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ABSTRACT 

Background: In mechanical ventilation, there are still some challenges to turn a modern 

ventilator into a fully reactive device, such as lack of a comprehensive target variable and the 

unbridged gap between input parameters and output results. This paper aims to present a state 

ventilation which can provide a measure of two primary, but heterogenous, ventilation 

support goals. The paper also tries to develop a method to compute, rather than estimate, 

respiratory parameters to obtain the underlying causal information. 

Methods: This paper presents a state ventilation, which is calculated based on minute 

ventilation and blood gas partial pressures, to evaluate the efficacy of ventilation support and 

indicate disease progression. Through mathematical analysis, formulae are derived to 

compute dead space volume/ventilation, alveolar ventilation, and CO2 production.  

Results: Measurements from a reported clinical study are used to verify the analysis and 

demonstrate the application of derived formulae. The state ventilation gives the expected 

trend to show patient status, and the calculated mean values of dead space volume, alveolar 

ventilation, and CO2 production are 158mL, 8.8L/m, and 0.45L/m respectively for a group of 

patients.  

Discussions and Conclusions: State ventilation can be used as a target variable since it 

reflects patient respiratory effort and gas exchange. The derived formulas provide a means to 

accurately and continuously compute respiratory parameters using routinely available 

measurements to characterize the impact of different contributing factors. 

Key words: State ventilation; Dead space volume; Alveolar ventilation; CO2 production 
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INTRODUCTION 

Ventilation support is a clinical intervention used to sustain respiration in patients who are 

unable to breathe on their own or find it difficult to do so. Mechanical ventilation, the most 

common ventilatory support, is widely used for treating respiratory failure or deficiency. 

During the past decades, improvements in our understanding of respiratory physiology and 

pathology, as well as various technological advancements, have allowed the development of 

ventilators that are more sophisticated and versatile [1]. These have more ventilation modes, 

expanded applications, and can provide patients with more accurate and desired ventilation. 

The ventilator is still evolving, and some researchers have given insight into what future 

ventilators will look like [2,3]. The application of Artificial Intelligence (AI) has gained a 

huge amount of interest in healthcare due to technological advancements in machine learning 

and data science. Because of the large amount of information that mechanical ventilation can 

collect and the expertise it requires in decision making, it should be a strong candidate for AI 

application. Some recent AI applications in mechanical ventilation include data acquisition 

[4], weaning management [5], predicting the need for ventilation support [6], and optimizing 

ventilation settings [7]. However, there are still major barriers preventing a ventilator from 

becoming a fully reactive machine even though most modern ventilators have networking, 

data mining, and computation capabilities. There is a lack of a comprehensive target variable 

which can reflect the two primary goals of ventilation support: unloading respiratory effort 

and improving pulmonary gas exchange. Although current AI can recommend ventilatory 

settings for a patient based on historical data [7], without a comprehensive target variable, it 

is nearly impossible for a ventilator to tune the settings on the fly in response to changes in 

the patient's condition. Recently, a ventilatory ratio was proposed to measure ventilatory 

efficiency [8,9]. It took minute ventilation and partial CO2 pressure into consideration, but 

blood oxygenation was not included. Another challenge is that the information collected by 
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present ventilators is generally fragmented and of little use to AI application technologies 

alike. The underlying causal information, such as CO2 production, is not readily available to 

characterize the impact of different factors. There is still a gap between input parameters, 

such as pressure, and output results, such as a patient’s blood gas level. For instance, it is 

hard to tell if a better blood gas outcome under pressure support is a result of unloaded 

respiratory effort or increased alveolar ventilation. Recent studies on lung characteristics have 

mostly focused on lung mechanics such as compliance [10], but have rarely included other 

aspects, such as dead space and carbon dioxide production. Patients’ dead space is often 

estimated in clinical practice through considerations of weight or height, as other methods, 

such as Bohr’s method, are impractical to implement during therapy. For example, dead 

space volume is estimated by inputting a patient’s height into ResMed’s iVAPS ventilation 

mode. However, the estimation concerns anatomic dead space, rather than physiologic dead 

space, and the actual dead space may vary during treatment. Consequently, a patient’s 

alveolar ventilation cannot be accurately and continuously computed.  

METHODS 

The state ventilation SV under mechanical ventilation can be defined as the product of minute 

ventilation �̇� and the ratio of partial CO2 pressure 𝑃𝐶𝑂2
 to partial O2 pressure 𝑃𝑂2

, 

𝑆𝑉 = �̇� × (𝑃𝐶𝑂2
/𝑃𝑂2

)       Eq. 1 

Both 𝑃𝐶𝑂2
 and 𝑃𝑂2

 are routine measurements, but to enable real-time calculation, a ventilator 

must either be able to measure them directly or connect to external devices for measurements. 

A pulse oximetry provides an easy and reasonably accurate way to measure blood 

oxygenation while a transcutaneous SenTec™ device can be used to get both PtcCO2, and 

𝑆𝑝𝑂2. PtcCO2 can provide an accurate surrogate for 𝑃𝐶𝑂2
 [11,12], and  𝑆𝑝𝑂2 can be used to 

derive 𝑃𝑂2
. SV has a unit of litre per minute and is thus called ventilation here.   
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Introducing a state index, SI, as the product of minute ventilation and CO2 partial pressure to 

have: 

𝑆𝑉 = (�̇� × 𝑃𝐶𝑂2
)/𝑃𝑂2

= 𝑆𝐼/𝑃𝑂2
      Eq. 2 

where  

𝑆𝐼 = �̇� × 𝑃𝐶𝑂2
        Eq. 3 

Minute ventilation is the sum of alveolar ventilation and dead space ventilation: 

�̇� = �̇�𝐴 + �̇�𝐷        Eq. 4 

where �̇�𝐴 is alveolar ventilation and �̇�𝐷 is dead space ventilation. Thus, SI can be written as: 

𝑆𝐼 = �̇�𝐴 × 𝑃𝐶𝑂2
+ �̇�𝐷 × 𝑃𝐶𝑂2

        Eq. 5  

Alveolar ventilation equation is expressed as [13]: 

𝑃𝐶𝑂2
= (�̇�𝐶𝑂2

× 𝑘) �̇�𝐴⁄        Eq. 6 

where k is the conversion constant and �̇�𝐶𝑂2
 is the CO2 removed by the lung, which equals the 

CO2 produced from metabolism in the steady state condition. Substituting Eq. 6 into Eq. 5, 

and rearranging the equation, we get: 

𝑆𝐼 = 𝑘 × �̇�𝐶𝑂2
× (1 + �̇�𝐷 �̇�𝐴⁄ )       Eq. 7  

This equation suggests that the state index SI is directly proportional to the patient’s CO2 

production, which reflects the respiratory effort, and related to the dead space/alveolar 

ventilation ratio, which has a huge impact on gas exchange. 

Substituting Eq. 3 into Eq. 7: 

�̇� × 𝑃𝐶𝑂2
= 𝑘 × �̇�𝐶𝑂2

× (1 + �̇�𝐷 �̇�𝐴⁄ )      Eq. 8 
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To simplify further analysis, assuming a patient is in a stable condition and there is no big 

variation in respiratory rate, both dead space ventilation �̇�𝐷 and CO2 production �̇�𝐶𝑂2
 can thus 

be treated as constant. A minor change in pressure support or tidal volume will result in a 

small minute ventilation change and consequently, blood CO2 level, but will have negligible 

effect on dead space and CO2 production. Differentiate both sides of Eq. 8: 

�̇�′ × 𝑃𝐶𝑂2
+ �̇� × 𝑃′

𝐶𝑂2
= 𝑘 × �̇�𝐶𝑂2

× �̇�𝐷 × (−  1
�̇�𝐴

2⁄ ) × �̇�𝐴
′
  Eq. 9 

To avoid confusion, it is worth to point out that the dot carried out by a term has a meaning of 

“minute”, such as minute ventilation �̇�, while a prime indicates a derivative with time. Again, 

with constant �̇�𝐷, differentiate Eq. 4 to get: 

�̇�𝐴
′

= �̇�′        Eq. 10 

And Eq. 6 can be rewritten as: 

𝑘 × �̇�𝐶𝑂2
= �̇�𝐴 × 𝑃𝐶𝑂2

       Eq. 11 

Substituting Eq. 10 and Eq. 11 into the right-hand side of Eq. 9, and rearranging the equation 

to have: 

�̇�𝐷

�̇�𝐴
⁄ =

−�̇� × 𝑃′
𝐶𝑂2

�̇�′ × 𝑃𝐶𝑂2

⁄ − 1     Eq. 12 

If both minute ventilation �̇� and partial CO2 pressure 𝑃𝐶𝑂2
 are continuously measured, their 

gradients, �̇�′ and 𝑃′
𝐶𝑂2

, can be easily derived. Therefore, the ratio of dead space ventilation 

over alveolar ventilation can be computed from Eq. 12. 

At the first glance, the right-hand side of Eq. 12 will give a negative value. However, minute 

ventilation and partial CO2 pressure normally change in the opposite directions, suggesting 
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that �̇�′ and 𝑃′
𝐶𝑂2

 will have opposite signs. Hence the first term on the right-hand side is 

positive and should be greater than 1. 

Solving Eq. 4 and Eq. 12 simultaneously to get alveolar ventilation and dead space 

ventilation: 

�̇�𝐴 = −�̇�′ × 𝑃𝐶𝑂2
𝑃′

𝐶𝑂2
⁄       Eq. 13 

�̇�𝐷 = (�̇� × 𝑃′
𝐶𝑂2

+ �̇�′ × 𝑃𝐶𝑂2
) 𝑃′

𝐶𝑂2
⁄     Eq. 14 

Substituting Eq. 12 into Eq. 8 to obtain CO2 production: 

�̇�𝐶𝑂2
=

−�̇�′ × (𝑃𝐶𝑂2
)2

𝑘 × 𝑃′
𝐶𝑂2

⁄      Eq. 15 

With these equations, alveolar and dead space ventilation, and CO2 production can be 

computed continuously or at any selected point. Dead space volume can be easily obtained 

when �̇�𝐷 is known: 

𝑉𝐷 = �̇�𝐷/𝑓          Eq. 16 

where f is the respiratory rate. 

RESULTS 

Reported data in existing literature will be used to demonstrate a numerical analysis since the 

author does not have the resources to perform experimental verification. In 2013, Briones 

Claudett et al reported a study to compare the use of two ventilatory support strategies in 

patients with Chronic Obstructive Pulmonary Disease (COPD) and hypercapnic 

encephalopathy upon immediate arrival at the emergency department/ICU [14]. A total of 22 

patients were recruited and evenly divided into two groups: the experimental group received 

Bilevel Positive Airway Pressure-Spontaneous/Timed (BiPAP S/T) with Average Volume 
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Assured Pressure Support (AVAPS), and the control group received conventional BiPAP 

S/T. In their study, patients’ arterial blood gases were measured at the beginning, and after 1 

hour, 3 hours, and 12 hours of ventilatory support. Some of the measurements, as listed in 

Table 1,  will be used here to verify the concept of state ventilation and demonstrate the 

computations of respiratory parameters. 

Table 1: Some measurements from Claudett’s study and state ventilations and indexes. 

Measurements Groups Initial 1 hour 3 hours 12 hours 

PCO2 (mmHg) Control (S/T) 64·8 58·3 53·2 50·1 

Exp. (S/T + AVAPS) 63 50·7 45·4 43·6 

Minute 

Ventilation (L) 

Control (S/T) 8·7 9·2 10·8 10·6 

Exp. (S/T + AVAPS) 8·5 10·5 11·5 11·6 

PO2(mmHg) Control (S/T) 66·6 83·1 75·3 79·7 

Exp. (S/T + AVAPS) 71·5 78 87·5 87·4 

Respiratory Rate 

(bpm) 

Control (S/T) 27·9 23·2 21 20 

Exp. (S/T + AVAPS) 29 17·4 18·5 19·9 

Maximum IPAP 

(cmH2O) 

Control (S/T) 12·3 12·6 14·3 14·7 

Exp. (S/T + AVAPS) 19·8 18·3 18 17 

Leak Control (S/T) 9·3 21 11 11 

Exp. (S/T + AVAPS) 14 18·3 17·5 17·5 

State Index SI 

(LmmHg) 

Control (S/T) 563·76 536·36 574·56 531·06 

Exp. (S/T + AVAPS) 535·5 532·35 522·1 505·76 

State Ventilation 

SV (L) 

Control (S/T) 8·46 6·45 7·63 6·66 

Exp. (S/T + AVAPS) 7·49 6·83 5·97 5·79 
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State Ventilation and Index 

Figure 1 graphically shows the state ventilation trends of the two groups, and their state 

indexes are shown in Figure 2 for comparison. Both the state ventilation and index of the 

experimental group show the expected behaviour, decreasing continuously over time, while 

they experience a large drop at 1 hour for the control group and followed by a jump at 3 

hours.  

 

Figure 1: State ventilation over time of the two groups. 

 

 

Figure 2: State index over time of the two groups. 
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Though it is extremely hard to understand the exact cause of this fluctuation due to a lack of 

underlying information, such as alveolar ventilation and CO2 production, we may still be able 

to make a few comments by crosschecking the data in Table 1: 

• Initially, the state ventilation and index of the control group are 0·97L and 

28·26LmmHg higher than that of the experimental group, indicating that this group 

has higher CO2 production �̇�𝐶𝑂2
 and/or a larger �̇�𝐷/�̇�𝐴 ratio as suggested in Eq. 7. 

Considering that the control group has a 1·1bpm lower respiratory rate and a 0·2L 

higher minute ventilation compared to the experimental group, the larger �̇�𝐷/�̇�𝐴 ratio, 

if present, is caused by a greater dead space volume VD.  

• Compared with a state ventilation drop of 0·66L for the experimental group, the 

control group has a far larger drop of 2·01L in the first hour, suggesting that the 

conventional BiPAP S/T used in this group is initially more effective. The control 

group only experiences a minute ventilation increase of 0·5L and a respiratory rate 

decrease of 4·7bpm, whereas these two values are 2L and 11·6bpm respectively for 

the experimental group. Thus, it is believed that the control group has a greater 

reduction of dead space ventilation due not only to the decreased respiratory rate but 

also to a large reduction in dead space volume. As a result, the control group has a 𝑃𝑂2  

increase of 16·5mmHg, 10mmHg more than the experimental group does. 

• At 3 hours, the experimental group continues to improve, but the control group has a 

state ventilation jump. Generally, the fluctuation for an individual patient may suggest 

an unstable condition, or a circuit leakage resulting in inaccurate minute ventilation. 

However, the leak shown in Table 1 is minimal, and given the group size of 11 

patients, it is almost impossible that every patient is unstable over such a long period. 

The minute ventilation of the control group increases by 1·6L from Hour 1 to Hour 3 

because the IPAP in this group is 1·7cmH2O higher. However, this increase is not 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 11, 2021. ; https://doi.org/10.1101/2021.11.08.21266078doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.08.21266078
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10 
 

effective in terms of gas exchange as 𝑃𝑂2
 decreases by 7·8mmHg, though it results in 

a lower 𝑃𝐶𝑂2
. A possible explanation for this phenomenon is that the increased lung 

volume causes a higher vascular resistance due to the reduced capillary calibre. 

Consequently, the ventilation-perfusion inequality is worse and the �̇�𝐷/�̇�𝐴 ratio is thus 

higher, ultimately resulting in a higher state ventilation.  

• At 12 hours, both groups keep improving and become stable. The drop in the state 

ventilation from the beginning to this time is 1·8L for the control group, and 1·7L for 

the experimental group, suggesting that BiPAP S/T performs slightly better over the 

12 hour period. 

Computation of Respiratory Parameters 

After examining Table 1, we use the data of the experimental group at 3 hours to demonstrate 

the computations of �̇�𝐷, �̇�𝐴, �̇�𝐶𝑂2
, and 𝑉𝐷 as the patients in this group have relatively stable 

conditions, indicated by the mean respiratory rate increase of only 1·1 bpm within a relatively 

short time of 2 hours. To obtain the derivatives �̇�′ and 𝑃′
𝐶𝑂2

, the change of both minute 

ventilation and partial CO2 pressure are assumed to be linear from 1 hour to 3 hours, so that 

�̇�′ and 𝑃′
𝐶𝑂2

 can be computed as: 

�̇�′ =
10 · 5𝐿/𝑚𝑖𝑛 − 11 · 5𝐿/𝑚𝑖𝑛

120𝑚𝑖𝑛
= −0 · 0083 𝐿/𝑚𝑖𝑛2 

𝑃′
𝐶𝑂2

=
50 · 7𝑚𝑚𝐻𝑔 − 45 · 5𝑚𝑚𝐻𝑔

120𝑚𝑖𝑛
= 0 · 044 𝑚𝑚𝐻𝑔/𝑚𝑖𝑛 

Then, utilizing Eq. 13 -14: 

�̇�𝐴 =
0 · 0083𝐿/𝑚𝑖𝑛2 × 45 · 5𝑚𝑚𝐻𝑔

0 · 044𝑚𝑚𝐻𝑔/𝑚𝑖𝑛
= 8 · 58 𝐿/𝑚𝑖𝑛 
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�̇�𝐷 =
11 · 5𝐿/𝑚𝑖𝑛 × 0 · 044𝑚𝑚𝐻𝑔/𝑚𝑖𝑛 − 0 · 0083𝐿/𝑚𝑖𝑛2 × 45 · 5𝑚𝑚𝐻𝑔

0 · 044𝑚𝑚𝐻𝑔/𝑚𝑖𝑛

= 2 · 92 𝐿/𝑚𝑖𝑛 

Using a K value of 863mmHg in Eq. 15 to get: 

�̇�𝐶𝑂2
=

0 · 0083𝐿/𝑚𝑖𝑛2 × (45 · 5𝑚𝑚𝐻𝑔)2

863𝑚𝑚𝐻𝑔 × 0 · 044𝑚𝑚𝐻𝑔/𝑚𝑖𝑛
= 0 · 45 𝐿/𝑚𝑖𝑛 

The dead space volume is calculated as: 

𝑉𝐷 =
2 · 92𝐿/𝑚𝑖𝑛

18 · 5 𝑏𝑟𝑒𝑎𝑡ℎ/𝑚𝑖𝑛
= 0 · 158 𝐿 = 158𝑚𝐿 

These values are in the ballpark. It should be pointed out again that these are the mean values 

of the experimental group patients, and the computation accuracy is impacted by the linear 

assumption of �̇� and 𝑃𝐶𝑂2
 over time from 1 hour to 3 hours. 

DISCUSSIONS 

As shown in Figure 1 and 2, the state ventilation and index behave similarly, but the state 

ventilation curves are generally smoother for both groups. The difference between them 

comes from the fact that alveolar dead space, or alveolar ventilation, plays a larger role on 

𝑃𝑂2
 than on  𝑃𝐶𝑂2

 [15]. The state ventilation, thus, presents a clearer and more complete 

picture as it also reflects blood oxygenation. For example, in a hypoventilation patient with a 

high 𝑃𝐶𝑂2
  due to reduced ventilation, the state index may only show a small difference whilst 

the state ventilation will increase to a larger degree because their oxygen level will drop 

accordingly. It is, however, worth taking both into consideration in order to distinguish the 

impacts on patients’ CO2 and O2 levels, especially for patients with ventilation-perfusion 

inequality or right to left shunt, as their CO2 levels are usually normal but with low O2 levels.  
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Ventilation support will reduce patients’ work of breathing and result in less CO2 production 

because it helps drive air into the lung and lower the breathing rate if in assisted mode. Dead 

space ventilation will be reduced too as it is proportional to both breathing rate and dead 

space volume, which generally declines under moderate pressure support due to improved 

lung compliance and vascular resistance. Alveolar ventilation, on the other hand, will 

increase due to increased minute ventilation, decreased dead space ventilation, and alveolar 

recruitment. Therefore, the ratio of dead space ventilation to alveolar ventilation will be 

smaller. The state index will thus be lower and so will the state ventilation, as indicated in Eq. 

7, and illustrated by both figures.  

Both state ventilation and index will gradually decrease to a relatively stable value, 

suggesting a steady condition has been reached. Conversely, if they do not decrease as 

expected, the ventilation support may be ineffective in unloading the patient’s respiratory 

effort to reduce CO2 production, and/or lowering the �̇�𝐷/�̇�𝐴 ratio for better gas exchange. In 

such a scenario, the doctor or physician must investigate possible causes to determine if the 

patient’s condition has deteriorated, or if the ventilatory support settings are inappropriate. 

Interpretation of the state ventilation and index must be done with care for patients who are in 

control modes, as they may not be reflective of respiratory effort. In fact, it is possible for 

patients in deep sedation that a higher number indicates the gain of conscious breathing. 

Hence, it is important to check the other ventilation parameters before drawing conclusions. 

To investigate the root cause of ventilation failure and to facilitate clinical decision making, it 

is important to have a complete picture of the respiratory characteristics of a patient. 

Especially for patients with acute respiratory distress syndrome, this information proves 

useful for adjusting lung protective ventilatory settings, evaluating responses to treatments, 

and predicting outcomes [16]. Though a present-day ventilator may calculate airway 

resistance and lung compliance from observations of pressure, flow, and volume, precise 
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measurements of alveolar ventilation and CO2 production cannot be obtained because the 

patient’s dead space is estimated. The derived formulae here provide a means to accurately 

compute the above ventilation information in real time during therapy. Unlike the single point 

calculation in the demonstration, the computation can be continuous to obtain trends to 

monitor disease progression. The formulae, however, are obtained with the assumption of a 

stable patient condition, and the computations may thus not be accurate during the unstable 

stage. As indicated in Eq. 13-15, even negative values are possible if a patient’s 𝑃𝐶𝑂2
 

increases with an increase in ventilation or if both �̇� and 𝑃𝐶𝑂2
 decrease simultaneously. For a 

patient on mechanical ventilation, the computed parameters may show oscillating behaviour 

before reaching a stable, accurate value, which indicates a stable condition. Therefore, the 

patient’s condition can be reflected by the computed trends as oscillating values may suggest 

an unstable condition.  

A patient who reaches a very stable condition may have constant �̇� and 𝑃𝐶𝑂2
, meaning that 

the derivatives �̇�′ and 𝑃′
𝐶𝑂2

 are zero (or near zero) and the applications of these equations 

may be impossible. In such a case, continuous computation might not be necessary since the 

patient’s CO2 production and alveolar/dead space ventilation will remain constant as well. 

Alternatively, the ventilator can be programmed to have its settings, such as pressure support 

and tidal volume, varied slowly within a small range to avoid constant �̇� and 𝑃𝐶𝑂2
, 

respiratory parameters can thus be easily calculated even with an assumption of linear 

variation. 

The recent COVID-19 pandemic has led to a large increase in the demand for ventilatory 

support. This exacerbates the inadequacy of trained professionals in delivering complex 

ventilation care to their patients [17]. The challenges are not only a result of the new disease, 

but also arise from a generally limited understanding of ventilation parameters and outcomes. 
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Today, ventilators are more complicated, being equipped with many ventilation modes that 

each involves numerous parameters. This presents enormous challenges to trained physicians, 

let alone other healthcare staff. In such situations, a simple but comprehensive tool, which 

can evaluate the efficacy of ventilatory support, would be of significant benefit. The state 

ventilation, together with the other ventilation information, will provide such a tool to 

quantify the patient’s response and facilitate important decisions such as weaning a patient. 

State ventilation and the derived formulae have other potential applications. It may be used to 

develop new methods to measure patient’s respiratory parameters such as dead space volume 

and CO2 production. It will enable ventilator manufacturers to develop new ventilation modes 

or improve the existing modes to provide better and more accurate ventilation therapies to 

patients. For example, the alveolar ventilation in ResMed’s iVAPS mode can be accurately 

computed with the presented formulae.  

CONCLUSIONS 

State ventilation is a good indicator of ventilatory efficacy and a patient’s condition as it 

provides a measure of how much a ventilator can unload a patient’s respiratory effort and 

improve pulmonary gas exchange. Mathematically derived formulas can accurately and 

continuously compute respiratory parameters using routinely available measurements. The 

computations of state ventilation and respiratory parameters not only facilitate the application 

of AI in a ventilator device, but are also very useful for ventilation mode development, 

disease diagnosis, treatment selection, and outcome prediction.  
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