Title

The T-cell clonal response to SARS-CoV-2 vaccination in inflammatory bowel disease patients is augmented by anti-TNF therapy and often deficient in antibody-responders

Authors

Dalin Li, PhD¹, Alexander Xu, PhD², Emebet Mengesha, BS¹, Rebecca Elyanow, PhD³, Rachel M. Gittelman, PhD³, Heidi Chapman, PhD³, John C. Prostko, MS⁴, Edwin C. Frias, MBA⁴, James L. Stewart, PhD⁴, Valeriya Pozdnyakova, BS¹, Philip Debbas, BS¹, Angela Mujukian, M.D.¹, Arash A Horizon, MD⁵, Noah Merin, MD, PhD², Sandy Joung, MHDS⁶, Gregory J. Botwin, BS¹, Kimia Sobhani, PhD⁷, Jane C. Figueiredo, PhD², Susan Cheng, MD, MMSc, MPH ⁶, Ian M. Kaplan, PhD³, Dermot P.B. McGovern, MB BS, D Phil¹, Akil Merchant, MD², Gil Y. Melmed, MD, MS¹, Jonathan Braun, MD, PhD^{1,7}*

Author Affiliations

- 1. F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- 2. Cedars Sinai Cancer and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- 3. Adaptive Biotechnologies, Seattle, WA, USA.
- 4. Applied Research and Technology, Abbott Diagnostics, Abbott Park, IL
- 5. Center for Rheumatology Medical Group, Los Angeles, CA, USA
- 6. Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- 7. Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA

Contact information

Jonathan Braun, MD, PhD Inflammatory Bowel and Immunobiology Research Institute Karsh Division of Digestive and Liver Diseases Department of Medicine Cedars-Sinai Medical Center Los Angeles, CA 90048 310-423-8717 jonathan.braun2@cshs.org

1 Abstract

2 **Background:** Vaccination against SARS-CoV-2 is a highly effective strategy to protect against 3 infection, which is predominantly mediated by vaccine-induced antibodies. Postvaccination 4 antibodies are robustly produced by those with inflammatory bowel disease (IBD) even on 5 immune-modifying therapies but are blunted by anti-TNF therapy. In contrast, T-cell response 6 which primarily determines long-term efficacy against disease progression, , is less well 7 understood. We aimed to assess the post-vaccination T-cell response and its relationship to 8 antibody responses in patients with inflammatory bowel disease (IBD) on immune-modifying 9 therapies. Methods: We evaluated IBD patients who completed SARS-CoV-2 vaccination using 10 samples collected at four time points (dose 1, dose 2, 2 weeks after dose 2, 8 weeks after dose 2). T-cell clonal analysis was performed by T-cell Receptor (TCR) immunosequencing. The breadth 11 12 (number of unique sequences to a given protein) and depth (relative abundance of all the unique sequences to a given protein) of the T-cell clonal response were quantified using reference 13 14 datasets and were compared to antibody responses. Results: Overall, 303 subjects were included 15 (55% female; 5% with prior COVID) (Table). 53% received BNT262b (Pfizer), 42% mRNA-16 1273 (Moderna) and 5% Ad26CoV2 (J&J). The Spike-specific clonal response peaked 2 weeks 17 after completion of the vaccine regimen (3- and 5-fold for breadth and depth, respectively); no changes were seen for non-Spike clones, suggesting vaccine specificity. Reduced T-cell clonal 18 depth was associated with chronologic age, male sex, and immunomodulator treatment. It was 19 20 preserved by non-anti-TNF biologic therapies, and augmented clonal depth was associated with 21 anti-TNF treatment. TCR depth and breadth were associated with vaccine type; after adjusting 22 for age and gender, Ad26CoV2 (J&J) exhibited weaker metrics than mRNA-1273 (Moderna) 23 (p=0.01 for each) or BNT262b (Pfizer) (p=0.056 for depth). Antibody and T-cell responses were

only modestly correlated. While those with robust humoral responses also had robust TCR clonal
expansion, a substantial fraction of patients with high antibody levels had only a minimal T-cell
clonal response. Conclusion: Age, sex and select immunotherapies are associated with the T-cell
clonal response to SARS-CoV-2 vaccines, and T-cell responses are low in many patients despite
high antibody levels. These factors, as well as differences seen by vaccine type may help guide
reimmunization vaccine strategy in immune-impaired populations. Further study of the effects of

30 anti-TNF therapy on vaccine responses are warranted.

31 Introduction

32	Vaccination with mRNA or vector vaccines is immunogenic for SARS-CoV-2 and
33	protective for occurrence and severity of COVID-19. Anti-SARS-CoV-2 antibodies dominate
34	protection against initial infection ^{1, 2} , whereas T-cells play a larger role in preventing disease
35	progression ^{3, 4} . The T-cell clonal response to SARS-CoV-2 vaccines in immunologically
36	impaired individuals is poorly understood, as are effects of risk-factors on this aspect of the
37	vaccine response. Here, a cohort of inflammatory bowel disease (IBD) patients are assessed for
38	their clonal T-cell vaccine response, and its alteration by demographic factors and
39	immunotherapy.
40	
41	Methods
42	The TCR clonal response to SARS-CoV-2 vaccines was assessed in 303 individuals with
43	IBD, enrolled in a prospective registry at Cedars-Sinai between January and June 2021. Samples
44	were collected longitudinally at the time of dose 1, dose 2, and 2 and 8 weeks after dose 2.
45	Subjects: Inflammatory bowel disease patients (N=303) were recruited in Los Angeles,
46	CA, USA between January and June 2021 under the CORALE-IBD protocol approved by the
47	Cedars Sinai Institutional Regulatory Board. Details of this cohort were recently reported ^{5, 6} .
48	Participants completed baseline surveys detailing demographics and medical history at the time
49	of vaccination, and were offered blood sampling after dose 1 (from 5 days after dose 1 until the
50	day of dose 2), after dose 2 (from 2 to 13 days after dose 2), and at 2 weeks (14 to 29 days after
51	dose 2), and 8 weeks (30 to 84 days after dose 2). Prior COVID-19 status was defined by
52	positive IgG(N) at any timepoint, or individuals with a prior clinical diagnosis of COVID-19.
53	COVID-19 experienced individuals were excluded from analysis except where specifically

noted. Most participants received mRNA vaccines, and except where indicated, analysis was
restricted to this subgroup.

56	Antibody assessment: Plasma antibodies to the receptor binding domain of the S1
57	subunit of the viral spike protein [IgG(S-RBD)] were quantified using the SARS-CoV-2 IgG-II
58	assay (Abbott Labs, Abbott Park, IL). as previously described ⁵ .
59	<u>T cell clonal analysis</u> . Immunosequencing of the CDR3 regions of human TCR β chains
60	was performed on blood genomic DNA using the immunoSEQ Assay (Adaptive
61	Biotechnologies), which includes bias-controlled multiplex PCR, high-throughput sequencing,
62	and identification and quantitation of absolute abundance of unique TCR β CDR3 regions, and
63	quantitation of the corresponding T cell fractions by template count normalization ⁷ . Attribution
64	of TCR sequences to SARS-CoV-2 spike or other non-spike SARS-CoV-2 protein specificities
65	were assigned as described by Alter et al. and Sinder et al. ^{8,9} . The breadth summary metric was
66	calculated as the number of unique annotated rearrangements among total number of unique
67	productive rearrangements in the individual sample's dataset. The depth metric was calculated
68	by combining two elements; (a) the raw frequency of each rearrangement in the total repertoire
69	in the individual sample's dataset, and an estimate of clonal generations of the lineage
70	represented by each rearrangement. The resultant depth metric estimates the relative number of
71	clonal expansion generations across the TCRs, normalized by the total number of TCRs
72	sequenced in the sample. Hence, the metric can range from negative to positive values ⁹ .
73	Data analysis. Comparison of TCR breadth and depth used Mixed Linear Model across
74	time points and Generalized Linear Model within time points. Where possible, inverse normal
75	transformation was performed, and age and sex were included as covariates. Confidence
76	intervals for binomial probabilities were computed using exact methods. Geometric means and

confidence intervals were calculated for the log-transformed antibody levels. Other analyses are
 specified in the individual figures. Analyses were restricted to individuals with mRNA vaccines
 and no prior COVID-19 experience unless stated otherwise.
 <u>Data availability</u>. Requests for de-identified data may be directed to the corresponding

81 authors (J.B., G.M.) and will be reviewed by the Office of Research Administration at Cedars-

82 Sinai Medical Center before issuance of data sharing agreements. Data limitations are designed

to ensure patient and participant confidentiality.

84

85 **Results**

Demographics and clinical metadata are summarized in Table 1. The T-cell clonal 86 response to vaccination across different time points is shown in Figure 1A. At dose 1, spike-87 specific breadth and depth of SARS-CoV-2 clones were low (reflecting their basal level in an 88 individual's repertoire). Levels peaked two weeks post second vaccination (P=4.64E-25 and 89 90 2.42E-25 relative to dose 1 levels, for breadth and depth, respectively). From this peak, levels 91 declined at 8 weeks post second vaccination but were still significantly elevated (relative to dose 92 1, 1.08E-11 and 5.30E-14, for breadth and depth respectively). In contrast, no changes were observed in T-cell clonal metrics for non-spike clones, demonstrating the specificity of the 93 vaccine responses. 94

Spike-specific T-cell and antibody responses were compared at week 2 post dose 2, which corresponds to the peak of both antibody and T-cell vaccine responses $^{10-12}$ (Figure 1B). The two responses were significantly but only moderately correlated (R = 0.19 to 0.21). Among those with low antibody response, T-cell clonal breadth and depth were low, suggesting that those with impaired humoral vaccine response have similarly impaired cellular responses.

However, among individuals with the lowest T-cell response, the majority discordantly hadmoderate or high antibody levels.

102	The spike-specific clonal breadth was preserved across age groups, but clonal depth
103	reduced substantially with age (Figure 2A, P=3.62E-4 for trend test). There was no statistically
104	significant association between sex and spike T-cell clonal responses at 2 weeks after dose 2
105	(eFigure 1). However, at 8 weeks the T-cell clonal response was increased in females versus
106	males (P=0.083 and 0.0077, for breadth and depth respectively).
107	IBD disease type (Crohn's disease vs. ulcerative colitis) had minimal effects on the
108	temporal kinetics or levels of spike T-cell clonal response to vaccines (eFigure 2). T-cell clonal
109	depth was significantly but selectively affected by suppressive immunotherapy (Figure 2B,
110	ANOVA $p=0.018$). There were no significant effects of anti-IL12/23, anti-integrin, or
111	steroids/small molecular treatments in comparison to patients with no immune treatments.
112	Interestingly, we observed an augmentation with anti-TNF ($p=0.0174$) after adjustment for age
113	and sex, with consistent trends in anti-TNF monotherapy or in combination with
114	immunomodulators.
115	No significant differences were observed between the T-cell clonal responses to the two
116	mRNA vaccines assessed in this cohort at 2 weeks after dose 2, although a marginal difference
117	was observed at 8 weeks for clonal breadth favoring mRNA-1273 (P=0.047, eFigure 3).
118	Compared to mRNA vaccination, Ad26.COV2.S induced a smaller spike T-cell clonal response
119	at both 2 weeks and 8 weeks after the single vaccination dose.
120	As expected, COVID-19 experienced subjects at dose 1 had significantly increased clonal
121	T-cell breadth and depth compared to COVID-19 naïve subjects (eFigure 4). However, no

significant differences were observed between experienced and naïve subjects in the peak TCRresponse (2 weeks).

124

143

125 **Discussion**

126	This study assesses the T-cell clonal response to SARS-CoV-2 vaccine, to directly						
127	enumerate SARS-CoV-2 spike-specific T-cell clonal diversity (breadth) and clone size (depth) in						
128	immune-impaired individuals. Interrogation of our IBD patient cohort permitted assessment						
129	under select and discrete modes of therapeutic immunosuppression. Few studies have assessed						
130	the T-cell response to SARS-CoV-2 vaccines, and with few exceptions ¹² have used methods that						
131	enumerate SARS-CoV-2-specific T-cells based on peptide-stimulated cytokine production ^{10, 11,}						
132	^{13, 14} . Such studies don't permit assessment of repertoire diversity and clonal size, important						
133	factors in protective T-cell immunity ^{3, 4} .						
134	Consistent with reported kinetics of polyclonal functional T-cell response to vaccination						
135	¹⁰⁻¹² , T-cell clonal response peaked two weeks after the second vaccination dose. Although						
136	antibody response also peaks at 2 weeks ⁵ , antibody levels provided limited predictiveness for						
137	the T-cell clonal response induced by vaccination, particularly for individuals with a low T-cell						
138	response. This is consistent with findings reported from polyfunctional T-cell assessment ^{10, 11, 13,}						
139	¹⁴ . In the context of reimmunization strategies, T-cell assessment may be important to evaluate						
140	both initial vaccine response and persistence of immunity after vaccination ^{15, 16} .						
141	We observed that as age increased, clonal depth in T-cell response to COVID-19 vaccine						
142	decreased while clonal breadth was unaffected. This suggests that the potential spike-specific T-						

144 observation previously reported in the global and influenza T-cell repertoire ^{17, 18}. The T-cell

cell repertoire is maintained with age, but the burst size of the clonal response is curtailed, an

clonal response was reduced 8 weeks post vaccination in males, mostly via the impact on clonaldepth.

Immune-modifying therapy also reduced the T-cell response, again via its selective effect 147 148 on clonal depth, and thus the capacity of potential clones to expand after vaccination. In contrast, 149 the T-cell response was preserved with biologic therapies targeting IL12/23 and integrins, and 150 paradoxically augmented by anti-TNF therapy. If confirmed, this may reflect a differential effect 151 of anti-TNF therapy on T-cell clonal expansion and effector states besides cytokine production. 152 Taken together, these observations on age, sex, and immunotherapies have potential 153 significance when considering groups to prioritize for SARS-CoV-2 reimmunization. We also 154 observed suggestive signals for vaccine type on the T-cell clonal response, analogous to the reduced levels of antibody response with Ad26.SARS.CoV.2 in this same cohort ⁵. Due to the 155 156 small number of Ad26.SARS.CoV.2 recipients studied, those differences should be interpreted 157 with caution.

Limitations of this study include a cohort of only individuals with IBD, lack of racial diversity, and a tertiary center population, which reduce generalizability. Furthermore, direct TCR sequencing detects only a minor subset of index antigen-reactive clones among the much larger number of private clones ⁷.

162

163 Conclusion

Age, sex and select immunotherapies might be associated with the T-cell clonal response to SARS-CoV-2 vaccines. A low T-cell response is poorly predicted by antibody levels.

167 Acknowledgements

168	This study was supported by the Leona M. and Harry B. Helmsley Charitable Trust, the
169	Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, and the
170	National Institute of Diabetes and Digestive and Kidney Disease Grants P01DK046763 and
171	U01DK062413, the Cedars-Sinai Precision Health Initiative, the Erika J. Glazer Family
172	Foundation, and through the Serological Sciences Network, grant NCI U54-CA260591.
173	We thank all those who have contributed to the CORALE-IBD Vaccine study:
174	James Beekley, Sarah Contreas, Joseph Ebinger, Ergueen Herrera, Amy Hoang, Nathalie
175	Nguyen, Sarah Sternbach, Nancy Sun, Min Wu, Keren Appel, Andrea Banty, Edward Feldman,
176	Christina Ha, Dmitry Karayev, Benjamin Kretzman, Rashmi Kumar, Susie Lee, Shervin
177	Rabizadeh, Theodore Stein, Gaurav Syal, Stephan Targan, Eric Vasiliauskas, David Ziring,
178	Brigid Boland, Mary Hanna, Elizabeth Khanishian, Melissa Hampton, Justina Ibrahim, Ashley
179	Porter, Shane White, Cindy Zamudio.

181 Author Contributions

182

These authors equally contributed to the study: Dalin Li and Alexander Xu; Jonathan Braun,Dermot McGovern, Gil Melmed.

184 185

186 Acquisition of data: GM, JB, EM, DL, AX, GB, KS, AAH, HM, RE, RMG, HC, IMK,

- 187 JCP, ECF, JLS
- 188
- 189 Analysis and interpretation of data: all authors
- 190 Drafting of the manuscript: DL, JB
- 191 Critical revision of the manuscript for important intellectual content: all authors
- 192 Statistical analysis: DL, AX
- 193 Obtained funding: GM, JB, DM, SC, JCF
- 194 Study supervision: GM, JB, DM, AM
- 195

196 Competing Interests

197 GYM has consulted for AbbVie, Arena Pharmaceuticals, Boehringer-Ingelheim, Bristol-

198 Meyers Squibb/Celgene, Entasis, Janssen, Medtronic, Pfizer, Samsung Bioepis, Shionogi,

199 Takeda, Techlab, and has received research funding from Pfizer for an unrelated investigator-

200 initiated study. JB has received research funding from Janssen. DM has consulted for Takeda,

201 Boehringer-Ingelheim, Palatin Technologies, Bridge Biotherapeutics, Pfizer, and Gilead, and is a

202 consultant/stockholder for Prometheus Biosciences.

203 **References**

204 Khoury DS, Cromer D, Reynaldi A, et al. Neutralizing antibody levels are highly 205 1. 206 predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med. Jul 2021;27(7):1205-1211. doi:10.1038/s41591-021-01377-8 207 Mercado NB, Zahn R, Wegmann F, et al. Single-shot Ad26 vaccine protects against 208 2. 209 SARS-CoV-2 in rhesus macaques. Nature. Oct 2020;586(7830):583-588. doi:10.1038/s41586-210 020-2607-z 211 Israelow B, Mao T, Klein J, et al. Adaptive immune determinants of viral clearance and 3. 212 protection in mouse models of SARS-CoV-2. bioRxiv. May 19 213 2021;doi:10.1101/2021.05.19.444825 214 McMahan K, Yu J, Mercado NB, et al. Correlates of protection against SARS-CoV-2 in 4. 215 rhesus macaques. Nature. Feb 2021;590(7847):630-634. doi:10.1038/s41586-020-03041-6 216 Pozdnyakova V, Botwin GJ, Sobhani K, et al. Decreased Antibody Responses to 5. Ad26.COV2.S Relative to SARS-CoV-2 mRNA Vaccines in Patients with Inflammatory Bowel 217 Disease. Gastroenterology. Aug 12 2021;doi:10.1053/j.gastro.2021.08.014 218 219 6. Botwin GJ, Li D, Figueiredo J, et al. Adverse Events After SARS-CoV-2 mRNA 220 Vaccination Among Patients With Inflammatory Bowel Disease. Am J Gastroenterol. Jun 21 221 2021;doi:10.14309/ajg.00000000001342 Robins HS, Campregher PV, Srivastava SK, et al. Comprehensive assessment of T-cell 222 7. receptor beta-chain diversity in alphabeta T cells. Blood. Nov 5 2009;114(19):4099-107. 223 doi:10.1182/blood-2009-04-217604 224 Alter G, Yu J, Liu J, et al. Immunogenicity of Ad26.COV2.S vaccine against SARS-225 8. CoV-2 variants in humans. Nature. 2021 1August 12 2021;596(7871):268-272. 226 227 doi:10.1038/s41586-021-03681-2 228 9. Snyder TM, Gittelman RM, Klinger M, et al. Magnitude and Dynamics of the T-Cell 229 Response to SARS-CoV-2 Infection at Both Individual and Population Levels. *medRxiv*. 230 2020:2020.07.31.20165647. doi:10.1101/2020.07.31.20165647 231 Collier DA, Ferreira I, Kotagiri P, et al. Age-related immune response heterogeneity to 10. 232 SARS-CoV-2 vaccine BNT162b2. Nature. Aug 2021;596(7872):417-422. doi:10.1038/s41586-021-03739-1 233 234 11. Hadjadj J, Planas D, Ouedrani A, et al. Immunogenicity of BNT162b2 vaccine Against the Alpha and Delta Variants in Immunocompromised Patients. medRxiv. 235 2021:2021.08.08.21261766. doi:10.1101/2021.08.08.21261766 236 237 Oberhardt V, Luxenburger H, Kemming J, et al. Rapid and stable mobilization of CD8+ 12. 238 T cells by SARS-CoV-2 mRNA vaccine. Nature. Jul 28 2021;doi:10.1038/s41586-021-03841-4 Mahil SK, Bechman K, Raharja A, et al. The effect of methotrexate and targeted 239 13. 240 immunosuppression on humoral and cellular immune responses to the COVID-19 vaccine 241 BNT162b2: a cohort study. Lancet Rheumatol. Sep 2021;3(9):e627-e637. doi:10.1016/s2665-242 9913(21)00212-5 14. Agrati C, Castilletti C, Goletti D, et al. Coordinate Induction of Humoral and Spike 243 Specific T-Cell Response in a Cohort of Italian Health Care Workers Receiving BNT162b2 244 mRNA Vaccine. Microorganisms. Jun 16 2021;9(6)doi:10.3390/microorganisms9061315 245 Israel A, Shenhar Y, Green I, et al. Large-scale study of antibody titer decay following 246 15. 247 BNT162b2 mRNA vaccine or SARS-CoV-2 infection. medRxiv. 2021:2021.08.19.21262111. 248 doi:10.1101/2021.08.19.21262111

- 16. Pegu A, O'Connell S, Schmidt SD, et al. Durability of mRNA-1273 vaccine-induced
- antibodies against SARS-CoV-2 variants. *Science*. Aug 12 2021;doi:10.1126/science.abj4176
- 17. Pizzolla A, Nguyen THO, Sant S, et al. Influenza-specific lung-resident memory T cells
- are proliferative and polyfunctional and maintain diverse TCR profiles. *J Clin Invest*. 02/01/
 2018;128(2):721-733. doi:10.1172/JCI96957
- 254 18. Qi Q, Liu Y, Cheng Y, et al. Diversity and clonal selection in the human T-cell
- 255 repertoire. Proc Natl Acad Sci U S A. 2014;111(36):13139. doi:10.1073/pnas.1409155111

	Total	Dose 1	Dose 2	2 Weeks	8 Weeks
n	303	110	158	153	184
race, n(%)					
Asian	7(2.36)	2(1.92)	3(1.94)	6(3.97)	3(1.64)
Black or African American	5(1.68)	2(1.92)	3(1.94)	4(2.65)	2(1.09)
Multiple	4(1.35)	2(1.92)	2(1.29)	2(1.32)	3(1.64)
Other	10(3.37)	3(2.88)	2(1.29)	6(3.97)	8(4.37)
Prefer not to answer	3(1.01)	1(0.96)	2(1.29)	2(1.32)	1(0.55)
White	268(90.24)	94(90.38)	143(92.26)	131(86.75)	166(90.71)
Hispanic , n(%)	15(5.05)	7(6.73)	8(5.16)	9(5.96)	9(4.92)
Gender, female n(%)	166(55.89)	58(55.77)	88(56.77)	80(52.98)	106(57.92)
Vaccine type, n(%)					
BNT162 (Pfizer/BioNtech)	160(52.81)	67(60.91)	90(56.96)	79(51.63)	97(52.72)
JNJ-78436725 (Johnson & Johnson)	15(4.95)	9(8.18)	-	9(5.88)	13(7.07)
mRNA-1273 (Moderna/NIH)	128(42.24)	34(30.91)	68(43.04)	65(42.48)	74(40.22)
Prior COVID-19 History, n(%)	15(5.08)	6(5.88)	6(3.9)	5(3.33)	6(3.3)
Treatments, n(%)					
No Immune suppression	48(16.22)	15(14.02)	28(18.18)	22(14.57)	29(16.11)
Anti-TNF	104(35.14)	35(32.71)	54(35.06)	54(35.76)	65(36.11)
Other biologics (anit-IL23, anti-integrin)	126(42.57)	48(44.86)	64(41.56)	66(43.71)	75(41.67)
Immunomodulators	18(6.08)	9(8.41)	8(5.19)	9(5.96)	11(6.11)
COVID-19 TCR matrics, mean(s.d.)					
clonal breadth	2.05e-04(1.42e-04)	1.24e-04(1.26e-04)	2.03e-04(1.55e-04)	2.87e-04(1.51e-04)	1.93e-04(9.64e-05)
clonal depth	64.26(84.19)	22.26(49.83)	76.13(111.82)	102.45(92.14)	50.71(47.47)
clonal breadth, Spike only	4.49e-05(5.53e-05)	2.29e-05(2.99e-05)	5.04e-05(6.74e-05)	7.69e-05(6.43e-05)	4.35e-05(3.73e-05)
clonal depth, spike only	2.06(29.04)	-10.59(12.89)	5.86(41.77)	13.91(30.94)	-2.66(15.18)
Age group, n(%)					
<=30	44(14.52)	16(14.55)	28(17.72)	23(15.03)	23(12.5)
30-40	83(27.39)	31(28.18)	41(25.95)	48(31.37)	44(23.91)
40-50	71(23.43)	30(27.27)	38(24.05)	38(24.84)	36(19.57)
50-60	45(14.85)	14(12.73)	24(15.19)	25(16.34)	30(16.3)
>60	60(19.8)	19(17.27)	27(17.09)	19(12.42)	51(27.72)

Figure 1. T-cell clonal response and antibody levels to SARS-CoV-2 immunization. (A) T-cell clonal response to SARS-CoV-2 vaccination. Box plots show mean, quartiles, and data range. Relative to dose 1, p values (mixed-effect model analysis with adjustment for age and sex) for dose 2, 2 weeks post 2nd vaccination, and 8 weeks post 2nd vaccination were: breadth (1.04E-8, 4.64E-25,1.08E-11); depth (9.87E-11, 2.42E-25,5.30E-14). (B) Comparison of T-cell clonal response metrics to anti-spike IgG levels (Spearman's Correlation).

<u>Figure 2</u>. Effect of age and immunologic treatment on T-cell clonal response. (A) Age. Numbers of subjects by age group are tabulated in Table 1. (B) Immunologic treatment. No Imm (no treatment, 5-aminosalicylates, rectal steroids; N=19), anti-Integrin (N=14), anti-IL23 (N=36), anti-TNF_mono (monotherapy with anti-TNF, N=36), anti-TNF_cmb (Combined therapy with anti-TNF and a thiopurine or methotrexate, N=11), steroids/small mol (systemic corticosteroids, or monotherapy with thiopurines, methotrexate, or Janus kinase (JAK) inhibitors, N=16). Boxes are mean value, bars are data range, and p-values were calculated by ANOVA after adjustment for age, sex, vaccine type and COVID history.

<u>eFigure 1.</u> Effect of gender on spike T cell clonal response to vaccination. (A) T cell clonal breadth at week 2 (left) or week 8 (right) post second vaccination. (B) T cell clonal depth at week 2 (left) or week 8 (right) post second vaccination. Box plots show mean, quartiles, and data range. P values were calculated using a mixed-effects model (with adjustment for age and gender) comparing dose 1 to either 2 weeks post 2nd vaccination (left) or 8 weeks (right) post 2nd vaccination.

<u>eFigure 2.</u> Effect of IBD disease type on spike T cell clonal response to vaccination. (A) T cell clonal breadth at week 2 (left) or week 8 (right) post second vaccination. (B) T cell clonal depth at week 2 (left) or week 8 (right) post second vaccination. CD, Crohn's disease; UC/IC, Ulcerative colitis and indeterminant colitis. Box plots show mean, quartiles, and data range. P values are a mixed model analysis (with adjustment for age and gender) comparing dose 1 to either 2 weeks post 2nd vaccination (left) or 8 weeks (right) post 2nd vaccination.

<u>eFigure 3.</u> Vaccine type and the T cell clonal spike response. T cell clonal spike responses were tabulated 2 weeks (A and C) or 8 weeks (B and D) after completion of vaccination regimen (two doses for mRNA vaccines, one dose for the vector vaccine). Subject numbers were Pfizer (BNT162b2, N=160), Moderna (mRNA-1273, N=128), JNJ (Ad26.COV2.S, N=15). P values were calculated using a mixed-effects model (with adjustment for age and gender) for the indicated comparisons.

<u>eFigure 4.</u> Effect of COVID-19 naïve and experienced status on T cell clonal response. The numbers of subjects were 288 (naïve) and 15 (experienced). (A) Dose 1; (B) Dose 2; (C) 2 weeks post second vaccination; (D) 8 weeks post second vaccination. Box plots show mean, quartiles, and data range. P values were generated from a mixed-effects model (with adjustment for age and gender) comparing naïve and experienced subjects.