al. 2020; Knittel and Ozaltun 2020;
Nepomuceno et al. 2020; Papageorge et al. 2021). Pandemic responses have also varied
in terms of mitigation behavior, both globally and within the US, and even under simi-
lar governmental policies and regulations. It has been proposed that such differential re-
sponses can explain to varying COVID-19 outcomes, but these relationships have been dif-
ficult to demonstrate clearly. Our paper contributes to this strand of empirical research,
which sits largely within the social sciences, by proposing an additional immunological fac-
tor that may confound results of existing studies.

A second relevant area of research explores genetic, immunological, and other biological
factors linked to the severity and transmissibility of COVID-19 (Lauc and Sinclair 2020;
Hou et al. 2020; Sette and Crotty 2020; Doshi 2020). Such research includes genomic
association studies, an investigation of sex differences in immunity, and a proposal that
a major genetic risk factor can be traced to Neanderthal DNA (Group 2020; Takahashi
and Iwasaki 2021; Zeberg and Pääbo 2020). This category of work explores whether risk
factors, biomarkers, and cross-reactivities can be utilized to develop best practices in pro-
phylaxis, testing, and management. Our study may motivate further work in this area by
presenting empirical population-level findings potentially pointing to a biological source of
COVID-19 resistance.

A third related research thread explores the persistence of past public crises and how they
alter human and institutional responses in such a way that mediates the spread, morbid-
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ity, and mortality of COVID-19 (Huang et al. 2020; Lokshin et al. 2020). These studies
propose previously unexplored mechanisms that contribute to illness, rather than focusing
on a specific factor. For instance, Lokshin et al. found higher WWII mortality to be asso-
ciated with lower COVID-19 death rates, positing a link between institutional investment,
social capital, and pandemic response. Other studies have linked SARS exposure to lower
COVID-19 mortality, which some have attributed to mask-wearing norms that made com-
pliance with public health measures ‘easier’ (Peter Zhixian Lin and Meissner 2020; Cheng
et al. 2020; Lo and Hsieh 2020). Relatedly, our study explores how societal responses to a
past public health crisis may explain phenomena occurring several generations later.

Looking beyond COVID-19, there is abundant research into the links between pandemics
and disease. One representative study connects an HIV-resistant gene to exposure to the
plague and smallpox (Galvani and Slatkin 2003; Sabeti et al. 2005). Another study pro-
poses that the 1918 influenza pandemic hastened the decline of tuberculosis (Noymer and
Garenne 2000). Others have linked excess youth mortality during the 1918 influenza pan-
demic to exposure to the 1889 ‘Russian Flu’ virus (Worobey et al. 2014; Abildgren 2021).

Our paper applies a similar lens to an underexplored but arguably consequential pan-
demic, the 1968 influenza pandemic, which killed up to 100,000 people in the US. We find
that areas with high influenza mortality in 1968 experienced 1-4% lower COVID-19 death
rates. Leveraging variation in COVID-19 rates across people born before and after 1968,
we find that in areas with high 1968 influenza incidence, older cohorts experience lower
COVID-19 death rates relative to younger ones. The findings are robust to using county-
and patient-level data, as well as hospital and nursing home data, and do not appear to
be driven by systemic or policy-related factors. Instead, they suggest a potential biological
and immunological response to prior influenza pandemic exposure.

The 1968 influenza pandemic

While many have looked to the 1918 influenza pandemic for insight into the ongoing epi-
demiological and economic effects of the COVID-19 pandemic (Beach et al. 2020; Peter Z
Lin and Meissner 2021), fewer have explored a far more recent public health crisis with a
similarly global footprint. In September 1968, the US was confronted with a novel H3N2
influenza virus that originated in China and was dubbed the ‘Hong Kong Flu’ or ‘Mao
Flu’.1 The death toll of the ensuing pandemic was comparable to that of the COVID-19
pandemic given the smaller US population of the time of around 200 million people, with
1 https://www.cdc.gov/flu/pandemic-resources/1968-pandemic.html
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100,000 deaths in the US (compared to 400,000 COVID-19 deaths out of 330 million peo-
ple as of January 2021). Globally, the 1968 flu pandemic resulted in between 1 to 4 million
deaths. Paralleling the present day, the flu reached the White House, with both President
Lyndon B. Johnson and Vice President Hubert Humphrey falling ill (Honigsbaum 2020).

Approximately one third of the US population today was alive during the 1968 pandemic
(American Community Survey 2019). As shown in the map in Figure 1, the 1968 flu spread
nationwide. Some communities were hit especially hard; a contemporaneous report esti-
mated that over 40% of the population of Milwaukee was infected (Piraino et al. 1970).
Several cities reported stress on local hospital systems attempting to manage the influx of
patients (Saunders-Hastings and Krewski 2016; Piraino et al. 1970). Unlike SARS-CoV-2
today, the 1968 virus killed many young people, with approximately 40% of the flu-related
deaths estimated to have been among those under 65 (Simonsen et al. 1998; Acosta et
al. 2019).

Despite the widespread disruptions caused by the 1968 flu pandemic, the social, economic,
and public health response at the federal level was somewhat muted, with much of the
country operating as usual. Although 23 states underwent school and university closures,
the US did not implement any broad social distancing or containment measures. Vaccines
were eventually developed but not in time to blunt the initial spread of the virus (Honigs-
baum 2020; Jester et al. 2020; Saunders-Hastings and Krewski 2016).

The recency and scale of the 1968 pandemic make it a compelling event to employ histor-
ical analysis of the type seen in the third strand of literature cited above. Studying any
enduring impact of this pandemic helps to further our understanding of the COVID-19
pandemic and how future pandemics can be mitigated. More immediately, it may moti-
vate clinical research into immunological or biological responses to SARS-CoV-2 related to
exposure to the 1968 pandemic.

Empirical approach

Our overall approach is as follows: we first test the hypothesis that a residual link ex-
ists between 1968 flu severity and COVID-19 outcomes. We then assess potential factors
that could explain such a relationship. While identifying precise mechanisms is outside the
scope of this study, we perform several empirical tests to untangle potential policy, social,
and individual channels of association. We limit the analysis to the end of 2020 to avoid
potential confounding effects of differential vaccine uptake.
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A policy channel includes any mechanism whereby an institution, in response to the 1968
flu pandemic, has put in place some deliberate action or policy that would have, regardless
of its intention, influenced COVID-19 outcomes. Examples could be improved mortality
outcomes as a result of hospital investments in response to the 1968 flu.

A social channel involves widespread behavioral shifts (e.g., in social distancing behaviors)
in places that experienced high death rates from the 1968 flu, perhaps resulting in the
development of a culture favoring extra precaution or social (dis)trust. In such cases, we
would expect an equivalent shift for all people living within a geography (i.e., a population-
level shift), as all residents would be more or less equally affected by these social forces.

An individual channel, in contrast, involves not a population but rather individuals for
whom a difference in outcomes is expressed. The individual channel may be biological2

(e.g., learned immunity to the SARS-CoV-2 through prior exposure to another virus) or
behavioral (e.g., individual-level compliance with public health measures), both of which
may lessen the likelihood of infection or death. Along this line, Cheemarla et al. finds that
previous exposure to rhinovirus lends resistance to SARS-CoV-2 infection. The individual
channel requires heterogeneous effects across a population, with sub-populations demon-
strating unique COVID-19 outcomes based on past exposure.

Our baseline linear regression model takes the following form:

outcomei = βflui + θcontrolsi + αs + εi (1)

where outcomei is a COVID-19 outcome in county i at a given month, β is the coefficient
of interest related to flu, which is the excess respiratory death rate attributable to the
1968 flu as described in the Data section, controlsi is a vector of county-level covariates,
αs is a dummy for fixed effects in state s, and εi is the error term. Standard errors are
clustered at the state level.

For outcomes of interest, we variously use (1) COVID-19 death rates, (2) hospital admis-
sions, (3) a subset of patient-level data from Healthjump, and (4) nursing home death
rates. All values are aggregated to the county level to match our data on 1968 flu inten-
sity. We replicate this cross-sectional analysis at different snapshots in time representing
2 An example of such a channel is how influenza affects age groups differently based on individuals’ past
exposure to a similar viruses (Acosta et al. 2019; Reichert et al. 2012; Ma et al. 2011). Further, prena-
tal exposure to the 1918 influenza virus has been linked to cardiovascular disease and other phenomena
occurring decades later (Almond 2006; Mazumder et al. 2010), although others have disputed some of
these links (Beach et al. 2022).
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the progression of the pandemic, as categorized by end-of-month outcomes.

To address endogeneity and omitted variable bias concerns in the relationship between the
1968 flu and COVID-19 outcomes, we also employ differences in death rates and hospi-
tal admissions by age group as the outcome variable. We choose the age cutoff based on
whether someone was born before or after 1968 in an attempt to isolate those people likely
to have been exposed to the 1968 pandemic.

The bottom panel of Figure 4 displays the identifying variation based on the age catego-
rizations used in CDC’s COVID-19 case surveillance data and HHS’s hospital admissions
data. This specification acts effectively as a difference-in-difference model to isolate the ex-
tent to which the 1968 flu affects people born before 1968 relative to those born after 1968.
The identifying assumption relies on the fact that potential confounders are unlikely to
shift the relative degree of COVID-19 morbidity or mortality across proximate age groups
within a given county. Finally, to address concerns about the coarse categorization of in-
dividuals into decadal birth cohorts, we validate the results with patient-level data from
Healthjump containing annual year of birth.

Results

First, we explore patterns in the underlying data. Figure 1 plots cumulative COVID-19
death rates over time, averaged by age cohort and whether the county was among those
severely hit by the 1968 flu pandemic. We see that the COVID-19 death rates are simi-
lar for the 40-49 and 50-59 groups, while the death rate among those aged 60-69, a group
more likely to have been exposed to the 1968 flu, is consistently lower in high-1968-flu
counties—providing suggestive evidence for our main finding.

We next present regression results using the model specified in Equation 1. Figure 2 plots
the coefficients representing the change in county-level COVID-19 death rates on a cumu-
lative basis in a given by month associated with an increase in 1968 flu mortality. We find
a consistent negative relationship between the severity of 1968 outcomes and COVID-19
outcomes. Appendix Table A1 provides the full regression results including all the covari-
ates, while Figure A1 employs various treatment dummy variables for counties greatly af-
fected by the 1968 flu rather than a continuous measure of excess death rates. In terms
of magnitude, people in counties among the 5% worst hit by the 1968 flu had COVID-19
death rates 1-4% lower than the average US county.3

3 Magnitude range computed two ways: first, using the continuous measure in Figure 2, top 5% counties
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Figure 1: (Top) Average county-level cumulative COVID-19 death rates by age group and month. ‘Con-
trol’ excludes counties in the top 10% of excess flu deaths in 1968. (Bottom) Map of distribution of in-
fluenza deaths per thousand at the county level estimated from CDC data of excess respiratory deaths in
1968 and 1969 relative to a baseline of 1970 and 1971 (right) and a map of counties in the top 5th per-
centile in dark blue and top 5-10th percentile in light blue (right).
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Figure 2: Relationship between county-level excess death rate per 1,000 from the 1968 pandemic and
COVID-19 death rates (left) and log-transformed death rates (right), which can roughly be interpreted
as percent change. For example, the September point estimate of -0.04 indicates a 4% reduction. All mod-
els control for socioeconomic variables and state-level fixed effects. Coefficients are plotted from separately
run regressions for COVID-19 outcomes by month. Analysis ends in December 2020 at which point vac-
cines started to become available. Error bars reflect a 95% confidence interval.

To evaluate the hypothesis of a connection between being alive during the 1968 flu and
variance in susceptibility to COVID-19, we next employ patient-level data from Healthjump
containing patients’ birth year. This analysis involves 48,000 unique patient records where
a COVID-19 diagnosis is explicitly linked to a medical procedure within 30 days of the
diagnosis. Such procedures include, but are not limited to, hospitalization. Figure 3 plots
the ratio of patients in top 10% 1968 flu counties relative to the count of all patients. Older
cohorts (people alive by the 1968 pandemic) are better off in places hit hard by the 1968
flu, whereas younger cohorts are in fact worse off. A discontinuity appears to occur at the
1968 birth year, indeed suggesting some relationship between a likely individual experience
of the 1968 flu pandemic and COVID-19 outcomes.

Next, we address concerns that demographic patterns may be driving these results. We
test how health outcomes relate to known confounders—both in the present and in 1968.

had an average 1968 flu death rate of 0.67 per thousand compared to the US average of 0.07, a differ-
ence of 0.6 deaths per thousand, or almost 10 times the death rate. Multiplying 0.6 by the average of
the June to December coefficients from the right panel (log-value) of Figure 2 (-0.023), equals -0.014, or
-1.4%. Alternatively, in the model from Figure A1 with a binary treatment for top 5% 1968 flu counties,
the average of the coefficients is -0.04, or -4%. Putting the two approaches together results in a reduction
range from 1-4%.
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Figure 3: Plot of the ratio of patients in top decile 1968 flu counties relative to the count of all patients
in the Healthjump dataset by patient year of birth. LOESS fit line shaded area representing a 95% confi-
dence interval.
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Appendix Table A2 presents the relationship of death rates from both COVID-19 and the
1968 flu on a selection of current and historical covariates. Models (1) and (2) show re-
sults broadly in line with the COVID-19 literature: death rates are weakly correlated with
income (negative), density (negative), the elderly population (positive), and Black pop-
ulation (positive). However, models (3) and (4) show that present-day risk characteris-
tics are not correlated with outcome in 1968, which reduces concerns around confounding
variables. Models (5) and (6) regress 1968 flu outcomes on historical covariates. We see
that the size of the elderly population is a strong predictor of death rates, supporting past
literature (Acosta et al. 2019; Simonsen et al. 1998). We also note a positive, but much
weaker, relationship with a county’s Black population. This finding indicates that the 1968
flu had differential impacts by race in line with the disproportionate toll of COVID-19
on the Black community (Dyer 2020), as well as Hispanics and Native Americans (Tai et
al. 2020).

Appendix Figure A2 plots the mean values of the present-day covariates employed in our
baseline model. Means are separately computed for top-decile counties in terms of both
1968 flu mortality and 2020 COVID-19 mortality. Values are normalized relative to a na-
tionwide mean of 0. We see a broad correlation in average county characteristics. While
not statistically different, there is gap in the average racial and ethnic composition such
that COVID-19 had a more negative impact on Black and Hispanic communities relatively
to the 1968 flu.

Death rates by age group

Figure 4 plots the coefficients from Equation 1 using differences in COVID-19 death rates
across age groups as the outcome variable based on CDC individual case data aggregated
to the county level. There is a consistently negative point estimate for each of the four
methods used to construct differentials around the age cutoffs. This means that COVID-
19 death rates are lower among older cohorts relative to younger ones in places with high
1968 flu mortality.

Columns (A) and (B) showcase the difference among all those older and all those younger
than 50 and 60 years old, respectively. Columns (C) and (D) limit the span to single decades.
For example, column (C) shows the difference in death rates between people in their six-
ties versus those in their forties, highlighting groups just old enough to have lived through
the 1968 pandemic and those not. Column (D) uses people in their fifties as the control,
although it is less obvious how to categorize this cohort, considering that many were alive
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in 1968 although flu transmission tends to increase after age five with the onset of school-
ing (Worby et al. 2015).

Panel A

Panel B

Figure 4: Panel A: Differences in county-level COVID-19 death rates per 1,000 across age groups asso-
ciated with an increase in excess death rates from the 1968 pandemic, controlling for socioeconomic vari-
ables and state-level fixed effects. Coefficients are plotted from separately-run regressions for COVID-19
outcomes by month. Error bars reflect a 95% confidence interval. Panel B: Conceptual chart for the iden-
tifying variation used in the analysis. In the first row ‘50-plus less 0-49’ denotes the difference in the av-
erage COVID-19 death rate for the population age 50 or above (blue area) less the average death rate for
the population under age 50 (green area). Multiple cutoffs are used given that the data is aggregated in
decadal age brackets that do not align with 1968 pandemic exposure. The dotted line shows the theoreti-
cal age of someone in 2020 who was born in 1968.
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Hospital admission data

In addition to examining death rates, we look at hospital admissions driven by COVID-19
as a proxy for case severity. We again test whether there is a differential effect of 1968 flu
exposure on hospitalizations between people who lived through the pandemic and those
who did not. The top panel of Figure 5 presents results in two ways: first, the proportion
of COVID-19 hospital admissions among people over age 60, and second, the difference in
the number hospitalized among those over 60 and those under 60 years old as a proportion
of the population. The 1968 flu has a negative effect on hospital admissions for the over-60
group as a whole, as well as the difference in over-60 group relative to the under-60 group
(i.e., the older group was hospitalized less).

Nursing home data

We replicate our analyses using CMS data on nursing homes. The bottom panel of Figure
5 plots the effect of excess 1968 death rates on COVID-19 death rates and case fatality
rates (deaths as a proportion of cases) in nursing homes. There is a negative relationship
between 1968 mortality and COVID-19 mortality, but the signal is much stronger for the
case fatality rate, particularly in the early months of the pandemic.

Behavioral and institutional responses

Next, we test a number of potential relationships that would indicate potential policy,
social, or individual responses to the 1968 pandemic. One potential explanation is that
places with high 1968 flu mortality subsequently invested in hospital capacity to be bet-
ter prepared for future challenges. Such actions could explain why hard-hit counties saw
better outcomes under COVID-19. To test this, Appendix Table A3 regresses present-day
number of hospital beds at the county level on 1968 flu death rates and finds no relation-
ship—in fact, the coefficients are precise zeros under each model specification.

Another possibility is that individual behavior responds to an event like the 1968 flu. Adop-
tion of risk-averse behaviors (whether on one’s own volition or induced through policy
or social norms) could explain differential COVID-19 outcomes. Appendix Table A4 re-
gresses a self-reported measure of mask use from the New York Times on county-level 1968
flu death rates and finds a negative relationship; that is, places worse hit by the 1968 flu
tended to wear masks less. The relationship holds even after controlling for state-level dif-
ferences and potential covariates (e.g., income, density, elderly, frontline workers).
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Panel A: Hospitals

Panel B: Nursing homes

Figure 5: Panel A: Relationship between excess death rates from the 1968 pandemic and the proportion
of COVID-19 hospital admissions among people over 60 (left) and the difference in the number hospital-
ized in the over-60 group relative to the under-60 group per 1,000 people (right). Rates are calculated
based on cumulative COVID-19 hospital admissions at the county level. Panel B: Relationship between
excess death rates from the 1968 pandemic and nursing home COVID-19 death rates, defined as cumula-
tive deaths per 1,000 residents (left), and case fatality rate, defined as cumulative deaths as a proportion
of cumulative COVID-19 cases (right). Models control for socioeconomic variables and state-level fixed
effects. Coefficients are plotted from separately-run regressions for COVID-19 outcomes by month. Error
bars reflect a 95% confidence interval.
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Finally, we report changes in mobility in response to 1968 flu death rates using Google
mobility data. We look at both mobility involving time spent commuting to work as well
as engaging in retail and recreational activities. We compute two measures to account
for the potential timing of COVID-19 responses. One is a summer average of the baseline
change in mobility in a county from June to August. Another is change in county mobility
between 28 days before and 28 days after a counties’ first reported death. Appendix Ta-
ble A5 shows a weak but positive relationship between 1968 flu deaths and mobility, sug-
gesting that, if anything, behavior in counties adversely affected by the 1968 flu was less
compliant with directives to minimize movement than other counties. Appendix Figure A3
shows a map of mobility changes in time spent commuting to work.

Discussion

Our findings suggest there is a persistent link between the 1968 flu pandemic and COVID-
19 pandemic outcomes. People in counties among the worst hit by the 1968 flu had COVID-
19 death rates 1-4% lower than the average US county. This general relationship is robust
to controlling for known confounders and holds across populations (e.g., county-level ag-
gregates, hospital admittees, and nursing home residents), as well as specifications that
exploit age-based variation in exposure.

Perhaps the most salient finding in support of this conclusion is the discontinuity in Fig-
ure 3 between people born in 1968 or earlier and those born after 1968. This finding lends
compelling evidence to the notion of some connection between personal experience of the
1968 flu pandemic and COVID-19 susceptibility. It is difficult to conceive of a compelling
counterfactual to explain the shift in the direction of the relationship at exactly the year of
the 1968 pandemic.

The direction of the relationship—that people in locales with adverse outcomes in 1968
fare better today—mitigates concerns of a lurking omitted variable. In such a case, we
would imagine the opposite relationship in which some characteristic of places hit hard by
the 1968 flu also makes them susceptible to COVID-19. Such a bias would indicate that
the magnitude of our results are in fact understated.

These results suggest that the primary channel through which COVID-19 outcomes are
affected is at the individual level. By contrast, we find no evidence of collective social ac-
tivity suggesting better mitigation of COVID-19 outcomes. In fact, we find modestly lower
levels of mask use and social distancing among the high-flu counties. Moreover, even if
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behaviors occurred that limited viral spread, the fact that positive outcomes were more
pronounced among age cohorts that lived through the 1968 flu pandemic suggests an indi-
vidual rather than societal-level mechanism.

Focusing on nursing homes also allows us to isolate a population that—unlike the elderly
living outside nursing homes—exercises less agency in their social distancing practices and
other risk-mitigating behaviors, instead following nursing home protocols. In addition,
epidemiology within nursing homes is in some ways independent of what is found for the
general population. Factors such as travel patterns of nursing home staff have a large ef-
fect on infection rates in such settings (Chen et al. 2021). We find that a smaller share
of residents who were infected are dying. Assuming identical distributions of social dis-
tancing policy in nursing homes in counties with adverse 1968 flu histories and those with-
out, better outcomes for nursing home residents in the former group are likely to suggest
that some non-behavioral and non-policy mechanism is at play. This accumulated evidence
lends support to potential biological mechanism(s) driving differential outcomes.

It is worth noting that our results are generally strongest in the autumn of 2020. The ef-
fect of the 1968 flu on COVID-19 outcomes appears to fade into the winter as COVID-19
becomes widespread, a dynamic also seen in (Lokshin et al. 2020), and as vaccines and
better treatments become available. Part of this finding may be attributable to the in-
creasing number of US deaths, which expands the number of counties making up the sam-
ple. With regard to the nursing home analysis, the more pronounced effect earlier in the
COVID-19 pandemic may reflect an improvement in treatment of the disease over the
course of the pandemic as standards of care within institutions evolved and more effective
therapeutics were incorporated into treatment (Jorge et al. 2020).

While we cannot speak to any specific biologic mechanism, direct immunological cross-
reactivity seems unlikely, as SARS-CoV-2 coronavirus is a different type of virus than
H3N2 influenza. However, individuals may have general innate, nonspecific, anti-viral im-
mune pathways that are more robust due to factors such as genetics and lifestyle that may
have been selected for during the 1968 pandemic and its aftermath. There is also prece-
dent for generalized immune response experience early in life having an impact on sus-
ceptibility to future illness and injury, as has been observed in the aforementioned work
examining the association between 1918 flu exposure and cardiovascular disease. Thus
some sort of selective pressure may have occurred over time in which people who survived
the 1968 pandemic were generally better suited to survive the COVID-19 pandemic. This
mechanism would not be unlike that identified in research linking tuberculosis outcomes to
the 1918 flu pandemic, and is plausible considering that 1968 flu mortality skewed toward
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younger people (Noymer and Garenne 2000; Simonsen et al. 1998).

These mechanisms are speculative at this point, and further research would be required
to fully understand whether the differential outcomes observed here are truly meaningful
and what caused them. Assessing the plausibility of cohort-based resilience to all respira-
tory diseases or whether this resilience is more specific to some element of COVID-19 that
would otherwise cause death is certainly difficult, doing so may be worthwhile as we try to
further understand this pandemic in the coming years.

Data

County-level mortality estimates of the 1968 influenza pandemic are derived from Centers
for Disease Control and Prevention (CDC) Compressed Mortality files, 1968-1978, accessed
via CDC’s WONDER database (Centers for Disease Control and Prevention (CDC), Na-
tional Center for Health Statistics 2000). We estimate the excess influenza death rate by
comparing excess respiratory deaths in 1968 and 1969 (when the vast majority of 1968 flu
deaths occur) to a baseline period of 1970 and 1971. We use death rates defined as deaths
per thousand people using local population estimates at the time. Our methodology of
estimating excess mortality follows previous work estimating mortality attributable to pan-
demic flu (Alling et al. 1981).

Individual-level data are from CDC’s COVID-19 Case Surveillance Restricted Access De-
tailed Data accessed January 2021. The restricted dataset includes over 12 million records
of COVID-19 cases with date, decadal age group, and county identifiers. Deaths are also
reported. Note that because of CDC reporting delays and state-level data filing practices,
aggregate totals are less than those of other sources and records November 2020 onward
contain fewer counties reporting than earlier (COVID-19 Case Surveillance Restricted Ac-
cess Data 2021).

Hospital admission data are gathered from the US Department of Health and Housing Ser-
vices (HHS). We aggregate weekly-level hospital data for different decadal age groups to
the county-month level (COVID-19 Reported Patient Impact and Hospital Capacity by
Facility 2021). Nursing home data come from the Centers for Medicare Medicaid Ser-
vices (CMS) Nursing Home COVID-19 Public File. Nursing home facilities are required
to self-report these data to the CDC.4 Patient-level healthcare data with year-of-birth in-
4 While CDC successfully consolidated data from nursing homes across the US, there have been reports
that the data received may not be comprehensive (Attorney General 2021; COVID-19 Nursing Home
Data 2021).
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formation available from Healthjump via the COVID-19 Research Database consortium
(COVID-19 Research Database 2021). The number of hospital beds at the county level
are derived from the Centers for Medicare Medicaid Services. Mask use survey data come
from the New York Times (Katz et al. 2020). County-level mobility data were made acces-
sible to COVID-19 researchers by Google (Google 2020).

Covariate data include county-level race, ethnicity and age structure data from the US
Census and mean county-level income data from the US Bureau of Economic Analysis
(SEER Program, National Cancer Institute, NIH 2020; US Bureau of Economic Analy-
sis 2020). Data on nursing home populations, incarcerated populations, uninsured popu-
lations, average household size, and work commuting methods come from the 2014-2018
American Community Survey (U.S. Census Bureau 2019c; 2019e; 2019b; 2019d). Data
on manufacturing establishments come from the American Economic Survey (2019a). Num-
ber of frontline workers were derived from CEPR data (Fremstad et al. 2020), transform-
ing to the county level assuming even allocation. The freight index is from the FHA’s
Freight Analysis Framework (U.S. Department of Transportation 2020).

Data Availability

Data used for the purpose of this study will be made accessible upon publishing at
https://www.github.com/cboulos/Flu-1968
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Appendix

Figures

Figure A1: Relationship between cumulative log-transformed COVID-19 death rates at the county level
by month and an indicator if counties are in the top 5th (left), 10th (center), or 20th (right) percentile
of excess 1968 pandemic death rates, controlling for socioeconomic variables and state-level fixed effects.
Coefficients are plotted from separately-run regressions for COVID-19 outcomes by month. Error bars
reflect a 95% confidence interval.
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Figure A2: Plot of the mean values of the present-day covariates utilized in our baseline model. Means
are separately computed for top decile counties in terms of both 1968 flu mortality and 2020 COVID-19
mortality. Values are normalized relative to a nation-wide mean of 0. We see a broad correlation in aver-
age county characteristics.
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Figure A3: County-level map of Google mobility data on changes in time spent commuting to work 28
days before and after the first county death.
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Tables
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Table A1: Impact of 1968 flu on county COVID-19 deaths, cumulative by month

Deaths per 1,000 as of month
Jun Jul Aug Sep Oct Nov Dec

(1) (2) (3) (4) (5) (6) (7)

Flu deaths 1968 −0.029∗ −0.034∗ −0.029 −0.045∗ −0.046∗ −0.053 −0.010
(0.015) (0.017) (0.019) (0.023) (0.024) (0.036) (0.063)

Income per capita (log) 0.039 0.016 −0.053 −0.088∗∗ −0.152∗∗ −0.269∗∗∗ −0.369∗∗∗

(0.031) (0.030) (0.033) (0.042) (0.059) (0.073) (0.097)

Density 0.033 0.027 0.023 0.010 −0.009 −0.032 −0.122∗∗

(0.022) (0.024) (0.026) (0.026) (0.033) (0.041) (0.053)

Density-squared −0.006 −0.005 −0.005 −0.004 −0.002 −0.001 0.007
(0.005) (0.005) (0.005) (0.005) (0.006) (0.007) (0.009)

Timing first case −0.285∗∗∗ −0.349∗∗∗ −0.332∗∗∗ −0.327∗∗∗ −0.255∗∗ −0.152 −0.187
(0.064) (0.070) (0.091) (0.114) (0.115) (0.210) (0.250)

Elderly proportion 1.053∗∗∗ 1.302∗∗∗ 1.726∗∗∗ 2.015∗∗∗ 2.419∗∗∗ 2.970∗∗∗ 3.855∗∗∗

(0.285) (0.270) (0.311) (0.397) (0.483) (0.640) (0.927)

Black proportion 0.846∗∗∗ 1.014∗∗∗ 1.176∗∗∗ 1.293∗∗∗ 1.289∗∗∗ 1.132∗∗∗ 0.865∗∗∗

(0.172) (0.173) (0.170) (0.152) (0.147) (0.145) (0.181)

Hispanic proportion 0.139 0.347∗∗ 0.660∗∗∗ 0.809∗∗∗ 0.884∗∗ 0.971∗∗ 1.075∗∗∗

(0.115) (0.133) (0.204) (0.279) (0.329) (0.372) (0.385)

Freight intensity 0.007 0.009 0.009 0.010 0.011 0.015 0.023
(0.009) (0.011) (0.012) (0.014) (0.014) (0.017) (0.018)

Public transit proportion 0.016∗∗ 0.015∗∗ 0.014∗∗ 0.012∗ 0.014∗∗ 0.017∗∗ 0.015
(0.007) (0.007) (0.006) (0.006) (0.006) (0.007) (0.009)

Household size 0.138∗∗∗ 0.188∗∗∗ 0.199∗∗∗ 0.209∗∗∗ 0.189∗∗ 0.077 −0.041
(0.051) (0.056) (0.063) (0.066) (0.075) (0.103) (0.141)

Nursing home proportion 0.00005∗∗∗ 0.0001∗∗∗ 0.0001∗∗∗ 0.0001∗∗∗ 0.0001∗∗∗ 0.00005∗∗∗ 0.00004∗∗

(0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00002) (0.00002)

Prisoner proportion −0.00001∗ −0.00001∗ −0.00001∗ −0.00001∗ −0.00001 −0.00001 −0.00001
(0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001)

Uninsured proportion 0.002 0.004 0.005∗ 0.007∗∗ 0.010∗∗ 0.016∗∗∗ 0.021∗∗

(0.002) (0.003) (0.003) (0.003) (0.005) (0.006) (0.008)

Frontline proportion −0.00000∗∗∗ −0.00000∗∗∗ −0.00000∗∗∗ −0.00000∗∗∗ −0.00000∗∗∗ −0.00000∗∗∗ −0.00000∗∗

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Controls X X X X X X X
State FE X X X X X X X
Observations 3,024 3,024 3,024 3,024 3,024 3,024 3,024
R2 0.416 0.437 0.478 0.464 0.382 0.335 0.331

Notes: Linear regression. Standard errors clustered at state level. *p<0.1; **p<0.05; ***p<0.01
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Table A2: Impact of current and past characteristics on COVID-19 and 1968 flu death rates

Dependent variable:

COVID death rate 1968 flu death rate
–Current covariates– –Current covariates– –1969 covariates–

(1) (2) (3) (4) (5) (6)

Income per capita (log) −0.193 −0.372∗∗∗ −0.024 0.002 0.022 0.044
(0.140) (0.095) (0.032) (0.029) (0.031) (0.034)

Density 0.026 0.079 0.002 −0.002 0.001 0.001
(0.106) (0.055) (0.009) (0.010) (0.007) (0.007)

Elderly proportion 1.333∗ 1.549∗∗ −0.006 0.008 0.957∗∗∗ 1.099∗∗∗

(0.759) (0.682) (0.182) (0.192) (0.266) (0.245)

Black proportion 1.527∗∗∗ 1.070∗∗∗ 0.047 0.014 0.124∗∗ 0.059
(0.299) (0.207) (0.047) (0.052) (0.050) (0.067)

State FE X X X
Observations 3,007 3,007 3,007 3,007 3,007 3,007
R2 0.109 0.298 0.001 0.030 0.012 0.039

Notes: Linear regression. COVID-19 deaths as of Nov 2020. We exclude covariates for which we lack data in 1968 to
ensure similar sample composition. Standard errors clustered at state level. *p<0.1; **p<0.05; ***p<0.01
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Table A3: Impact of 1968 flu on current number of hospital beds

Dependent variable:

Beds per 1,000

(1) (2) (3) (4)

Flu deaths 1968 −0.088 −0.030 −0.009 −0.040
(0.344) (0.326) (0.297) (0.314)

Controls X X
State FE X X
Observations 2,470 2,470 2,470 2,470
R2 0.00002 0.116 0.135 0.201
Adjusted R2 −0.0004 0.098 0.130 0.180
Residual Std. Error 4.322 4.104 4.032 3.913

Notes: Linear regression of county-level hospital beds per 1,000 people on
excess 1968 flu death rates. Models control variously for socioeconomic vari-
ables and state-level fixed effects. Sample size reduced because not all counties
have hospitals. Standard errors clustered at state level. *p<0.1; **p<0.05;
***p<0.01
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Table A4: Impact of 1968 flu on reported mask use frequency

Dependent variable:

Mask use propensity

(1) (2) (3) (4)

Flu deaths 1968 −0.017∗∗ −0.012∗∗ −0.013∗∗ −0.011∗∗

(0.008) (0.005) (0.005) (0.005)

Controls X X
State FE X X
Observations 3,024 3,024 3,024 3,024
R2 0.002 0.374 0.248 0.419
Adjusted R2 0.002 0.364 0.244 0.407
Residual Std. Error 0.088 0.070 0.077 0.068

Notes: Linear regression of county-level mask use defined as proportion of sample
responding to wearing masks ‘Sometimes’ or ‘Frequently’. Models control variously for
socioeconomic variables and state-level fixed effects. Standard errors clustered at state
level *p<0.1; **p<0.05; ***p<0.01

29

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 1, 2022. ; https://doi.org/10.1101/2021.10.23.21265403doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.23.21265403
http://creativecommons.org/licenses/by/4.0/


Table A5: Impact of 1968 pandemic on mobility anomalies from Google

Dependent variable:

Commuting Retail
Summer average Pre-post COVID death Summer average Pre-post COVID death

(1) (2) (3) (4) (5) (6) (7) (8)

Flu death 1968 1.100∗∗ 0.774 2.983∗∗∗ 2.870∗∗∗ 6.640∗∗ 4.269 5.301∗ 4.114
(0.540) (0.550) (1.092) (0.965) (3.100) (2.666) (2.820) (2.566)

Covariates X X X X
State FE X X X X X X X X
SE Cluster State State State State State State State State
Observations 2,719 2,719 2,651 2,651 1,757 1,757 1,697 1,697
R2 0.162 0.474 0.185 0.444 0.195 0.403 0.174 0.376
Adjusted R2 0.147 0.461 0.170 0.431 0.173 0.381 0.150 0.352
Residual Std. Error 6.154 4.890 13.184 10.917 14.877 12.867 19.147 16.717

Notes: Linear regression of average mobility responses from data provided by Google. Models (1)-(4) involve mobility
in relation to commuting to work, and models (5)-(8) involve retail and recreational activities. In models (1), (2), (5),
and (6), Summer average is the average baseline change in mobility in a county over June to August. In models (3),
(4), (7), and (8), Pre-post COVID death is the change in county mobility between the periods 28 days before and 28
days after a counties’ first reported death. Models control variously for socioeconomic variables and state-level fixed
effects. Observations missing for counties and months with not enough activity for Google to provide an estimate. Stan-
dard errors clustered at state level. *p<0.1; **p<0.05; ***p<0.01
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